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We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in

cavity optomechanical systems. These signatures are observable even when the cavity linewidth exceeds

the optomechanical coupling rate. A strong laser drive red detuned by twice the mechanical frequency

from the cavity resonance frequency makes two-phonon processes resonant, which leads to a nonlinear

version of optomechanically induced transparency. This effect provides a new method of measuring the

average phonon number of the mechanical oscillator. Furthermore, we show that if the strong laser drive is

detuned by half the mechanical frequency, optomechanically induced transparency also occurs due to

resonant two-photon processes. The cavity response to a second probe drive is in this case nonlinear in the

probe power. These effects should be observable with optomechanical coupling strengths that have

already been realized in experiments.
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Introduction.—Spectacular advances in the quality
factor of nano- and micromechanical oscillators and
their rapidly increasing coupling to optical and microwave
resonators have given rise to remarkable progress in the
field of cavity optomechanics [1,2]. This has enabled cool-
ing of mechanical oscillators to their motional quantum
ground state [3,4] and observations of optomechanically
induced transparency [5–8], quantum zero-point motion
[9,10], as well as squeezed light and radiation pressure
shot noise [11–13].

The interaction between light and mechanical motion
due to radiation pressure is intrinsically nonlinear. While
several theoretical studies of the single-photon strong cou-
pling regime have been reported recently [14–21], most
realizations of cavity optomechanics are still in the weak
coupling limit where the coupling rate is much smaller
than the cavity linewidth. Experiments to date have relied
on strong optical driving, which enhances the coupling at
the expense of making the effective interaction linear.
Realizations that show promise for entering the strong
coupling regime include the use of cold atoms [11], super-
conducting circuits [6], microtoroids [22], or silicon-based
optomechanical crystals [4]. In the latter, a ratio between
the coupling rate and the cavity linewidth of 0.005 has
been reported [23], and improvements seem feasible [18].
Increasing the coupling strength through collective effects
in arrays of mechanical oscillators has also been proposed
[24]. To enter the nonlinear regime of cavity optome-
chanics is of great interest, since it is only then that the
internal dynamics can lead to nonclassical states [25].

In this Letter, we study corrections to linearized opto-
mechanics and identify signatures of the intrinsic nonlinear
coupling that are observable even with a relatively weak

optomechanical coupling. The nonlinear effects we discuss
come about due to the presence of a strong optical drive.
We show that if this drive is detuned by twice the mechani-
cal frequency from the cavity resonance frequency, two-
phonon processes become resonant. This gives rise to a
nonlinear version of optomechanically induced transpar-
ency (OMIT). OMIT has been well studied in linearized
optomechanics [26] and is analogous to electromagneti-
cally induced transparency in atomic systems. We point out
that the two-phonon induced OMIT enables a precise
measurement of the effective average phonon number of
the mechanical oscillator. This provides an alternative to
sideband thermometry [9,10,27,28]. Furthermore, we show
that OMIT also occurs if the drive is detuned by half the
mechanical frequency due to two-photon resonances, and
the cavity response to a second probe drive is then nonlinear
in probe power. We expect these effects to be observable
for coupling strengths that have already been realized in
experiments. Their observation would verify the intrinsic
nonlinearity of the optomechanical interaction and thus
open up the possibility of generating nonclassical states.
To relate to previous work, we note that a two-phonon

induced transparency [29] can also occur in optomech-
anical systems where the cavity frequency depends quad-
ratically on the position of the mechanical oscillator [30].
In addition, the effect of ordinary linear OMIT on higher-
order optical sidebands was studied in Ref. [31].
Model.—We consider a standard optomechanical system

described by the Hamiltonian Ĥ ¼ Ĥsys þ Ĥpump. The

system Hamiltonian is

Ĥsys ¼ @!râ
yâþ @!mĉ

yĉþ @gðĉþ ĉyÞðâyâ� j �apj2Þ;
(1)
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where âðĉÞ is the photon (phonon) annihilation operator,
!rð!mÞ the bare cavity (mechanical) resonance frequency,
and g the single-photon coupling rate. The mechanical

position operator is x̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!mÞ

p
ẑ, where ẑ ¼ ĉþ ĉy

and m is the effective mass. The cavity mode is driven by
a laser at the frequency !p. This drive will be referred to

as the pump and described by Ĥpump ¼ i@ðe�i!pt�pâ
y �

H:c:Þ. The constant j �apj2 in Eq. (1) is included for conve-

nience and simply shifts the equilibrium position of the
oscillator. We choose it to ensure that hx̂i ¼ 0 in the
presence of the pump, such that x̂ is the oscillator’s
displacement from its average position.

