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ABSTRACT
The advent of improved factory data collection offers a

prime opportunity to continuously study and optimize factory op-
erations. Although manufacturing optimization tools can be con-
sidered mainstream technology, most manufacturers do not take
full advantage of such technology because of the time-intensive
procedures required to manually develop models, deal with fac-
tory data acquisition problems, and resolve the incompatibility
of factory and optimization data representations. Therefore, au-
tomated data acquisition, automated generation of production
models, and the automated integration of data into the production
models are required for any optimization analysis to be timely
and cost effective. In this paper, we develop a system methodol-
ogy and software framework for the optimization of production
systems in a more efficient manner towards the goal of fully au-
tomated optimization. The case study of an automotive casting
operation shows that a highly integrated approach enables the
modeling and simulation of the complex casting operation in a
responsive, cost-effective, and exacting nature.
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Nomenclature
ANSI American National Standards Institute
B2MML Business To Manufacturing Markup Language
CAEX Computer Aided Engineering Exchange
CAD Computer Aided Design

COM Microsoft’s Component Object Model
CMSD Core Manufacturing Simulation Data
CNC Computer Numerical Control
DES Discrete Event Simulation
ERP Enterprise Resource Planning
ISA International Society of Automation
HTML Hypertext Markup Language
KPI Key Performance Indicators
PLC Programmable Logic Controller
MES Manufacturing Execution Systems
MTBF Mean Time between Failure
MTTR Mean Time to Repair
MTTP Mean Time to Processing
OEE Overall Equipment Effectiveness
OEM Original Equipment Manufacturers
PLC Programmable Logic Controller
SDK Software Development Kit
UML Unified Modeling Language
WBF World Batch Forum
XML eXtensible Markup Language
XSD XML Schema Definition

INTRODUCTION
Although manufacturing optimization tools can be consid-

ered mainstream technology, most U.S. manufacturers do not
take full advantage of such technology because of time-intensive
deployment and the incompatibility of factory and optimization
tool data representation. To achieve automated analysis of pro-
duction data, all aspects of the manufacturing operation must be



FIGURE 1: Job Life Cycle

included: design, production, and maintenance. Simulation of-
fers a controlled environment to study the large scale interaction
of machines and processes under different conditions. Simple
parameters adjustments can be run through simulation time se-
quences to predict the impact of potential changes. Yet, there is a
lack of decision-making strategies for optimizing manufacturing
using simulation.

Fundamental to a smarter understanding of a process is the
ability to measure it. Currently, prescribed methods in indus-
try are often related to lean manufacturing concepts and include
treasure hunts, value stream mapping, Six Sigma, and Kaizen
events [1]. Most of these methods rely on empirical observation
and basic analysis. However, informative, accurate, and timely
shop-floor production data should be considered vital to under-
stand a process. Only with accurate and timely data from the
shop-floor can analysis be suitably done to eliminate waste and
inefficiencies.

Though many companies cannot afford sophisticated factory
data collection, the decreasing cost of networks and computers is
continually lowering the financial threshold of acquiring plant in-
formation systems that can perform real-time data collection and
archive the operational behavior of their PLCs, automation, and
other equipment. Increasingly, companies collect process data
from the various control and supervisory systems on the plant
floor and store the data in databases. This work seeks to use DES
to build, test, and optimize an integrated production system.

Core Manufacturing Simulation Data (CMSD) [2] provides
the information model in which to collect data from one or
more different manufacturing domains such as process planning,
scheduling, inventory management, production management, or
supply chain management The goal of this paper is to study the
current state of the production operation and then propose an ap-
proach to improve the production operation by quickly modeling
the process, ascertaining and mapping different elements of the
production data, and incorporating the modeling results in pro-

duction data to improve manufacturing.
Section 2 analyzes the purely manufacturing problem of

modeling “job-driven” production operation. Section 3 discusses
the manufacturing data in this “job-driven” production operation
that are covered by the CMSD coverage of “job-driven” produc-
tion specifications and then separates the CMSD production op-
eration into manufacturing operation, shop floor data, and job
components to streamline operation and reusability. Section 4
introduces the concept of CMSD optimization constructs, their
methodology, and their application to for analysis. Section 5
investigates a case study of a casting production operation at a
General Motors plant that uses CMSD and its optimization ex-
tensions. Finally, a discussion on the results and future directions
will be given.

