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Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction
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In ferromagnetic thin films, broken inversion symmetry and spin-orbit coupling give rise to interfacial
Dzyaloshinskii-Moriya interactions. Analytic expressions for spin-wave properties show that the interfacial
Dzyaloshinskii-Moriya interaction leads to nonreciprocal spin-wave propagation, i.e., different properties for spin
waves propagating in opposite directions. In favorable situations, it can increase the spin-wave attenuation length.
Comparing measured spin-wave properties in ferromagnet/normal metal bilayers and other artificial layered
structures with these calculations could provide a useful characterization of the interfacial Dzyaloshinskii-Moriya
interactions.
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I. INTRODUCTION

Magnetic exchange is the root of magnetism. Intra-atomic
exchange stabilizes the magnetic moments and interatomic
exchange tends to keep the magnetization spatially uniform.
Interatomic exchange is usually symmetric in that the con-
sequences of rotating the magnetization one way or the
reverse are equivalent. It loses that symmetry when the
system is subject to both spin-orbit coupling and broken
inversion symmetry. The antisymmetric component of the
exchange interaction, known as the Dzyaloshinskii-Moriya
(DM) interaction,1,2 can give chiral magnetic orders such as
spin spirals and skyrmions.3–11 Understanding chiral magnetic
order and its dynamics driven by magnetic fields or currents is
currently of significant interest in the field of spintronics.12–16

The DM interaction between two atomic spins Si and Sj is

HDMI = −Dij · (Si × Sj ), (1)

where Dij is the Dzyaloshinskii-Moriya vector, which is
perpendicular to both the asymmetry direction and the vector
rij between the spins Si and Sj . The DM interaction can
be classified into two classes depending on the type of
inversion symmetry breaking,17 i.e., bulk and interfacial DM
interactions corresponding to lack of inversion symmetry
in lattices and at the interface, respectively. The bulk DM
interaction has been studied mostly for B20 structures such as
MnSi,5 FeCoSi,4,8 and FeGe.9,11 For the bulk DM interaction,
Dij is determined by the detailed symmetry of the lattice
structure. On the other hand, the interfacial DM interaction,
which is the main focus of this work, occurs at all magnetic
interfaces. It can be particularly strong at the interface between
a ferromagnet and a normal metal having strong spin-orbit
coupling. The DM interaction can be modeled by a 3-site
exchange between two atomic spins with a neighboring atom
having a spin-orbit coupling.18 It has been investigated for
epitaxial ferromagnet/heavy metal bilayers such as Mn/W,19,20

Fe/Ir,10 and Fe/W.21–23,25

Recently Chen et al. reported that magnetic domain walls
in epitaxial Fe/Ni/Cu(001) structures are Néel walls and the

domain wall chirality is opposite to that of Ni/Fe/Cu(001)
structures.26 Such behavior is expected for an interfacial DM
interaction. The interfacial DM interaction in these structures
may be not as large as that of structures having a heavy metal,
but is still large enough to affect magnetic textures, which
can in turn modify magnetization dynamics substantially.15

Furthermore, recent experiments on current-driven domain
wall motion suggest that the interfacial DM interaction exists
in sputtered Pt/CoFe/MgO (Ref. 27) and Pt/Co/Ni (Ref. 28)
structures, and plays an important role in domain wall
motion. Since sputtered thin films consist of small grains
with different lattice orientation, the contributions from the
bulk DM interactions tend to cancel and only the interfacial
DM interaction contributions remain effective. In this respect,
understanding the interfacial DM interaction in sputtered thin
films is important not only for the fundamental understanding
of topologically protected nanomagnetic structures29 but also
to the development of spintronic devices based on domain
walls.30–32

Translating the DM interaction in Eq. (1) to a continuum
model with magnetization direction m̂ and symmetry breaking
in the ŷ direction, the DM energy density is given by

EDM = −D

[
(x̂ × ŷ) ·

(
m̂ × ∂m̂

∂x

)
+ (ẑ × ŷ) ·

(
m̂ × ∂m̂

∂z

)]
.