The three-wave mixing term in Eq. (1) is the source
of the phenomena we study here, as we go beyond the
usual linearization around a large cavity amplitude. Let
us move to a frame rotating at the pump frequency !p

and perform a displacement transformation, such that
âðtÞ ! e�i!pt½ �ap þ âðtÞ�. We define �p ¼ !p �!r � 0

as the pump detuning from cavity resonance and
choose �ap ¼ i�p=�p. This results in the Hamiltonian

Ĥ ¼ Ĥ0 þ Ĥ1, where

Ĥ0 ¼ �@�pâ
yâþ @!mĉ

yĉþ @Gðĉþ ĉyÞðâþ âyÞ; (2)

Ĥ1 ¼ @gðĉþ ĉyÞâyâ: (3)

We have introduced G ¼ g �ap and assumed, without loss

of generality, that �ap is real. The coupling G is enhanced

by the square root of the average cavity photon number
compared to g and provides a bilinear coupling between
photons and phonons. This coupling has been well studied,
and it is known to give rise to effects such as sideband
cooling [3,4,32,33] and OMIT [5–7,26].

Identifying resonant nonlinear terms.—The bilinear

Hamiltonian Ĥ0 with�p < 0 simply describes two linearly

coupled harmonic oscillators. By a symplectic transforma-

tion, we can express Ĥ0 in terms of new operators Â and Ĉ,
which are annihilation operators for the normal-mode
excitations of the system. These excitations are in general
superpositions of photonic and phononic degrees of free-
dom. Up to a constant, the Hamiltonian becomes

Ĥ0 ¼ �@~�pÂ
yÂþ @ ~!mĈ

yĈ: (4)

Wewill assume thatG=!m � 1 and that the pump frequency
!p does not coincidewith the sideband frequencies!r�!m,

but rather that j!m � �pj is on the order of !m. In this

case, the operator Â describes excitations that are photonlike,

while Ĉ describes phononlike excitations. To second order in

G=!m, we get Â ¼ ½1þ 2�þ���=ð1� �2Þ�â� �þĉ�
��ĉy � �þ���ây and Ĉ ¼ ½1þ 2�þ���=ð1� �2Þ�ĉþ
�þâ� ��ây þ �þ����1ĉy when we define � ¼ !m=�p

and�� ¼ G=ð�p �!mÞ. The normal-mode frequencies are
~�p ¼ �pð1� 2�þ���Þ and ~!m ¼ !mð1þ 2�þ����1Þ.
We can now rewrite the Hamiltonian Ĥ1 in terms of the

normal-mode operators Â and Ĉ, which results in multiple

terms. However, since G=!m � 1, we only retain terms of
nonzero order in G=!m if they are resonant. We consider
two different pump detunings. First, if �p ��2!m, we

find Ĥ1 ¼ @gðĈþ ĈyÞÂyÂþ Ĥ1;res, where the resonant

terms are

Ĥ1;res ¼ @g1ðÂyĈ2 þ Ĉy2ÂÞ (5)

with g1 ¼ �gG=!m. This describes processes where one
photonlike excitation is created and two phononlike exci-
tations are destroyed, and vice versa. On the other hand,
if �p ��!m=2, the resonant terms are

Ĥ1;res ¼ @g2ðÂy2Ĉþ ĈyÂ2Þ (6)

with g2 ¼ �8gðG=!mÞ2=3, which describes processes
where two photonlike excitations are created and one
phononlike excitation is destroyed, and vice versa. The
Hamiltonian (4) combined with Eq. (5) or Eq. (6) gives
rise to new effects beyond standard linearized opto-
mechanics. These models can be studied for a general
coupling rate g, but we focus here on the presently experi-
mentally relevant regime g=� � 1. Specifically, we will
investigate how the nonlinearities affect the response of the
optical cavity to a second probe drive.
Equations of motion.—We now return to the representa-

tion in terms of the original photon and phonon operators
â and ĉ, and include dissipation by input-output theory
[34,35]. The cavity and mechanical energy decay rates
are � and �, respectively. We assume that � � � and
that the system is in the resolved sideband regime, where
!m > �, relevant to most experimental realizations.
Note that in the presence of dissipation, the amplitude
�ap ¼ �p�rð�pÞ, where the cavity susceptibility is defined
as �rð!Þ¼ð�=2� i!Þ�1. The drive strength �p is related

to the laser power Pp through j�pj2 ¼ �extPp=ð@!pÞ,
where �ext � � is the decay rate of the cavity mirror
through which the cavity couples to the drive. We let �int

describe other cavity losses, such as decay through the
other mirror, scattering out of the cavity mode, absorption,
etc. The sum of all decay rates equals the total cavity
linewidth � ¼ �ext þ �int.
The quantum Langevin equations are [36]