PROBLEM STATEMENT
The enterprise domain is responsible for processing cus-

tomer orders and deciding whether to make or buy parts. The
processing of customer orders triggers the creation of a unique
part order (or workorder) within the manufacturing execution
system (or production system). The creation of a part order (e.g.,
10 front bumpers, 12 side panels) is incumbent on the knowledge
of how to build the parts on some set of equipment (abstract pro-
cess plan), the PART definition (revision, part and quality), and
part programs (how to make the part). All these are combined
into jobs to make the parts (and may be scheduled). Of course,
a job could describe not only production, but quality, inventory,
or maintenance tasks. But in our case, we first want a complete
model of production operation so we will initially focus on pro-
duction.

In Figure 1, a PART is assumed to be a finished product that
was produced or that can be used in production activities as raw
material or a work in–progress component. Many different kinds
of information can be specified for a PART, such as, information
about the production status of a PART, the named category of



FIGURE 2: Overview CMSD Information Flow

parts that a specific PART belongs to, the sub-component parts
used to create this part, the process that can be used to create the
part, and some basic characteristics of this part. For a PART, there
is also a PROCESSPLAN, which holds a list of PROCESS objects
in some sequence. This sequence can be used to describe the
routing of a PART object. Each PROCESS class holds a list of the
PART Type that it requires for processing, as well as the products
it creates. The PROCESS class also holds a list of the resources
required for processing. These resources can include physical
locations of machines and mobile resources (such as laborers or
work fixtures).

In the scenario, a customer order enters the system and trig-
gers a part order. To match our case study discussed later, we will
assume that the part order will contain only one type of PART, a
fixed number of parts will be made per day, and that this PART
will be made based on an abstract process plan, a PART defini-
tion (revision and associated resources and part programs) and
part programs (or recipes) to make PART on a series of equip-
ment. After all this information is collated, a job will be gen-
erated containing the PART and a process plan to describe the
potential sequence through a set of resource types. This process
plan will serve as the scheduled routing of the raw material to
become a PART. The alternate routing serves in case to reroute
if a broken equipment arises - however, in our case study, this is
not a concern as the primary equipment will be used and fixed if
broken. Using shop-floor data, the simulation will then make the
PART and buffer the finished PART based on the data.

In Figure 1, the concept of a resource breaking down is based
on the production task – even though maintenance information is

necessary to differentiate the equipment and the mechanic must
replace or fix the broken equipment even though from a produc-
tion standpoint, the piece of equipment and time to break down
and time to repair are the important performance indicators.

There is an overloading of terminology. The concepts of
routing, alternative process, step, and sequence are but a few of
the overloaded terms.

CMSD MODELING
Currently in manufacturing, it can be quite difficult to extract

knowledge into a common format [3]. Digital CAD “drawings”
are used for the facilities and plant layout, process plans are con-
tained in data bases, and workflow data is contained in spread-
sheets, so that various pieces of production knowledge may be
distributed throughout the enterprise. Often, storage of the pro-
duction knowledge is tailored for human comprehension, i.e.,
spreadsheets, that are not as conducive for digital sharing.

A neutral format to represent this data is desirable. CMSD
is a freely available standard specification that would allow the
translation of different data formats from numerous related do-
mains into a manufacturing domain-specific representation suit-
able for analysis. The primary use of CMSD is to generate the
simulation model by using a suitable model representation of the
physical system. In this approach, all CMSD information re-
quired must be acquired at the point of creating the simulation
model.

