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ABSTRACT

We evaluate a method for testing the radius of a spherical surface with a hologram that consists of a pair of nested Fresnel
zone lenses. The hologram is positioned in the collimated test beam of a Fizeau interferometer. The inner zone lens
generates a focus at the test part surface, whereas the wavefront of the first diffraction order of the outer zone lens is
confocal with the test part. When the test part radius is equalto the nominal radius, the fringes in both zone lens areas are
nulled at the same distance of the test sphere from the zone lens. The radius error of the spherical surface can be calculated
from the test sphere displacement between interferometer null positions for the inner and outer zone lenses, or from the
defocus term of the outer (confocal) lens at the position of zero defocus of the inner (cat’s-eye) zone lens. The primary
benefits of the nested zone lens method are its ease of use, andthat it enables radius measurements of spherical surfaces
with large radii. We describe the radius measurement of a precise convex sphere with a nominal radius of 80 mm.
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1. INTRODUCTION

Radius test plates are widely used for the inspection of spherical optical lens surfaces during lens fabrication.1 The test
plates are precision spherical surfaces with known radius that are brought into contact with a spherical test surface. The
Newton fringes that are observed when the surface pair is illuminated with coherent light can be used to infer the difference
in radius between the test plate and the spherical test surface. The greatest advantage of radius test plates is their ease
of use, which, in many cases, outweighs the disadvantages that optics fabricators must maintain a large set of concave
and convex test plates and that the visual inspection of Newton fringes results in a relatively large uncertainty in the
radius estimation. Much lower measurement uncertainty forthe radii of convex and concave spherical surfaces can be
achieved with the interferometric radius bench method.2,3 This method combines a phase-shifting interferometer,4 that is
equipped with a Fizeau objective (transmission sphere), with metrology for measuring the displacement of the test part
along the optical axis. The part is moved from the “confocal”position, at which the test part center is at the focus of
the spherical test wavefront, to the “cat’s-eye” position,at which the test wavefront focus is on the test part surface.The
displacement between the two positions is the test part radius. When the test part position is tracked with a displacement
measuring laser interferometer, relative uncertainties of 10−4 or below can be achieved.2,3,5,6 The obvious disadvantage
of an interferometric radius bench is that it requires expensive equipment and highly trained operators.

In this paper we explore an alternative method for testing and measuring the radius of a spherical test surface, which
uses a nested Fresnel zone lens pair to generate two spherical test wavefronts that separately define the confocal and cat’s-
eye test positions.7 The nested zone lens also makes it possible to integrate the displacement metrology into the zone lens
itself. A holographic test plate can be used to measure smalldeviations in the radius of a spherical test surface from a
known nominal radius. The zone lens uses a nested design whose inner zone lens, in first diffraction order, creates a focus
on the test sphere surface. In other words, the inner zone lens sets the distance between the nested zone lens and the test
part, and, in principle, can be used to measure small displacements around the cat’s-eye position. The outer zone lens is
designed to have a focus at the center of the test sphere when the focus of the inner zone lens is on the test sphere surface.
The defocus of the outer zone provides an estimate for the displacement of the sphere relative to this position, which equals
the radius error. We demonstrate the method with a measurement of the radius of a precise reference sphere that has a
nominal radius of 80 mm, and describe the sources of measurement uncertainty.
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Figure 1. Setup for the radius measurement of a precise test sphere (TS) with 80 mm radius using a nested zone lens (ZL). A displacement-
measuring laser interferometer (DMI) tracked the movement of the testpart along the optical axis. A sketch of the setup is shown on the
left, a photograph of the actual setup on the right.