(2)

The sign of D is determined by the details of the system.
In this paper, we consider the case where the equilibrium
magnetization lies along the ẑ axis, in the plane of the film. We
also restrict our attention to the case of spin waves propagating
in the x direction so that m varies only in the x direction, and
the second term in Eq. (2) is zero (see Fig. 1).

A net DM interaction is present in any trilayer struc-
ture when the first nonmagnetic layer supplies a spin-orbit
coupling, the middle layer is a ferromagnet, and the third
layer is nonmagnetic, but different from the first layer to
break symmetry. Since the observation of efficient domain
wall motion in bilayers and trilayers is correlated with the

184404-11098-0121/2013/88(18)/184404(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.184404


JUNG-HWAN MOON et al. PHYSICAL REVIEW B 88, 184404 (2013)

y - symmetry breaking 

     d
irection

x - propagation 

     d
irection

z - magnetization      direction

ferromagnet
nonmagnet

FIG. 1. Geometry under consideration in this paper.

conditions for a strong DM interaction,27,28 it is useful to
study various artificial structures to find large interfacial
DM interactions. The spin-wave properties we present below
provide a useful probe of the DM interactions in these systems.

In this work, we compute analytical expressions for
asymmetric spin-wave propagation induced by the interfacial
DM interaction. There have been several related studies on
specific systems. Udvardi and Szunyogh predicted that the
DM interaction gives rise to asymmetric spin-wave dispersion
depending on the sign of the wave vector, based on first-
principles calculations for Fe/W(110).22 Costa et al. predicted
that the spin-wave frequency, amplitude, and lifetime differ
depending on the sign of the wave vector, based on a multiband
Hubbard model for Fe/W(110).24 Zakeri et al. reported a series
of spin-wave experiments based on the spin-polarized electron-
loss spectroscopy for single-crystalline Fe/W(110),23,25 con-
sistent with these predictions. Cortés-Ortuño and Landeros
developed a spin-wave theory for bulk DM interaction,33 where
they demonstrated that the spin-wave dispersion is asymmetric
with respect to wave vector inversion.

We focus on the influence of the interfacial DM interaction
on spin-wave properties and pay attention to asymmetric
spin-wave attenuation and excitation amplitude with respect
to wave vector inversion. We provide analytic expressions for
asymmetric dispersion, attenuation length, and amplitude of
interfacial DM spin waves. In Sec. II, we present spin-wave
theory in the presence of the interfacial DM interaction.
Section III gives comparisons between analytic expressions
and micromagnetic simulations. We summarize our work in
Sec. IV.

II. SPIN-WAVE THEORY

A. Quantum spin-wave theory

We begin with a quantum spin-wave theory to find the
contribution of the interfacial DM interaction to the disper-
sion. Quantum spin-wave theory for the symmetric exchange
interaction is well established34 and shows that the exchange
interaction results in k2 dependence of the dispersion for small
wave vector k. Here we focus on the interfacial DM interaction
in a one-dimensional spin system. The spin chain extends in
the x direction and the symmetry breaking is in the y direction,
so that the DM vector is in the z direction. The interfacial DM

interaction Hamiltonian is given as

HDM = −2
D0

h̄2

∑
j

ẑ · (Sj × Sj+1)

(3)

= D0

ih̄2

∑
j

(S+
j S−

j+1 − S−
j S+

j+1),

where D0 is the DM energy, and S+
j (=Sjx + iSjy) and

S−
j (=Sjx − iSjy) are the spin raising and lowering opera-

tors. We treat the case where the equilibrium magnetization
direction is along Dij because this configuration exhibits
the strongest spin-wave asymmetry.22 For simplicity, we are
restricting the calculation to nearest-neighbor exchange. Based
on the Holstein-Primakoff transformation35 and assuming that
the total number of flipped spins in the system is small
compared to the total number of spins, S+

j (S−
j ) can be

approximated as h̄
√

2saj (h̄
√

2sa+
j ), where s is the total spin

on the site, and aj (a+
j ) is the magnon annihilation (creation)

operator. Substituting these approximations into Eq. (3) gives

HDM = 2sD0

i

∑
j

(aja
+
j+1 − a+

j aj+1). (4)

