
Terabyte-sized Image Computations on Hadoop Cluster Platforms

Peter Bajcsy, Antoine Vandecreme, Julien Amelot, Phuong Nguyen, Joe Chalfoun, Mary Brady
Software and Systems Division, Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD

e-mail: {peter.bajcsy, antoine.vandecreme, julien.amelot, phuong.nguyen, joe.chalfoun, mary.brady}@nist.gov

Abstract—We present a characterization of four basic
Terabyte-sized image computations on a Hadoop cluster in
terms of their relative efficiency according to the modified
Amdahl’s law. The work is motivated by the lack of standard
benchmarks and stress tests for big image processing
operations on a Hadoop computer cluster platform. Our
benchmark design and evaluations were performed on one of
the three microscopy image sets, each consisting of over one
half Terabyte. All image processing benchmarks executed on
the NIST Raritan cluster with Hadoop were compared against
baseline measurements, such as the Terasort/Teragen designed
for Hadoop testing previously, image processing executions on
a multiprocessor desktop and on NIST Raritan cluster using
Java Remote Method Invocation (RMI) with multiple
configurations. By applying our methodology to assessing
efficiencies of computations on computer cluster
configurations, we could rank computation configurations and
aid scientists in measuring the benefits of running image
processing on a Hadoop cluster.

Keywords- Big Data Industry Standards, Big Data Open
Platform, Big Data Applications and Infrastructure

I. INTRODUCTION
Our objective is to characterize Terabyte-sized image
processing computations in terms of their computational
scalability on Hadoop computer cluster platforms with
multi-processor nodes. The computations of interest include
image background (flat field) correction, segmentation,
image feature extraction and pyramid building for Deep
Zoom visualization. These computations range from
computationally intensive to data intensive, and operate
either on thousands of Mega-pixel images (image tiles) or
on hundreds of a half Giga-pixel images (stitched images).
From an image processing perspective, these operations are
very typical in the image to knowledge workflow consisting
of intensity corrections, visualization and information
extraction over regions of interest.

In general, computational platforms for processing
large size images can be categorized as multi-processor
desktop computers, computer clusters, high-performance
computing (HPC) resources with big shared memory, grid
computing on loosely coupled and networked computers,
and computing on novel hardware architectures (e.g.,
Graphical Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs)). Advantages and disadvantages of
several above categories for life science applications can be

found in Schadt et al. [1]. Our work focuses on computer
clusters in order to support run time and configuration
decisions for research centers and governmental
organizations with security concerns about the use of
external computational resources. Nevertheless, the
fundamental problems in characterizing Terabyte-sized
image processing computations are similar to cloud
platforms and are also tied to security (access to physical
and virtual storage and compute resources).

Our specific focus is on Hadoop clusters because
Hadoop includes file system and computation solutions for
utilizing distributed computational resources. For example,
the advantages of Hadoop Distributed File System (HDFS)
are in data replication and collocation of data and
computation [2]. The Map and Reduce computational
paradigm of Hadoop has been shown very efficient
especially for sorting computations [3], [4]. This work is
exploring image processing computations on Hadoop
clusters with HDFS while running Map tasks.

The main goal is to establish benchmarks and
stress tests for big image data processing operations on a
Hadoop cluster platform. The computational benchmarks
provide experimental characteristics of the above image
processing computations and image partitions for (a)
assessing the efficiency of a computer cluster configuration
with respect to a given computation (number of nodes,
number of tasks per node, RAM per node, job resource
managers such as Hadoop middleware or Java Remote
Method Invocation (RMI) and Portable Batch System (PBS)
scripts), and (b) predicting run times for various input data
distribution patterns. The stress tests are useful for
understanding the system limits, and how to manage
hardware failures and deal with cluster heterogeneity.