Figure 2 addresses the problem using the CMSD specifica-
tion to address issues related to information management and



manufacturing simulation development. Please note, shaded
CMSD boxes representing manufacturing applications that are
part of the production scenario boxes are out of scope for this
paper. The CMSD entities defined in this framework represent
a core set of the manufacturing entities and relationships needed
for manufacturing simulation. CMSD offers representations for
many categories of manufacturing information, but in our case
we were most interested in:

Resource - describes equipment that performs manufactur-
ing activities. Resources in the CMSD are used to represent
stations, machines, cranes, employees, tools, and fixtures.
(for this iteration we assumed no trained personnel were re-
quired.)
Part - provides a means to specify the characteristics of
the materials and subcomponents that are used to make end
products.
Process plan - specifies the set of production activities
needed to transform materials and subcomponents into fin-
ished products. Each process plan is built from process steps
(with associated resource(s)) that must be executed for the
part to be finished.
Process - defines a manufacturing activity or group or man-
ufacturing activities that encompass a detailed strategy for
creating a part. The process will most likely contain in-
formation that describes the resources that will be used, the
parts that will be consumed and produced, the sequence in
which resources will be used, and the sequence of activities
within a group of activities.
Job - defines normal, maintenance or repair operation, but
in our case the job represents normal manufacturing and is
the central construct of the system. Each job (assuming it
came from customer order as described earlier), would gen-
erate an appropriate number of parts into “spawned” jobs
(type of job) and under each spawned job contains the part
knowledge exhibited within the job e.g., process plan, the
resources, etc. The spawned job would contain a copy of the
initial job that described all the parts and quantities.

Jobs typically define complex production work items and
can involve activities at multiple stations that ultimately produce
parts. Processes are lower level work items that are typically
performed at a single workstation or area within the shop. The
basic fulfillment of a “spawned” job is to know its process plan,
its current process step within the process plan (at what process),
and its processing status.

The goal of CMSD is to provide a neutral framework that
facilitates the creation of collections of related manufacturing in-
formation suitable for use in the creation or enhancement of man-
ufacturing simulations and other manufacturing applications. We
found that CMSD would be better served if supplemented by a
1) more incremental approach to file development, 2) more feed-
back and separation of manufacturing operation, and 3) intrinsic

language to describe optimality in the system. Figure 3 shows the

FIGURE 3: Overview CMSD Archiving and Code Generation

National Institute of Standards and Technology ( NIST) sequence
of operations to turn CMSD information model into an achiev-
able entity. First, although designed in UML, CMSD has a C# or
.Net Framework mapping in which to read CMSD files. Using
the EXE, the xsd.exe software tool from Microsoft generates an
XSD. This XSD gave a schema for the CMSD information model
(although CMSD had Schematron and other representations, no
XSD was available.) Next, the commercial tool XMLSpy was
used since it provides facilities to load XSD documents, validate
the XSD files, and then generate C++ archival (read and writing
from files) code based on a XML parser. For the XMLSpy ap-
proach, we generated code for XML reading and validation using
Microsoft MSXML technology. One area that was troublesome
is the mating of XML to some C++ internal representations. To
this end, we maintained CMSD definitions in a simple reflection
C++ list that maintained the relationship between XMLSchemas
and the model for CMSD and MySQL archiving.

Now with the incremental loading of manufacturing infor-
mation in XML, the CMSD can be used to incrementally grow
and develop manufacturing information models. The XML in
CMSD is not endemic to the specification, as such, explicit enu-
meration of this feature is desirable. For example, we used this
incremental feature to separate the production measurement from
the production operation. Thus, one CMSD file was used for de-
scribing a PART and its defining process plan. Another CMSD
file was developed to describe the resource operation with KPI to
describe the length of buffers, the failure rate of the equipment,
and the time for processing a unit. The goal of the combined
CMSD was to replicate the original data output from of the man-
ufacturing system (via SQL queries on a database.) As pointed
out, we modified CMSD to allow the merging of factory infor-
mation from multiple files before simulating a production line.
Figure 4 shows use of a CMSD resource linked to an existing
CMSD reference, which could be extended to merge the CMSD
manufacturing model, and allow modularization of data. Thus,
manufacturing operations, manufacturing data, and the job could
all be separated and then input simultaneously to create a Factory
Model in an incremental mode.