Introducing the operators a+
k and ak , which are the Fourier

transforms of the aj ’s, and summing over j , Eq. (4) becomes

HDM = 2sD0

i

∑
k

(e−ikaaka
+
k − eikaa+

k ak), (5)

where a is the lattice constant. The contribution to the magnon
energy in Eq. (5) is

Hmagnon
DM = −4sD0

∑
k

sin(ka)a+
k ak =

∑
k

h̄ωDM
k n̂k, (6)

where n̂k = a+
k ak is the number operator for magnons with

wave vector k, and the DM interaction contribution to the
dispersion is given by

h̄ωDM
k = −4sD0 sin(ka). (7)

For small k, Eq. (7) reduces to

h̄ωDM
k = −4sD0ka, (8)

a contribution to the dispersion that is linear in k. This
antisymmetric contribution to the energy leads to asymmetric
spin-wave propagation, i.e., dependent on the direction of k.

B. Classical spin-wave theory

A similar contribution arises in a classical theory of
spin waves in thin films with an interfacial DM interaction.
We consider small-amplitude spin waves propagating along
the x axis in the perturbative limit, where the equilibrium
magnetization is in the z direction perpendicular to both
the film thickness direction and the spin-wave propagation
direction,

m̂ = pẑ + m0 exp[i(kx − ωt)] exp[−x/�], (9)

where m0 = (mx,my,0), |m0| � 1, p = ±1, and � is the spin-
wave attenuation length. The spin-wave dynamics is described
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by the Landau-Lifshitz-Gilbert (LLG) equation,

∂m̂
∂t

= −γ m̂ × μ0Heff + αm̂ × ∂m̂
∂t

, (10)

where γ is the gyromagnetic ratio and α is the damping
constant. The effective field Heff is given as

Heff = pH ẑ + J∇2m̂ − D∗
(

ẑ × ∂m̂
∂x

)
+ Hdipole, (11)

where H is the external field, J is 2A/μ0Ms, D∗ is
2D/μ0Ms, A is the exchange stiffness constant, Ms is the
saturation magnetization, Hdipole [=−Ms

4 (1 − e−2|k|d )mx x̂ −
Ms(1 − (1 − e−2|k|d )/4)my ŷ]36,37 is the dipolar field, the local
demagnetization field along the thickness direction is equal to
Ms, and d is the film thickness. We note that Hdipole consists
of local contribution (independent of d and k) and nonlocal
contribution (dependent on d and k). Inserting Eqs. (9) and (11)
into Eq. (10), and neglecting small terms proportional to
1/(k�)2, α2, and α/(k�), gives

ω

γμ0
=

√
(H + Ms/4 + Jk2)(H + 3Ms/4 + Jk2) − e−4|k|dM2

s

16
(1 + 2e2|k|d ) + pD∗k (12)

and

�± = 1

αω

(
2γμ0J |k±| + γμ0M

2
s de−4|k±|d (1 + e2|k±|d )/8 ± pD∗(ω ∓ γμ0pD∗|k±|)

H + Ms/2 + Jk2±

)
, (13)

where the upper (lower) sign corresponds to the case k > 0
(k < 0). The dispersion [Eq. (12)] is the sum of the terms in the
square root, which is the dispersion in the absence of the DM
interaction, and a term linear in k. Therefore, the interfacial
DM interaction generates a term linear in k in the dispersion
[Eq. (12)] as in the quantum spin-wave theory [Eq. (8)]. As
a result, the wave vectors are different for propagation in
different directions at a fixed frequency ω. The spin-wave
attenuation length also depends on the sign of k when D �= 0
[Eq. (13)].