The application specific motivation of our work
comes from live cell imaging applications of very large
fields of view (FOV). Given the advances in microscopy
imaging and its applications in many bio-medical
applications, a single microscope generates a large number
of spatial image tiles with several measurements at each
location over time. The image tiles can be stitched into a
large FOV image with hundreds of Mega-pixels or tens of
Giga-pixels. Multiple time slices of stitched images
accumulate to Terabytes of image data. These image data
cannot be analyzed without computations that calibrate,
segment and visualize image channels, as well as extract

image features for further analyses. Such image processing
computations are very common across many application
domains and represent a sample subset for our work.

Our computer science motivation lies in the lack of
benchmarks and stress tests for big image processing
operations on a Hadoop computer cluster platform. For
instance, as biologists increase robustness of their
conclusions by increasing the number of experimental
replicas, their access to elastic computational resources and
to benchmarks for optimal reconfiguration become apparent.
The image data type and the variety of image processing
computations are different from the existing Hadoop
benchmark tests that primarily focus on textual data and low
level operations.

While the Apache Hadoop distribution includes
several basic tests, it does not provide sufficient
understanding about executions of image processing
operations. The four common basic tests are MRBench,
NNBench, TestDFSIO, and Gridmix [4], [5]. MRBench is
designed to check whether small job runs are running
efficiently. NNBench introduces a high HDFS management
stress on the NameNode by requesting a large number of
files to be created, read, renamed and deleted. TestDFSIO
writes into or reads from a user specified number of files.
Gridmix mimics a variety of data-access patterns seen in
practice. There is also an interest in understanding the
Hadoop performance as a function of processor and cluster
hardware configurations [6] or against relational database
management systems [7], [8]. These Hadoop tests together
with general networking performance tests (Netperf [9],
Iozone [10] or other [11]) provide excellent probes into a
Hadoop cluster for low level operations. However, these
tests are typically applied to many small-sized elements
such as random bytes or words which are different from
high-dimensional images with varying file sizes.
Furthermore, the differences between the above
computations and the image processing computations are in
the additional support of various image formats on each
cluster node and in spatial dependency of image
computations (e.g., spatially local intensity changes versus

spatially global image filtering or co-occurrence matrix-
based feature extraction).

In order to design a suite of benchmark tests for
image processing computations on Hadoop clusters, one has
to sample commonly used image computations and their
various image inputs and outputs. The approach is similar
conceptually to the design of the PUMA test suite [12],
where the Hadoop tests are extended by additional types of
text-based computations (e.g., K-mean clustering, inverted
index, adjacency list, self-join). It can also be related to
Almer’s case study [13] that is comparing a Hadoop cluster
and dual core personal computer run times. This case study
considered a set of image format conversion, auto-contrast,
sharpening and resizing operations applied to 200 Landsat
satellite images of 139 Mega pixels each (total 83.3 GB of
imagery). In our case, the sampling of computations tries to
cover a wider range of input and output scenarios, and the
run times are compared against a broader range of
benchmarks on 0.6TB of imagery. The image input and
output scenarios are summarized in Table 1. The details of
each computation are provided in Section II.

Next, the designed suite of Hadoop cluster
benchmark and stress tests for image processing are
compared against baseline computations. In our work, the
baseline computations are either (1) a well-benchmarked
non-image computation on a Hadoop cluster such as
Teragen or Terasort, or (2) the same image processing
operations (a) running on a multicore desktop instead of a
Hadoop cluster, and (b) running on a cluster without
Hadoop middleware.

Terasort is one of the most popular text-based
computations for sorting a Terabyte of numbers [14]. The
algorithm running on a Hadoop cluster was initially
developed by Yahoo! [3] and later advanced by Google
[15]. Ideally, the well-understood Terasort computational
performance on Hadoop clusters can be related to a priori
unknown performance of image processing computations on
Hadoop clusters for similar input file sizes. We reviewed the
Hadoop Image Processing Interface (HIPI) library [16] that
focused on filtering and bundling very small images

Table 1: Summary of computations, and input and output image data files.