Within our ProcessPlan we included CMSD Resource to de-
scribe equipment or groups of equipment that perform manufac-
turing activities. A CSMD resource may be processed on a par-
ticular layout for one manufacturing configuration for a certain



FIGURE 4: Manufacturing Operations represented with incre-
mental CMSD

amount of time, and then used in a different layout for another
manufacturing configuration.

<CMSDDocument>
<DataSection>
<Resource>
<Identifier>SMCO:LINE1_PS_CAST1_ELV1</Identifier>
<Name>LINE1_PS_CAST1_ELV1</Name>
<ResourceType>elevactor:</ResourceType>
<Description>Elevator1</Description>

</Resource>...

Although a CMSD job has the ability to reprogram the se-
quence of operations of the manufacturing equipment, this recon-
figurability requires a different CMSD job strategy and a more
dynamic layout of the resources in the manufacturing operation.
Before delving into CMSD optimization of resource allocation,
we will assume that part/jobs define a static layout of resource.
Each resource can then add or subtract parameters to attempt to
optimize the manufacturing operation.

<CMSDDocument>
<DataSection>
<Resource>
<Identifier>SMCO:LINE1_PS_CAST1_ELV1</Identifier>
<Property><Name>InQueue</Name><Value>1</Value></Property>
<Property><Name>Mtbf</Name> <Value>394</Value></Property>
<Property><Name>Mttr</Name<Value>85.8</Value></Property>
<Property><Name>Mttp</Name> <Value>64.3</Value></Property>

</Resource>
</DataSection>
</CMSDDocument>

Development of a DES model is a large undertaking, but
with the incremental CMSD approach, deployment can be han-
dled in phases so that one can incorporate increasingly detailed
parameterization. At first, DES manufacturing operation can
start with the basic manufacturing operations to build parts, pro-
cess plans, processes, and resources. Next, a CMSD file (possi-
bly generated from live data sources) can add key performance
indicators (KPI) such as cycle time, breakdown, and buffer sizes.
Later we will discuss an approach to add optimization criteria as
part of the CMSD framework.

RELATED WORK
Discrete Event Simulation (DES) has mainly been used as a

production system analysis tool to evaluate new production sys-
tem concepts, layout, and control logic [4]. For the determination
of productivity, the use of DES is considered critical to develop-
ing a production and benchmarking methodology. In manufac-
turing, DES simulates a real or virtual model of production based
on statistical characterization of a manufacturing process, such as
cycle time, idle time, and failure rates. Once developed, the DES
model can then be used to predict outcomes given different pa-
rameterization scenarios. DES can also be used in the design of
new facilities using historical production data to ensure modeling
accuracy.

The structures currently available in CMSD are a continu-
ation of earlier work done building an information model that
describes a job shop. The long–term objective of the CMSD in-
formation modeling effort is to develop a standardized represen-
tation that allows for exchange of information in a machine shop
environment. From this perspective an information model must
satisfy the following needs: support data requirements for the
entire manufacturing life cycle, enable data exchange between
simulation and other manufacturing software for machine shops,
provide for the construction of machine shop simulators, and
support testing and evaluation of machine shop manufacturing
software.

CMSD originates in the effort known as National Institute of
Standards and Technology (NIST) Shop Data Model [5]. Eval-
uating and testing of the CMSD information model with real
world production scenarios were done in order to further develop
and validate the CMSD standard development efforts. CMSD
has been used within a variety of applications: standard mod-
ular simulation in semiconductor wafer fabrication systems [6];
generic simulation of automotive assembly for interoperability
testing [7]; homeland security modeling and simulation [8]; inci-
dent management simulation and gaming [9]. NIST has applied
CMSD in an automotive assembly plant model in order to create
data-driven simulators across the manufacturing hierarchy, ex-
tending from the supply chain network level to a process on the
production floor [7]. Fournier discusses representing operations
from a shop floor and retrieving real–time data from the shops,
and then using CMSD as a neutral front-end platform in which
to develop DES back-ends for Delmia QUEST, Rockwell Arena,
ProModel simulation tool, and Flexsim simulation tool [10].