2. MEASUREMENT SETUP AND ZONE LENS FABRICATION

The concept of our measurement is illustrated in Fig. 1 (leftside). We designed a zone lens to test a very precise reference
sphere that has a nominal radius of 80 mm. It has a reported radius of (79988.169±0.04)µm (k=2). The measurement
setup was modeled with commercial optical modeling software for a distance between zone lens and test sphere of 30 mm,
as shown in Fig. 1. The inner zone lens was designed with a diameter of 12 mm; the outer zone lens has a 60 mm diameter.
The phase functions of the central and outer zone lenses wereobtained with the optical modeling software. Both zone
lenses were described as even-order radial polynomials with terms up the 8th order. The phase function was converted into
a binary layout for the zone lenses suitable for lithographic fabrication of the lenses (shown in Fig. 2).

In our measurements, the interferometer cavity is formed bythe back surface of the zone lens substrate, which becomes
the reference surface of the interferometer, and the spherical test surface. The zone lens itself was fabricated to havevery
low diffraction efficiency in the 0th diffraction order.8 Phase-shifting measurements were made by mechanically shifting
the test part in the direction of the optical axis with a piezo-electric phase shifter that is integrated into the test part mount.
A phase-shifting algorithm with 7 samples and 90◦ phase steps was used.9 During our measurements we tracked the
movement of the test sphere with a displacement-measuring laser interferometer (DMI).

The nested zone lens was fabricated at the National Institute of Standards and Technology (NIST). A plane-parallel
substrate with 100 mm diameter and 6.5 mm thickness, made from a borosilicate float glass, was coated with an approxi-
mately 600 nm thick layer of photoresist. The nested zone lens layout, which is shown on the left of Fig. 2, was then written
into the photoresist using the Zone Plate Array Lithography(ZPAL) tool10,11at NIST. After developing the photoresist, the
zone lens patterns were etched to a depth of about 540 nm12 using reactive ion etching. Finally, the photoresist layerwas
removed. A finished test plate, installed in the interferometer with the test sphere, is shown in Fig. 1. The fringes shown
on the right side of Fig. 2 are observed when the distance between the nested zone lens and the test sphere is close to the
design distance of 30 mm. Good fringe contrast was obtained for both the inner and the outer zone lenses. The mottling
that is visible in the fringe image of Fig. 2 is due to a mid-spatial frequency flatness error in the inexpensive substrates. The
astigmatism that is also visible in the fringe image is due toa flatness error of the substrate.

3. MEASUREMENT RESULTS AND DISCUSSION

After aligning the nested zone lens and the test sphere in thecollimated test beam of the “eXtremely accurate CALibration
InterferometeR” (XCALIBIR) at NIST, as shown in Fig. 1, the sphere was positioned close to the focus of the inner
zone lens. The right side of Fig. 2 shows the fringes that wereobserved in the inner and outer zone lens areas. Several
phase measurements were made with the test sphere positioned on either side of the inner zone lens focus (null), as is
shown in Fig. 3. The relative displacement between measurement positions along the optical axis was measured with a



Figure 2. Layout of the nested zone lens (left) and interferogram obtained with the measurement setup shown in Fig. 1 (right). The inner
zone lens has a diameter of 12 mm, the outer zone lens a diameter of 60 mm.

displacement measuring laser interferometer (DMI) havingan effective Abbe offset of less than 1 mm (see Fig. 1). Five
phase measurements were made at each position. Fig. 3 summarizes the results of these measurements. It shows the
Zernike coefficienta02 (power)13 for the inner and outer zone lenses for each of the five measurements that were made at all
positions of the test sphere. On the scale of Fig. 3, the variability of the individual measurements cannot be discerned.The
solid curves through the experimental data in Fig. 3 are parabolas to account for the non-linear dependence of the power
terma02 on the displacement. The non-linearity is small but significant, in particular for the inner zone lens. Its cause is the
inherently non-linear relation between power and displacement14 and the radial shear of wavefronts in the inner and outer
zone lens areas when the fringe density is not zero, which results in a retrace error at the zone lens itself, and additional
retrace errors in the imaging optics of the interferometer.