Type of Image
Processing

Spatial Extent of
Image Processing

Input & Output File
Characteristics Computational Complexity Data-Access Pattern

During Computations

Flat Field Correction Local
Input & Output: Tens of
thousands of a few MB size
files

Low (two subtractions and one
division per pixel)

Medium (accessing three
files and creating one file,
data skew on two input files)

Segmentation based on
convolution kernels

Global with fixed
kernel

Input & Output: Hundreds of
a half GB size files

Medium (tens of subtractions,
multiplications, comparisons
per pixel)

Low (accessing one file and
creating one file)

Feature Extraction

Global with mask
defined kernel

Input: Co-located pairs of
hundreds of a half GB files
Output: hundreds of KB size
tables

High (several thousands of
basic numerical operations per
pixel)

Medium (accessing two files
and creating one file)

Deep Zoom Pyramid
Building

Global with fixed
kernel

Input: Hundreds of a half GB
size files
Output: Millions of KB size
files

Medium (tens of additions and
divisions per pixel)

High (creating thousands of
directories, accessing one
input file and writing
millions of pyramid tiles)

(HipiImageBundle & CullMapper classes) before running
Hadoop. In our case, Terabyte collections of several
megabyte files do not fit HIPI and the bundling was
replaced by the Hadoop Sequence File and tar
representations. Finally, two of the baselines are desktop
and cluster configurations without Hadoop. The desktop has
six cores of Intel Xeon @ 2GHz with 64GB of RAM and
hyper threading activated. The cluster is the NIST Raritan
cluster which is composed of more than 800 heterogeneous
nodes controlled by Portable Batch System (PBS) as a job
resource manager.

The novelty of the work lies in designing a suite of
benchmark and stress tests for image processing
computations on Hadoop clusters that can complement the
existing tests in the Apache Hadoop project. The
infrastructure could be integrated into a larger image
processing community effort to build an open source image
processing library running on a Hadoop cluster.

The paper is organized as follows. Section II introduces
the image processing computations and their characteristics.
Section III presents experimental data, hardware and
software platforms, exploratory and baseline benchmarks,
and relative efficiency evaluations. We conclude with a
summary in Section IV.

II. IMAGE PROCESSING COMPUTATIONS
To address the algorithmic development of image
processing, one approach is to take an existing well-
established image processing library and enable running its
functionality on a Hadoop cluster. A candidate for such a
widely used library is an instance of NIH ImageJ/Fiji,
ImageJDev or BioImageXD [17], [18]. This approach faces
challenges in executing functionalities in a headless mode
and in dealing with a code base that has not been designed
with Terabyte image sizes in mind. People have blogged
about “parallel ImageJ”[19] running in the Amazon cloud
by adding a Hadoop InputFormat to handle image types in
HDFS and encapsulating ImageJ operations in map and
reduce methods. However, the encapsulation has been
performed for a very small number of operations in the
ImageProcessor class of the ImageJ library. In addition, the
developed source code is not publicly available, the
ImageProcessor-based execution lacks process control (not
knowing when execution is done), and has the overhead of
starting ImageJ and loading plugins.

These considerations led us to a development of our own
image processing functionality in Java for the following
computations: flat field correction, segmentation, image
feature extraction and pyramid building for Deep Zoom
visualization. These computations range from
computationally intensive to data intensive, and have to
operate either on thousands of Mega-pixel images (image
tiles) or on hundreds of a half Giga-pixel images (stitched
images). Next, we characterize these four computations.

A. Flat Field Correction
Flat field correction (FFC) is described mathematically
below:

(,) (,)(,)
(,) (,)

RAW
FFC I x y DI x yI x y

WI x y DI x y
−

=
−

 (1)

where (,)FFCI x y is the flat-field corrected image intensity,
(,)DI x y is the dark image acquired by closing the camera

shutter, (,)RAWI x y is the raw uncorrected image intensity,
and (,)WI x y is the flat field intensity acquired without any
object to correct primarily for spatial shading. This is the
simplest computation that consists of two subtractions and
one division per pixel. It needs the DI and WI images co-
located from the distributed execution perspective.