Existing XML work overlaps the overall CMSD manufac-
turing work, and these standards efforts can be used to comple-
ment the CMSD work - as XML is reputed to be more neutral
than other representations. B2MML is a freely available XML
implementation of the ANSI/ISA 95 family of standards [11],
which integrates ERP to MES systems using XML schemas stan-
dards. AutomationML (Automation Markup Language) is an
XML- based open standard for the storage and exchange of plant
engineering information [12,13] geared for deployment from the



moment an automation system is conceived. AutomationML
uses a full complement of standards: CAEX topology with IEC
62424 [14], geometry and kinematics with COLLADA [15], pro-
gramming logic with PLCopen XML [16]. The Digital Factory
is a widely supported initiative that has chosen AutomationML
as the intermediate format.

As prescribed by the CMSD effort, factory data collection is
one critical part of the DES modeling and to subsequent factory
optimizing operations. Several challenges must be addressed
for DES to become a completely autonomous endeavor. Today,
over 30 % of the cost of developing a Discrete Event Simula-
tion model is associated with data input [17]. Nils Bengtsson
et al. point out that DES is a time consuming and costly pro-
cess and that it requires a methodology to identify and collect
data, and then use sophisticated software to extract and process
the data [18]. The Factory Analyses in Conceptual Phases Using
Simulation (FACTS) has focused on developing new and mod-
ified production systems, with the results of their experiences
used to enhance and evaluate the CMSD standardization pro-
cess [19].

The authors have investigated the automated integration of
factory data with automatically generated models of operations
that are required for optimized analysis. From our research,
it is clear that this integration must be accurate, timely, and
cost effective. Previously, related work on integrating manu-
facturing process and energy data has been done, and [20] dis-
cusses the difficulties in integrating and simulating process en-
ergy. Similar work was done to facilitate simulation models to
combine automated raw data collection and automated data pro-
cessing [21–23].

OPTIMIZATION WORK
A large number of factors are critical in effectively modeling

a production system. Manufacturing systems involve a number
of interrelated elements, including equipment strategy, number
of product options, material handling systems, system size, pro-
cess flow configuration, processing time of the operations, sys-
tem and workstation capacity, and space utilization. The model
must be combined with other constraints such as unpredictable
machine breakdowns, varying operational requirements, sched-
ule variation, and different production demands. The following
lists some of the basic optimization parameters one would find in
a manufacturing system:

• Improve uptime, availability
• Minimize waiting time constraints
• Raise system performance and reduce production costs
• Hedge against the risk of a shortage or sudden price increase
• Anticipate expected output from current level of resources
• Increase income, lower cost, and reduce use of tied-up capi-

tal

The following lists some of the other optimization parame-
ters that one would find in a manufacturing system, but are out
of scope (and can be found in [20]): improve product delivery
performance, product quality, OEE; providing better information
how resources should be used ; minimize resource contention
and process dedication; improve supply chain/inventory or other
non-covered manufacturing areas; among others.

In industry, a primary optimization criterion is to anticipate
whether the resources will be in place to handle an increasing
number of parts as the number of customer orders increase. Ca-
pacity planning is the process of determining the production ca-
pacity needed by an organization to meet changing demands for
its products. A disparity between the capacity of an organization
and the demands of its customer’s unplanned changed request is
detrimental, either in under-utilized resources or unfulfilled cus-
tomers.

A desired increase in production outputs from the current
baseline will require capacity planning in order to determine if
there are the necessary resources, operators, and schedule in or-
der to fulfill the additional output. In CMSD, so far reconfig-
urability of the system by allowing the addition/removal of a
new/existing resource has not been covered. CMSD provides for
a ResourceGroup, which we call a Cell that provides one level of
abstraction with a CMSD Process Plan. One can add or remove
Resources (already described with operational data from CMSD)
to a Cell to change to responsiveness of a cell within the Process
Plan. Clearly, one cannot remove all the Resources from a Cell
or that Cell would not be able to carry out its mission – for ex-
ample, turn a PART. Thus, it would be expected that removing
slower Resources and adding faster Resource to a CMSD Cell
would improve performance.