Fig. 3 suggests at least two ways of determining the radius ofthe test sphere. When a DMI is available, it can be used
to estimate the relative sphere positions that result in zero power for the inner and outer zone lenses, corresponding tothe
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Figure 3. Defocus in the inner (blue) and outer (red) zone lenses as a function of displacement. A positive displacement moves the test
sphere towards the nested zone lens. The curves are least-squares best-fit quadratic polynomials calculated from the measurement data.



zero crossings in Fig. 3. This approach is, in essence, identical to a radius bench measurement.2 It incorporates accurate
displacement measurements while avoiding the effects of non-zero fringe density and is thus likely to achieve the lowest
measurement uncertainty. The radiusR of the test part is calculated from the displacementzo − zi between the zero
crossingzo of the outer zone lens andzi of the inner zone lens:

R = zo − zi + fo − fi , (1)

wherefo is the primary focal length of outer zone lens andfi the primary focal length of the inner zone lens. A positive
displacement∆z moves the test part towards the zone lens. With design focal lengths of approximately 30 mm for the
inner zone lens and approximately 110 mm for the outer zone lens, and the zero crossings calculated from the coefficients
of a best-fit 2nd order polynomial as shown in Fig. 3, the resulting value for the radiusR is 79988.306µm. This value
deviates by 0.137µm from the reported radius of the test sphere.

An alternative way of using the nested zone lens is to measurethe power terma02 in the outer zone lens area at the
position of zero power in the inner zone lens. The advantage of this method is that a DMI system is no longer required. Its
disadvantage is the need to make a measurement at non-zero fringe density in the outer zone lens area. Fig. 4 shows the
power in the outer zone lens as a function of the power in the inner zone lens for the test part positions in Fig. 3. For our
zone lens and test sphere, the power terma02 at zero power in the inner zone lens is -474.2 nm. The radiusR of the test part
can now be calculated using the following equation:

R = ∆zi −∆zo + fo − fi = −∆zo + fo − fi , (2)

where∆zo is the part displacement corresponding to the powera02 of the outer zone lens. For the outer zone lens the
displacement can be approximated as:

∆z = −αa02 , (3)

where the dimensionless factorα is given by:
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do is the diameter of the outer zone lens at the normalization image radius used to estimatea02. Eqs. 3 and 4 represent a
linear approximation of the non-linear relation between the defocus terma02 and part displacement∆z. The equation also
incorporates an approximated correction for the effect on the estimated defocus term of the non-quadratic wavefront errors
that occur when moving the test part. The errors introduced by both approximations increase for larger displacements
from null. A more accurate estimate for the displacement∆z can be obtained by fitting the modeled wavefront error,
parametrized in∆z, to the observed wavefront error.

For our outer zone lens with 60 mm diameter the displacement∆z is 27.016µm, which results in a radiusR of
79988.248µm. This radius value deviates by 0.079µm from the actual radius of the test sphere. The weakness of this radius
measurement method is evident from Eqs. 3 and 4. The uncertainty of the displacement∆z depends on the uncertainty of
the power terma02, which isamplifiedby a factorα. In the case of our outer zone lens,α ≈ 57; one nm of uncertainty in
a02 is translated into an uncertainty of 57 nm in∆z, and thusR. For the inner zone lens the amplification factorα is even
larger; it equals 103.

Several important contributors to the measurement uncertainty must be considered, especially when measurements at
non-zero fringe density are made to estimate the test sphereradius.

1. The XCALIBIR phase-shifting interferometer uses a single-frequency diode laser as its light source. The wavemeter
that was used to measure the laser wavelength has a measurement uncertainty of approximately 1 pm. In addition, we
found that the laser wavelength drifted by approximately 2 pm over the time of the measurements. This wavelength
change causes a different change in the focal lengths of the zone lenses. The change∆f in the focal lengthf
resulting from a change∆λ of the wavelengthλ is:

∆f = −
∆λ

λ

√
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. (5)
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Figure 4. Measured power in the outer zone lens as function of the powerin the inner zone lens (red data points) and a quadratic fit to
the data (blue line). The power in the outer zone lens area at zero power inthe inner zone lens area is -474.22 nm.