_̂a ¼ �
�
�

2
� i�p

�
â� iðGþ gâÞðĉþ ĉyÞ þ ffiffiffiffi

�
p

âin; (7)

_̂c ¼ �
�
�

2
þ i!m

�
ĉ� iGðâþ âyÞ � igâyâþ ffiffiffiffi

�
p

ĉin: (8)

We now introduce a weak second optical drive, the probe,
with frequency !s close to the cavity resonance frequency

!r. This is described by ĤprobeðtÞ ¼ i@ðe�i�t�sâ
y � H:c:Þ

in the frame rotating at the pump frequency, with
� ¼ !s �!p being the frequency difference between

the probe and the pump. See Fig. 1 for an overview of
the frequencies involved. The frequency j�sj is related
to the probe power Ps by j�sj2 ¼ �extPs=ð@!sÞ. The
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optical input operator in Eq. (7) becomes
ffiffiffiffi
�

p
âinðtÞ ¼

e�i�t�s þ ffiffiffiffiffiffiffiffi
�ext

p
�̂extðtÞ þ ffiffiffiffiffiffiffiffi

�int
p

�̂intðtÞ, where the vacuum

noise operators �̂ext obey h�̂extðtÞ�̂y
extðt0Þi ¼ �ðt� t0Þ and

h�̂y
extðtÞ�̂extðt0Þi ¼ 0 and similarly for �̂int. The mechanical

oscillator is not driven but coupled to a thermal bath, such

that the mechanical input operators obey hĉinðtÞĉyinðt0Þi ¼
ðnth þ 1Þ�ðt� t0Þ and hĉyinðtÞĉinðt0Þi ¼ nth�ðt� t0Þ, where
nth ¼ ðe@!m=kBT � 1Þ�1 and T is the bath temperature. We
will solve Eqs. (7) and (8) perturbatively in the single-
photon coupling g [37]. The coupling G cannot be treated
perturbatively, but we will exploit the fact thatG=!m � 1.

The presence of two optical drives gives rise to a beat
note in the optical intensity at frequency � � !m and thus
an off-resonant drive on the mechanical oscillator. To avoid
parametric instability, the cavity frequency modulations
due to the coherent motion induced by this beat note
should be much smaller than the cavity linewidth, giving
gGj�sj=ð�!mÞ � � by an order of magnitude estimate.
This is easily fulfilled for a weak probe drive (j�sj=�� 1)
when G=!m, g=� � 1. Note that other instabilities can
also arise [39] and must be avoided.

It is again convenient to move to the normal-mode basis

and derive Langevin equations for the operators Â and Ĉ.
This still gives equations with linear coupling terms when-
ever dissipation is present. However, let us consider the
extreme resolved sideband limit �=!m � 1 first, where
they simplify to

_̂A ¼ �
�
�

2
� i~�p

�
Âþ i

@
½Ĥ1; Â� þ

ffiffiffiffi
�

p
âin; (9)

_̂C ¼ �
�
~�

2
þ i ~!m

�
Ĉþ i

@
½Ĥ1; Ĉ� þ

ffiffiffiffi
~�

p
~cin: (10)

The effective mechanical linewidth is ~� ¼ �� ��, where
� � 4�þ���=ð1� �2Þ< 0 for �p < 0. The effective

frequencies ~!m and ~�p were defined above. Note that

j�j � ðG=!mÞ2 � 1 such that the effective mechanical
linewidth is still small compared to the cavity linewidth,
i.e., ~� � �. The effective mechanical noise operator is

defined by
ffiffiffiffi
~�

p
~cin ¼ ffiffiffiffi

�
p

ĉin þ
ffiffiffiffi
�

p ð�þ�̂þ ���̂
yÞ when

ignoring the beat note and defining
ffiffiffiffi
�

p
�̂ � ffiffiffiffiffiffiffiffi

�ext
p

�̂ext þffiffiffiffiffiffiffiffi
�int

p
�̂int. Its autocorrelation properties are the same as

for ĉin, but with nth replaced by the effective phonon
number nm ¼ ð�nth þ ��2�Þ=~�.