Thus, the definition of a cell and its parameterization is nec-
essary to optimize performance and is captured below in the
sketch of CMSD providing for a Resource and a Cell (e.g., Re-
sourceGroup) containing the Resource.

<CMSDDocument>
<DataSection>
<Resource>
<Identifier>SMCO:LINE1_PS_CAST1_ELV1</Identifier>
<Name>LINE1_PS_CAST1_ELV1</Name>
<ResourceType>elevactor:</ResourceType>
<Description>Elevator1</Description>

</Resource>
...
<Resource>
<Identifier>Plant1:Cell1</Identifier>
<Name>Cell1</Name>
<ResourceType>Station</ResourceType>
<GroupDefinition>
<ResourceGroupMember>
<ResourceIdentifier>SMCO:LINE1_PS_CAST1_ELV1
</ResourceIdentifier>
</ResourceGroupMember>
</GroupDefinition>

</Resource>
...

Currently, CMSD is a literal information modeling language, and
once a definition is in place, it is assumed to be statically defined and



hence immutable. One of the features that would make CMSD more
powerful is the ability to dynamically change how a PART is made and
to select from the best alternative. This would require CMSD support for
changing a PART and its process plan and all its processes to add, merge,
or subtract resource from a cell (which is a container of CMSD Re-
sources with equal likelihood of processing the PART.) As such, CMSD
does not directly support the concept of providing an objective function
in which to streamline DES searching. Without limiting searching time,
optimization could run endlessly and provide impractical answers. At
this time, only the following simple functions are introduced: MAXI-
MIZE, MINIMIZE, TREND, RANGE, ADD, REMOVE, etc. The au-
thors are working on a complete vocabulary to simplify optimization.

<Job>
<Identifier>Job1</Identifier>
<PlannedEffort>
<PartsProduced>
<PartType>
<PartTypeIdentifier>Part1-12345</PartTypeIdentifier>
</PartType>
<PartQuantity>MAXIMIZE</PartQuantity>
<EffectiveEndDate>2013-04-15T00:00:00</EffectiveEndDate>

</PartsProduced>
</PlannedEffort>
<Resource>
<Identifier>Plant1:Cell1</Identifier>
<Name>Cell1</Name>
<ResourceType>Station</ResourceType>
<GroupDefinition>
<ResourceGroupMember>
<ResourceIdentifier>
<REMOVE>
SMCO:LINE1_PS_CAST1_ELV1
</REMOVE></ResourceIdentifier>
<ResourceIdentifier>
<ADD>
SMCO:LINE1_PS_CAST1_ELV2
</ADD>
</ResourceIdentifier>
</ResourceGroupMember>

</GroupDefinition>
</Resource>
</Job>

In this example, all the optimization parameters are grouped under the
<JOB> CMSD parameter, since we are performing Capacity Plan-
ning and would like to study whether the system has sufficient re-
sources to satisfy the customer. Under the <JOB> setting, “2013-04-
15T00:00:00” is a timestamp indicating the end of Capacity Planning
given the current Cell configuration with the current set of Resource(s).
MAXIMIZE is a CMSD optimization function to indicate that the Ca-
pacity Planning is to run and compute the maximum number of parts
that would be created. <REMOVE> is a CMSD function that removes
a resource from a Cell and <ADD> is the complementary add of a re-
source to a CMSD Cell.

From a simple Capacity Planning analysis, the questions to answer
include, “Can we achieve the goals with our current setup? (yes or no)
What do we need to do if we need to ramp up production? Are there any
optimization strategies we can incorporate to increase output without
additional cost?” Clearly, a separate <JOB> CMSD description could
be developed to add more resources to a Cell if we are not achieving the
goals as outlined. Below a modification to MTBF is analyzed to see the
effect on Capacity Planning.