B. Segmentation
There are many segmentation methods applied to cell
microscopy images [20]. We selected a segmentation
method that consists of four linear workflow steps: (1)
Sobel-based image gradient computation, (2) thresholding
by a value equal to twice the intensity histogram mode, (3)
morphological opening (dilation of erosion) to remove small
holes and islands, and (4) connectivity analysis to assign the
same label to each contiguous group of 4-connected pixels.
 The Sobel-based image gradient is defined over a 3×3
convolution kernel, and estimates the gradient in the column
and row directions. The gradient image contains the
magnitude of each estimate as shown below.

() ()22(,) x yG x y = ∆ + ∆ (2)

1 0 1 (1, 1) (1,) (1, 1)
2 0 2 * (, 1) (,) (, 1)
1 0 1 (1, 1) (1,) (1, 1)

x

I x y I x y I x y
I x y I x y I x y

I x y I x y I x y

− − − − − +   
   ∆ = − − +   
   − + − + + +   

1 2 1 (1, 1) (1,) (1, 1)
0 0 0 * (, 1) (,) (, 1)
1 2 1 (1, 1) (1,) (1, 1)

y

I x y I x y I x y
I x y I x y I x y

I x y I x y I x y

− − − − +   
   ∆ = − +   
   − − − + − + + +   

Sobel filtering has been explored on a Hadoop cluster by
Almer [13], and serves as an input to parallel gradient
domain computing [21] (e.g., computations of the
divergence of gradient using Message Passing Interface
(MPI)). Multiple reports of run time versus image file size
(e.g., in [13] Fig. 2) improve general understanding of the
performance benchmarks for various Hadoop cluster setups.

Another widely used computation of segmentation is
morphological opening (dilation of erosion). During this
operation, a thresholded binary image is convolved with the
min and max operators over a 3×3 kernel. This computation
has been explored in the past on distributed memory
machines [22] (multiple-instruction-multiple-data (MIMD)
Intel Paragon and single-instruction-multiple-data (SIMD)
MasPar MP-1) showing advantages of data partitioning.

C. Feature Extraction
Similar to segmentation, there is a large number of feature
extraction methods designed for cell microscopy images.
The number ranges from hundreds [23], [24] to thousands
[25] and serves as an input to image characterization and
classification. We have categorized features according to
their type as intensity, shape and texture descriptors. Each
feature type is represented by sample representatives listed
in Table 2.

Table 2. Description of extracted features.
Feature
Type

Feature Name Mathematical
Model

Intensity Basic central moments according to
statistics: Mode, Mean, Standard
Deviation, Skewness, Kurtosis, Fifth and
Sixth moments

Integral
computations

Shape Hu’s moment invariants are computed
according to [26] : Centroid, area,
perimeter, circularity, aspect ratio,
extend, orientation, eccentricity

Integral
computations

Texture The Gray Level Co-Occurrence matrix is
computed according to [27] and the
following four features are extracted
Correlation, Energy, Contrast and
Homogeneity

Directional
counting

The features of intensity and shape types are extracted by
implementing integral equations over a masked region, and
hence can be denoted as integral image computations. The
extraction of texture features is also viewed as a directional
counting computation of all intensity pairs within a masked
region. In general, the directional counting computation has
higher requirements on CPU & RAM than the integral
computations because there are many more counting co-
occurrence bins than the central moment accumulator
variables. In terms of computation, the counting is less
demanding than computing the higher moment powers. We
have evaluated both integral and directional counting
computations together because most microscopy image
analyses do not have a priori knowledge about preferred sets
of features [28].