Two-phonon induced transparency.—We start by focus-
ing on the case of a pump detuned by twice the mechanical

frequency ~�p ¼ �2 ~!m, where two-phonon processes are

resonant according to Eq. (5). Such processes have been
studied before for systems with so-called quadratic opto-
mechanical coupling [30], and it has been shown that they
can lead to OMIT [29] much in the same way as single-
phonon processes do with ordinary linear optomechanical
coupling [26]. We will now see that two-phonon induced
transparency can also occur in the case of linear optome-
chanical coupling, without the need for a nonzero quadratic
coupling [40].
By solving Eqs. (9) and (10) perturbatively in the single-

photon coupling g and transforming back to the original
operators, we calculate the optical coherence hâðtÞi at
frequencies close to the resonance frequency. Defining
the probe beam detuning by �s ¼ !s �!r and the effec-

tive detuning ~�s¼�s��pþ ~�p, we find hâðtÞi¼e�i�t �as,

where

�as ¼ �as;0

0
@1� 	� 2g21�rð~�sÞhẑ20i

~�� ið~�s � ~�p � 2 ~!mÞ

1
A (11)

and �as;0 ¼ �s�rð~�sÞ. The first term in Eq. (11) is the

response of an empty cavity. The second term 	 is a small
and unimportant correction due to off-resonant processes
[41]. The last term gives rise to a narrow dip of width 2~�
in the coherent amplitude as well as a group delay of the
input signal. This is analogous to the well-studied case of

linear OMIT for pump detuning ~�p ¼ � ~!m. In the case

of ~�p ¼ �2 ~!m, however, the effect is not due to coherent

driving of the mechanical oscillator [42]. The size of the
effect rather depends on the average mechanical fluctua-
tions through hẑ20i � ð2nm þ 1Þ. This is connected with the
fact that the interaction (3) produces optical sidebands at
integer multiples of !m, whose magnitudes will increase
with the size of the mechanical fluctuations. Note that hẑ20i
can be increased by mechanically driving the oscillator.
If the system is not in the extreme resolved sideband

limit �=!m � 1, Eq. (11) is still valid with some correc-
tions to the parameters, which can be found in Ref. [43].
The cavity response j �asj2 to the probe drive is plotted in

Fig. 2 for g=� ¼ 0:01 and 0.03. The dip in j �asj2 corre-
sponds to a dip in either transmission or reflection of the
probe depending on the experimental setup. The parame-
ters we used are expected to soon be within reach for
silicon-based optomechanical crystals [23]. We note that
experimental studies of linear OMIT [5–7] have showed
the ability to resolve dips at the percent level. Coherent
interference dips are in general much easier to resolve than
the incoherent noise peaks usually measured in sideband
thermometry [3,9,10,27,28].
The result (11) provides a new way of measuring

the average phonon number of the mechanical oscillator.
To see this in an easy way, let us assume �=!m � 1 and
~�p ¼ �2 ~!m, and that the mechanical oscillator is not

FIG. 1 (color online). Setup when the pump detuning is
(a) �p 	 �2!m and (b) �p 	 �!m=2. Note the difference in

scale between (a) and (b).
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driven. We define the dimensionless size of the dip d � 1

at ~�s ¼ 0 as d � 1� j �as= �as;0ð1� 	Þj2 ¼ 2K1ð2nm þ 1Þ
to lowest order in g, where K1 ¼ 4g21=ð�~�Þ is the effective
single-photon cooperativity. In the limit where the optical
broadening of the mechanical linewidth is significant,
i.e., �ðG=!mÞ2 � �, the size of the dip becomes
d ¼ 9ðg=�Þ2ð2nm þ 1Þ. We observe that the dip size d
increases with temperature and does not depend on the
probe drive strength j�sj. Note that Fig. 2 is the response
in the low-temperature regime nm � 1, showing that the
effect could be a useful tool for verifying ground state
cooling.