In the large-k limit (i.e., exchange-DM spin waves), one
may neglect the nonlocal magnetostatic contribution so that
Eqs. (12) and (13) reduce to

ω

γμ0
=

√
(H + Jk2)(H + Ms + Jk2) + pD∗k (14)

and

�± = 1

αω

(
2γμ0J |k±| ± pD∗(ω ∓ γμ0pD∗|k±|)

H + Ms/2 + Jk2±

)
. (15)

On the other hand, in the small-k limit (i.e., magnetostatic-DM
spin waves) that is more relevant to experimental conditions,
one may neglect the exchange contribution and assume
|k±|d � 1 so that Eqs. (12) and (13) reduce to

ω

γμ0
=

√
H (H + Ms) + M2

s |k|d
4
√

H (H + Ms)
+ pD∗k (16)

and

�± = 1

αω

(
γμ0M

2
s d/4 ± pD∗(ω ∓ γμ0pD∗|k±|)

H + Ms/2

)
. (17)

In this small-k limit, one finds from Eq. (16) that not only
the interfacial DM interaction but also the dipolar coupling
generates a term linear in k. However, there is an impor-
tant difference. The interfacial DM interaction contribution
changes its sign with respect to the inversion of the wave
vector k or the magnetization direction p, whereas the dipolar
contribution does not. Due to this feature, one can distinguish

the interfacial DM interaction contribution from the dipolar
contribution unambiguously.

Not only are the wave vectors, Eq. (12), and the decay
lengths, Eq. (13), asymmetric; the amplitudes of the spin wave
are different when symmetrically excited. We approximate the
ratio of spin-wave amplitudes κ (=m+

y /m−
y ) by neglecting

contributions from nonlocal dipolar coupling, where the
plus (minus) sign corresponds to k > 0 (k < 0). From the
susceptibility, one finds

my =
√

Hx

Hy

∫ ∞

0

dk

2π

hkHy

2ω0δω + i

∝ 1

vg

, (18)

where Hx = H + Jk2, Hy = H + Ms + Jk2, hk is the Fourier
component of the driving field, ω0 = γμ0

√
HxHy , δω de-

scribes the frequency difference from the resonance frequency,

 describes the damping term, and vg is the group velocity.
Thus, the spin-wave amplitude ratio κ is

κ =
−pD∗ + Jk−

2H+Ms+2Jk2
−√

(H+Jk2−)(H+Ms+Jk2−)

+pD∗ + Jk+
2H+Ms+2Jk2+√

(H+Jk2+)(H+Ms+Jk2+)

. (19)

This equation shows that the interfacial DM interaction makes
the spin-wave amplitude asymmetric depending on the sign of
k or p.

These results only hold when the DM interaction is not
strong enough to change the ground state of the magnetic
configuration. Setting Eq. (12) to be zero and neglecting
nonlocal dipolar coupling, the threshold D∗

th is

D∗
th =

√
[2H + Ms + 2

√
H (H + Ms)]J . (20)

When D∗ > D∗
th, the ground state is not a single domain

but rather a chiral magnetic texture and our results may not
apply. However, to study a particular interface, one can reduce
the thickness-averaged effective D∗ below D∗

th by simply
increasing the thickness of the ferromagnet because the DM
interaction in sputtered thin films is an interface effect. By
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doing so, one can study the DM interaction associated with a
particular interface in an appropriate layered structure.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we test the extent to which the analytic
formulas derived in the previous section can describe the
behavior of thin films. We consider both the short- and long-
wavelength limits. We apply a magnetic field along the width
(z direction) that is strong enough to make the magnetization
uniform and minimize the importance of edge effects—the
best case for a successful application of the analytic formulas.
The wavelength is determined by the excitation frequency f