For the inner zone lens the focal length change corresponding to a wavelength change of 2 pm is -0.1µm. The focal
length of the outer zone lens changes by -0.36µm. In our analysis we used the focal lengths corresponding tothe
average observed wavelength.

2. When a DMI system is used to determine the location of zero crossings ina02, finding the precise locations of the zero
crossings is complicated by the non-linear dependency ofa02 on the test part displacement. In practice, the resulting
error is minimized by performing several measurements in close proximity to null. In measurements without a DMI,
either the inner or the outer zone lens must be measured at non-zero fringe density, which introduces errors in the
estimated displacements∆z due to retrace errors and the linear approximation used to estimate∆z from a02 (Eqs. 3
and 4).

3. The uncertainty in the zone plate image normalization radiusρ1 (unit circle radius) that is used in the calculation of
a02 has a significant effect on the uncertainty of the displacement∆z calculated with Eq. 3. The errorE(∆z) caused
by a relative error∆ρ1/ρ1 in the image radiusρ1 can be approximated as:

E(∆z) = 2∆z
∆ρ1
ρ1

. (6)

For our outer zone lens with∆z=27µm, a relative error in the unit circle radius of∆ρ1/ρ1=10−3, results in an error
E(∆z) in the displacement∆z of 54 nm.

4. Fabrication errors of the Fresnel zone lenses, or thermalexpansion of the substrate, affect the focal lengths of the
zone lenses. For a zone lens with nominal diameterd that has a scale error∆d/d, the resulting error in the focal
length can be approximated from the Fresnel zone lens equation. The resulting expression for∆f is:

∆f =
(

f +
√

f2 + (d/2)2
) ∆d

d
. (7)

The factor∆d/d can result from a scale error in the displacement metrology of the lithography tool that was used
to fabricate the zone lens. A scale error can also occur when the zone lens is fabricated and used at different
temperatures. For the outer zone lens with 110 mm focal length and 60 mm diameter, a scale error∆d/d = 10−6

results in a focal length error of∆fo = 224 nm. For the inner zone lens the respective error is 61 nm.The substrate
material used for our zone lenses has a coefficient of thermalexpansion (CTE) of 3.25·10−6/K. The zone lenses
were fabricated and used in laboratories that are temperature stabilized at (20±0.01)◦C. A temperature mismatch of
0.02◦C results in a radius error of about 11 nm.



5. A power component in the flatness error of the nested zone lens substrate results in an offset in the measured power of
the inner and outer zone lenses because the unpatterned substrate surface is the reference surface of the interferometer
cavity. The power component also results in a change in the focal lengths of the zone lenses. In our measurements
the flatness error of the substrate was measured after zone lens fabrication and the flatness measurements were used
to compensate the estimated radius for both effects.

6. When comparing two radius measurements, the form error of the test sphere can introduce bias when the measured
test sphere area is not the same for both measurements. With our nested zone lens we measured the local radius of a
relatively small area of the sphere, which can differ significantly from the best-fit radius of the whole sphere.3

Items 2 and 3 are the main reasons for the difference in the estimated radius between the two evaluated methods.

4. CONCLUSIONS

We have shown that nested Fresnel zone lenses can be used to measure the radius of precision surfaces with interferom-
etry. The method has two advantages over the conventional radius bench method. First, it is possible to make radius
measurements without a DMI system. The measurement uncertainty is larger in this case as when displacements can be
measured with a DMI system, in particular for large radius errors due to the significant non-zero fringe densities. Lower
uncertainties are achieved when the nested zone lens is combined with a DMI system. However, the uncertainty is still
likely to be larger than that of a conventional radius bench because the zone lenses are much more sensitive to changes in
laser wavelength and temperature than Fizeau objectives. The second, and perhaps most important, advantage of the nested
zone lens method is that it extends the range of the radius bench method to spheres with large radii, because the length of
the radius bench no longer needs to be at least as large as the test part radius. Our measurements of the radius of a precision
sphere with a nominal radius of 80 mm agree surprisingly wellwith previous measurements, given that our measurements
currently have a larger uncertainty.
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