D. Pyramid Building
One way to view images with very large pixel counts is to
use the Deep Zoom image pyramid representation [29] and
the OpenSeadragon javascript library [30]. The visualization
of Terabyte-sized images is critical for many applications
and requires building a multi-resolution pyramid. This
computation is I/O bound because it generates many small
files for fast data transmission and rendering purposes. The
pyramid building computation was explored by Kooper and
Bajcsy [31], [32] on a cluster with 16 nodes, each node with
8 cores and 16GB RAM. It took 30 days to build a pyramid
for a 79 Gigapixel image and generated 1.6M tiles stored on
redundant array of independent disks (RAID-5). A speed-up
by a factor of 20 was achieved after custom image loading.
These previous benchmarks as well as the benchmarks with
storage on NO RAID, RAID 0, and RAID 1 configurations

contribute to a better understanding of the pyramid
computation on a Hadoop cluster and serve as comparison
benchmarks.

III. EXPERIMENTAL RESULTS
We have executed about one hundred runs of image
processing computations with the data set described in
Section III.A and with the Terasort generated data. The
hardware and software specifications are provided in
Section III.B as well as observations about our
computational reliability in Section III.E. Sections III.D and
III.E. document the relative efficiency of each computation
and the suitability of individual image processing operations
based on these benchmarks.

A. Characteristics of Image Data Sets
We experimented with three data sets where each raw image
data set is about 0.6TB. For benchmarking and stress
testing, we have selected a data set that consists of 18×14=
252 image tiles covering approximately 180 square
millimeters of a stem cell colony dish, over five days under
both phase contrast and green fluorescence channels, with
images acquired every 15 minutes. This example data set is
composed of 195,552 images at 2.8 MB/image equal to
0.527 TB of data (388 time samples of 252 images with 2
color channels acquired over 97 hours every 15 minutes).
The H9 human embryonic stem cell line was engineered to
produce green fluorescent protein (GFP) under the influence
of Oct4 promoter and cells were cultured under feeder-free
conditions on MatrigelTM. After correcting the GFP image
tiles, all tiles were stitched and yielded 388 stitched time
frames stored in a TIFF file format (0.527 TB; GFP only:
0.264 TB). Table 3 summarizes the data with respect to
image processing computations. Note that the “Size per
File” refers to compressed files via pack bits of the TIFF
format that become much larger in RAM after loading.

 Table 3. A summary of inputs and outputs for each benchmarked
computation.
Type of
Image
Processing

Input Data in TIFF File
Format

Output Data mostly in
TIFF File Format

Total Files Per-File
Size

Total Files Per-File
Size

Flat Field
Correction

97,776 GFP
channel
corrected
tiles~264 GB

2 bytes
per pixel:
2.83 MB

97,776
GFP
channel
corrected
tiles~527G
B

4 bytes per
pixel:
5.6MB

Segmentation
based on
convolution
kernels

388 frames of
stitched
images
~219GB

2 bytes
per pixel:
593 MB

388 frames
of mask
images
~86GB

2 bytes per
pixel
71MB-
331MB

Feature
Extraction

388 frames of
stitched and
segmented
images ~
219GB +
80.7GB

2 bytes
per pixel:
~593 MB
+
~66MB-
336MB

388 files ~
40MB

CSV file
format
~100KB

Deep Zoom
Pyramid
Building

388 frames of
stitched
images ~
219GB

2 bytes
per pixel:
593 MB

6,596
folders;
2,476,683
files; 151
GB

JPG file
format
2-18KB
per file

B. Computer Hardware and Software Characteristics
We ran the benchmarks on the NIST Raritan cluster and on
a desktop computer. Table 4 summarizes the cluster and
desktop hardware and software specifications. The cluster
nodes differ in terms of CPU speed and RAM, and are
allocated to jobs based on the requested resources in a
Portable Batch System (PBS) script. We installed Hadoop
and Java 1.7 on the cluster to support Java code execution
and Java Remote Method Invocation (RMI). The desktop
computer had similar software configuration to the cluster.