and the external field μ0H . In simulations for the small-k
limit, we keep all micromagnetic interactions. On the other
hand, in simulations for the large-k limit, we neglect the
nonlocal parts of the dipolar coupling but keep the local
demagnetization field that acts as an easy-plane anisotropy.
This approximation becomes exact in the thin-film geometry
and the large-k limit. We use the damping constant α =
0.01, the saturation magnetization Ms = 800 kA/m, and the
exchange constant A = 1.3 × 10−11 J/m. The length of the
thin film is 8 μm in the x direction, the width is 20 μm in
the z direction, and the thickness is 1 nm in the y direction.
In the large-k limit, we discretize along the x direction, the
direction in which the magnetization varies, with 2 nm unit
cells, but treat the magnetization as uniform in the thickness
direction because the film is sufficiently thin, and uniform
along the width because the magnetic field is sufficiently
strong. In the small-k limit we use a unit cell size of 5 nm
along the length. We use the external uniform field μ0H =
0.1 T (0.01 T) for the large-k (small-k) limit. To excite spin
waves, we apply an ac field (0.1 mT)× cos(2πf t) to two unit
cells at x = 0. Therefore, the wave vector k of spin waves
for x > 0 is positive whereas k for x < 0 is negative. For
a legitimate comparison between theoretical and numerical
results, we include absorbing boundary conditions38,39 at the
system edges to suppress spin-wave reflection.

Figure 2 shows snapshot images of the spin-wave dis-
tribution along the x axis. Spin waves are symmetric for
D = 0 [Fig. 2(a)], whereas the wavelength, amplitude, and
attenuation length are all asymmetric depending on the
propagation direction for D �= 0 [Fig. 2(b)].

Figure 3 summarizes numerical results obtained in the
large-k limit. Numerical results of both spin-wave dispersion
and attenuation length are in agreement with analytic
expressions [Eqs. (14) and (15)]. In this large-k limit, an
interesting observation is that � for D �= 0 is longer than �

for D = 0 regardless of the propagation direction. After some
algebra with Eq. (15), one finds �± = v±

g F (k±)/αω,
where v±

g is the group velocity and F (k) =√
(H + Ms + Jk2)(H + Jk2)/(H + Ms/2 + Jk2). Since

F (k) is a slowly varying function with the wave vector, the
attenuation length is mostly determined by the group velocity.
The interfacial DM interaction lowers the frequency gap
(i.e., the lowest allowed ω) so that it increases the group
velocity at a given ω in the large-k limit, which in turn
increases the attenuation length compared to that with D = 0.
This enhanced spin-wave attenuation length induced by the

FIG. 2. (Color online) Snapshot images of spin-wave distribution
along the x axis for (a) D = 0 mJ/m2 and (b) D = 1.5 mJ/m2. The
spin-wave frequency f is 11 GHz.

interfacial DM interaction may be useful for applications
based on spin waves. We note however that the damping
constant α may also increase with D, because the interfacial
DM interaction is usually caused by nonnegligible spin-orbit
coupling in the normal-metal layer. In this case, the damping
may increase due to spin pumping effects40 or interfacial
Rashba spin-orbit coupling-related spin-motive force.41,42

Figure 3(c) shows numerical results of the amplitude ratio κ

as a function of the frequency f , in agreement with the analytic
expression [Eq. (19)]. We note that an asymmetry of spin-wave
amplitude has been observed when the spin waves are excited

FIG. 3. (Color online) Asymmetric spin-wave propagation in-
duced by an interfacial DM interaction in the large-k limit.
(a) Dispersion relation. (b) Attenuation length � as a function of
the frequency f . (c) Amplitude ratio κ as a function of f . Symbols
and lines correspond to numerical and analytic results, respectively.
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FIG. 4. (Color online) Asymmetric spin-wave propagation
induced by an interfacial DM interaction in the small-k limit.
(a) Dispersion relation. (b) Attenuation length � as a function of
the frequency f . Symbols and lines correspond to numerical and
analytic results, respectively.