<Job>
<Identifier>Job1</Identifier>
<PlannedEffort>
<PartsProduced>
<PartType>
<PartTypeIdentifier>Part1-12345</PartTypeIdentifier>
</PartType>
<PartQuantity>MAXIMIZE</PartQuantity>
<EffectiveEndDate>2013-04-15T00:00:00</EffectiveEndDate>

</PartsProduced>
</PlannedEffort>
<Resource>
<Identifier>SMCO:LINE1_PS_CAST1_ELV1</Identifier>
<Name> Mtbf </Name> <Value><High>394</High><Low>194</Low>
</Value>
</Resource>
</Job>

To determine any optimization strategies to increase output, we
could look at improving the performance of the resource under the
cells by improving the reliability of the machines, selecting best buffer
sizes or improving the cycle time. In this CMSD <JOB> exam-
ple, the MTBF has been modified with a <HIGH> to <LOW>
range to study the trending of MTBF on the capacity performance of
SMCO:LINE1_PS_CAST1_ELV1. The CMSD concept of <LOW>
should match expectations of performance or the analyst has wasted
their time.

Not covered in this optimization analysis, is the concept of shifts,
which forms the fundamental metric for planning production, as the ma-
chine utilization is based on capacity planning. In order to assign ma-
chines, the total time must be considered in the context of shifts. Thus,
adding more machines will make the work go faster, but the amount of
work as defined in shifts is constant. Adding idle time follows from
this logic. Idle time, such as operator breaks, would need to be calcu-
lated per shift. Also out of scope for the optimization computation is
the transportation time and cost (moving of material) and any inventory
costs (includes all finished product not being processed). Further, we
will assume that for much of our case study, the operation is limited to
buffering and not to moving resources to better perform the processing.

CASE STUDY
DES analysis was applied to a case study of an automotive preci-

sion casting production facility. Figure 5 shows a high-level overview
of the precision casting process. The molten aluminum process is re-
sponsible for melting the aluminum, refining the melt, and adjusting the
molten chemistry. Once molten, the aluminum is degassed, leveled, and
laundered to remove deleterious gases before being tapped to flow into
cores. Cores are made of sand which is poured into molding machines
to create the contours of the casting, pressed and heated to bind the sand.
Since the sand casting process is an expendable mold metal casting pro-
cess, the core process builds a new sand core for each casting. Overall,
core parts are molded from sand and binding elements, assembled into
the engine block core, and then dried before casting. The casting and
finishing process is where the molten aluminum flows into the sand cast
core, after which, the casting is cooled and then casting sand is removed
from around the now solidified aluminum engine block by shakeout,
trim, and degating operations.

Some observations are in order. Because of intellectual property
issues, representative data will be given, not actual performance data.



FIGURE 5: Overview Precision Casting

However, to ensure applicability to manufacturing problems, real data
from the shop-floor was used as input to any DES analysis and opti-
mization. The analysis was limited to data already being collected by
the plant’s production system, so no new data was available for calcula-
tion. Within a CMSD Process step, cycle time and equipment fault data
was collected and easily adapted into CMSD Process KPI parameters
(CMSD property values) that were incrementally added as operational
data via a CMSD XML file.

The goal of the GM/NIST work was to analyze the manufacturing
operations of precision sand casting and use DES modeling to derive
manufacturing cost projections based on real factory floor data. The
studied General Motors sand casting production is a large process, with
hundreds of pieces of electrical equipment being controlled – robots,
conveyors, elevators, sand core making machines, saws, etc. The even-
tual goal of the work is to completely model the casting production al-
though its size necessitated narrowing the initial analysis scope to fin-
ishing.

Using a commercial DES software package, a model was devel-
oped to correlate the production activity with the process energy con-
sumption. This was not straightforward as the DES package did not in-
herently support manufacturing sustainability concepts, but correlation
of the data by separating the integration into production and process en-

ergy submodels was possible. Berglund et al. presents a cleaner, but
less portable, DES analysis of the General Motors precision sand cast-
ing operation [24]. Although clearly helpful, it would be preferable if
the DES development was easier, timelier, and more automated. The
cost and manual effort in DES development would be more beneficial if
it was a remunerative effort, or it is not worth doing in the first place.
Hence, the motivation to automate the DES development, deployment,
and analysis process was seen as crucial to success in the project.