The linear dependence on the oscillator fluctuations hẑ20i
is a result of using perturbation theory and is only valid

when g
ffiffiffiffiffiffiffiffi
hẑ20i

q
=��1. To gain further insight, let us consider

the high-temperature regime nm � 1. For ~�s ¼ 0 and
~�p ¼ �2 ~!m, a semiclassical approximation gives �as 	
�as;0=ð1þ 	þ K1hẑ20iÞ, from which Eq. (11) follows by

expansion in g
ffiffiffiffiffiffiffiffi
hẑ20i

q
=�. Thus, while a dip at the percent

level as in Fig. 2 can be observable, the effect should be
easily detectable in the high-temperature regime. For
example, for an oscillator at room temperature with
!m¼2

3GHz, g=�¼0:01, !m=�¼105, �=!m¼0:1,
and G=!m ¼ 0:05, we get nth ¼ 2
 103 and nm ¼ 90,
and the dip size becomes d ¼ 0:14.

Finally, we note that while the two-phonon OMIT is a
classical effect, its presence in the low-temperature limit
nm ! 0 is solely due to mechanical quantum zero-point
fluctuations.

Two-photon induced transparency.—We now consider
the case of the pump drive detuned by half the mechanical

frequency ~�p ¼ � ~!m=2, giving rise to the Hamiltonian

(6). Again, we calculate the optical coherence for frequen-
cies close to the cavity resonance frequency, restricting
ourselves to the regime �=!m � 1 for simplicity. We find
hâðtÞi ¼ e�i�t �as with

�as ¼ �as;0

0
@1� 	� 2g22j �as;0j2�rð~�sÞ

~�=2� 2ið~�s � ~�p � ~!m=2Þ

1
A; (12)

when ignoring a very small term of order 	ðG=!mÞ4.
There is also an OMIT effect in this case, as seen from
the last term in Eq. (12), since two probe photons can be
converted to one phonon and vice versa. The dip size for
~�p ¼ � ~!m=2 at ~�s ¼ 0 becomes d ¼ 4K2j2�s=�j2 ¼
32ðg=�Þ2ðG=!mÞ2j2�s=�j2, where the cooperativity is
K2 ¼ 4g22=ð�~�Þ and the second equality assumes ~� � �.

The amplitude j �asj2 for ~�p ¼ � ~!m=2 is plotted in Fig. 3.

We see that even for g=� � 1, the dip could be observable
as it grows with increasing probe power. Note that this
effect does not depend on mechanical fluctuations but is a
result of coherent motion of the oscillator at the mechani-
cal resonance frequency induced by two-photon processes.
Numerics.—To corroborate our analytical results, we

have numerically solved the quantum master equation
[43]. Figures 2 and 3 show that the numerical and analyti-
cal calculations are in good agreement.
Conclusion.—We have studied corrections to linearized

optomechanics and identified signatures of the intrinsic
nonlinear coupling between light and mechanical motion.
The signatures are nonlinear versions of optomechanically
induced transparency that come about due to resonant
two-photon or two-phonon processes in the presence of a
strong, off-resonant optical drive. These effects are observ-
able even when the single-photon coupling rate is smaller
than the cavity linewidth and are thus relevant to present-
day experiments [5–7].
We acknowledge financial support from The Danish
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FIG. 2 (color online). The cavity response j �asj2 in Eq. (11) in
units of n0 ¼ ð2j�sj=�Þ2 for pump detuning ~�p ¼ �2 ~!m. The

parameters are G=!m ¼ 0:05, �=!m ¼ 0:1, j�sj=� ¼ 0:01,
nth ¼ 1, and !m=� ¼ 105. Upper solid: g=� ¼ 0:01. Lower
solid: g=� ¼ 0:03. Dashed curve: g=� ¼ 0. Dots: Numerical
results.
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FIG. 3 (color online). The cavity response j �asj2 in Eq. (12) in
units of n0 ¼ ð2j�sj=�Þ2 for pump detuning ~�p ¼ � ~!m=2. The

parameters are G=!m ¼ 0:05, �=!m ¼ 0:05, nth ¼ 0, and
!m=� ¼ 105. Upper solid: g=� ¼ 0:1 and j�sj=� ¼ 0:4.
Lower solid: g=� ¼ 0:01 and j�sj=� ¼ 15. Dashed curve:
g=� ¼ 0. Dots: Numerical results (only available for weak probe
drives). (The small difference for larger ~�s comes from a
difference in Re	.)
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The numerical calculations were performed with the
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Note added.—Recently, we became aware of related
works by Lemonde, Didier, and Clerk [44] and by
Kronwald and Marquardt [45].
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