by a magnetic field generated by microwave antennas, and
has been called nonreciprocity of spin-waves.43–47 In these
earlier works, the amplitude asymmetry results from a nonre-
ciprocal antenna–spin wave coupling, caused by the spatially
nonuniform distribution of the antenna field. However in our
results, we use reciprocal coupling in deriving the analytic
expressions and performing the numerical simulations, so that
the amplitude asymmetry shown in Fig. 3(c) is purely due to
the interfacial DM interaction. This interfacial DM interaction
induced amplitude asymmetry may find use in spin-wave
logic devices as proposed by Zakeri et al.25 In addition, it
suggests a reexamination of the interpretation of experiments
reporting nonreciprocal antenna–spin wave coupling. These
experiments have been done on relatively thin structures, in
which interfacial DM interaction may also be an important
source of asymmetry.

Figure 4 summarizes numerical results obtained in the
small-k limit. Numerical results for both the spin-wave dis-
persion and attenuation length agree with analytic expressions
[Eqs. (16) and (17)]. In Fig. 4(b), one finds a difference in
the attenuation length � from Fig. 3(b). In the large-k limit,
� with D �= 0 is larger than � with D = 0 regardless of the
sign of k. In contrast, in the small-k limit with pD > 0, �

with D �= 0 is larger than � with D = 0 for k > 0, whereas
it is smaller for k < 0. This result is again related to the
group velocity. From Eq. (16), one finds v±

g = v0
g ± γμ0pD∗

where v0
g = γμ0M

2
s d/4

√
H (H + Ms) is the group velocity

with D = 0 in the small-k limit. Therefore, for a sign of k, �

with D �= 0 is larger than � with D = 0 whereas for the other
sign of k, it is smaller.

Since the analytic expression of the dispersion [Eq. (12)] is
valid regardless of k, the strength of interfacial DM interaction
D can be estimated experimentally by measuring the frequency
shift �f (=|f+k,±p − f−k,±p| = |f±k,+p − f±k,−p|), given as

�f = γμ0D
∗|k|/π. (21)

With the parameters Ms = 800 kA/m, γ = 1.76×1011 T−1 s−1,
and 2π/k = 1 μm, �f is about 880 MHz for D = 1 mJ/m2,
which is smaller than the threshold value [≈3.1 mJ/m2 for
the parameters used in simulations; see Eq. (20)]. We note
that propagating spin-wave spectroscopy48–51 can resolve �f

smaller than 20 MHz.
Another interesting consequence of the interfacial DM

interaction is that the dispersion is asymmetric depending not
only on the wave vector direction but also on the magnetization
direction (i.e., the sign of p). This k- and magnetization-
direction-dependent asymmetry in the dispersion is similar
to the electron dispersion in a ferromagnet subject to Rashba
spin-orbit coupling.52 We note that this is not an accident
because the interfacial DM interaction is directly connected
with the Rashba spin-orbit coupling at magnetic interfaces.53

IV. SUMMARY

We theoretically study asymmetric spin-wave propagation
induced by interfacial DM interactions. We derive analytic
expressions of dispersion, attenuation length, and amplitude of
interfacial DM spin waves and compare them with numerical
results. The frequency shifts induced by the interfacial DM
interaction range from MHz to GHz, which should be
large enough to be resolved by state-of-the-art experimental
tools such as propagating spin-wave spectroscopy. Assuming
that the damping does not change with the interfacial DM
interaction, the spin-wave attenuation length can increase
with increasing interfacial DM interaction. The spin-wave
amplitude is asymmetric due to the interfacial DM interaction,
even without nonreciprocal coupling between antenna fields
and spin waves. This asymmetric spin-wave propagation may
be useful to investigate interfacial magnetic properties.
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