In our recent experiments, the model characterization was as fol-
lows. The manufacturing operation was a given by the layout of the
equipment through the CMSD Process Plan and in each step a Process
had a CMSD Cell with one or more resources. In the sand casting fa-
cility, Cells were limited to one resource to match the expectations of
the facility. The DES model required buffers and sizes and we assumed
each buffer was part of a resource, so that buffer sizes could change
(and each resource could have a growing input or output buffer), but
was bounded by the buffer size as would be expected by the shops (as
were reflected with marginal change captured by our CMSD optimiza-
tion routines). Finally, our manufacturing operation assumed only one
part was produced within the factory, although the number of parts could
vary from day to day. Because of buffering, N parts could in fact be ac-
tive. We found that one part implied a static configuration of equipment
in production, and therefore, CMSD Process Plans and accompanying
Process steps (and layout) were fixed. Tests to validate the automatically
generated sand casting data were done before proceeding to the CMSD
optimization exercises.

DISCUSSION
The primary reason for building DES simulations is to provide sup-

port tools that aid the manufacturing decision-making process. It would
be unreasonable to expect a large car company to change its steady-
state production based upon the findings of a DES system. As would
be expected, DES simulations are developed to be a part of a case study
commissioned by the manufacturing management to address throughput
and related factory performance issues. Again, it would be unreasonable
to expect a large car company not to have undergone some optimization
of buffers, equipment layout, etc. before assembling the production line.
Further, day-to-day matters will become routine and change itself can be
difficult [25]. Machines cannot be swapped out, production line buffers
are relatively fixed, and overall only minor changes can be undertaken.

Manufacturing operations revolve around the production of parts,
i.e., the fabrication of parts from raw materials such as metal or plastic.
Undeniably, the need to speed up the DES modeling process and reduce
the level of effort required in the construction of a simulation model is
imperative to success for any manufacturer. Today simulation analysts
typically code their models from scratch and build custom data transla-
tors to import required data. From our discussion, CMSD as augmented
with optimization parameterization could improve DES turnaround and
on the whole improve the applicability of simulation technology to the
manufacturing industry. Standard interfaces such as CMSD (especially
CMSD open source solutions) could help reduce the costs associated
with simulation model construction – and thus make simulation tech-
nology more affordable and accessible to a wide range of potential in-
dustrial users [26].

NIST has developed a Virtual Factory Testbed with a stated goal



to automate the generation of DES models from CMSD and then run
simulations based on the factory described in CMSD with automated
data acquisition. The first mapping of CMSD was to Rockwell Arena
and was facilitated by using the Microsoft COM Automation feature
of Arena – to generate equivalent Arena objects found in the CMSD
and then using COM to run the simulation replications. Arena provides
some standard DES features but any additional modeling for part gen-
eration, statistics collection, and resource sharing/scheduling must be
done manually. Given the known portability of CMSD [10], we have
elected to study the use of CMSD as a backbone for manufacturing sim-
ulations, and since CMSD is based on XML we will continue to perform
such analysis with modified versions of CMSD. Given that NIST itself
only has a small manufacturing job shop, the use of CMSD is applicable
beyond this scope and will greatly assist in the ability to measure and
optimize enumerable manufacturing scenarios.

In summary, this paper has presented an approach to develop
CMSD optimization models which can be used to evaluate the per-
formance of a given manufacturing system. We have assumed many
constraints are inherent from the start, but that the development of a
time-responsive DES system facilitated on CMSD and its optimization
criteria will assist plant personnel in understanding their shop activity.
Where applicable to our case study, the purely coded DES analytic re-
sults from our CMSD backbone and CMSD optimization extensions can
be found at our code repository mentioned in the Introduction.

DISCLAIMER
Commercial equipment and software, many of which are either

registered or trademarked, are identified in order to adequately specify
certain procedures. In no case does such identification imply recom-
mendation or endorsement by the National Institute of Standards and
Technology or General Motors, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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