Table 4. NIST Raritan cluster and test desktop characteristics.
 Specs Cluster Desktop
Hardware Cluster

Nodes
800 computer nodes
having from 2 to 16
virtual processors
with 4 to 32GB of
RAM

Intel Xeon @ 2GHz
6 cores, 64GB of
RAM and hyper
threading activated

Networking 1Gbit/second
Software Java Virtual

Machine
Java version
"1.7.0_17"
Java(TM) SE
Runtime
Environment (build
1.7.0_17-b02)
Java HotSpot(TM)
64-Bit Server VM
(build 23.7-b01,
mixed mode)

Java version
"1.7.0_15"
Java(TM) SE
Runtime
Environment (build
1.7.0_15-b03)
Java HotSpot(TM)
64-Bit Server VM
(build 23.7-b01,
mixed mode)

Hadoop hadoop-2.0.3-alpha
Operating
System

CentOS 5.9
Linux 2.6.18-
274.3.1.el5 x86_64

Ubuntu 12.10
Linux 3.5.0-28-
generic x86_64

File System Lustre parallel
distributed file
system

ext4 on top of
Logical Volume
Manager (LVM)

C. Characteristics of Image Processing Benchmarking
Software

All four computations were implemented as independent
Java libraries and used on the desktop, Java RMI and
Hadoop cluster platforms. Thus, the same image processing
code is invoked regardless of the platform. The desktop
implementation is a Java program starting a fixed number of
threads (specified on the command line) using a fixed thread
pool. One image is processed by each thread. As soon as a
thread has finished processing an image, it starts processing
a new image.

The Java RMI Application Programming Interface
(API) invokes methods on remote computers (i.e., on the
cluster nodes). We build a simple job scheduler with a
client-server architecture using the Java RMI API. The Java
RMI-based server provides a method to fetch the next image
to process. When a client node has finished processing an
image, it notifies the server with another RMI call and

fetches the next image to process. Similar to the desktop
implementation, the client nodes can run multiple threads
(one per image).

In order to invoke the four image processing
computations from Hadoop, we implemented a new Hadoop
FileInputFormat named ImageInputFormat. This class reads
an image file from HDFS and submits it as a map task input.
The map tasks then retrieve a BufferedImage from the
ImageInputFormat and pass it to the processing
implementations. Once the processing is done, the result is
saved back to HDFS directly from the map task. Thus, the
jobs do not have any reduce task. The design of our Hadoop
implementation leverages Hadoop data and computation
colocation as summarized in Table 5. The key differences
among the three platform-specific implementations lie in the
computational elasticity associated with each platform and
in the locality of the data and computation. We have
observed on average 98.4% of tasks getting input data from
local node for image segmentation and 99.8% of tasks for
flat field correction computations except accessing two
common files from HDFS.
Table 5. Characteristics of computational elasticity and data &
computation collocation for the three experimental platforms.
Computational
Platform

Computational
Elasticity

Data & Compute
Collocation

Desktop Low: limited by the
RAM and CPU of the
executing computer

Yes: all data are on a
local disk

Java Remote
Method Invocation
(RMI)/Raritan
Cluster

High: nodes can be
requested as needed

No: all data are
transferred over
network to the
computing node

Hadoop/Raritan
Cluster

High: nodes can be
requested as needed

Yes with high
probability: After
pushing 3 data
replicas to HDFS,
Hadoop launches
computations where
the data are.

D. Benchmark and Baseline Runs
We have documented the following samples in the space of
image processing computations, and hardware and software
configurations applied to the selected data set.
• Four image processing computations described in Table

1 and the Terasort computation from the Apache
Hadoop test suite [4].

• Raritan hardware cluster configurations used for
computations (8 virtual processors @2.5 GHz available
per node with local storage: >100GB):

o Number of client nodes: 5, 10, 20, 30, 40, 50,
60

o RAM on cluster nodes: 16GB (Segmentation
Java RMI), 24GB (Feature extraction), 32GB
RAM (all other computations)

• Raritan software cluster configurations used for
computations:

o Cluster computation management: Simple Java
RMI server started with PBS script or Hadoop
middleware.

o Number of map tasks per node: 1 (all
computations), 2 (Pyramid building)

• Desktop software configurations:
o Number of threads: 1 (all computations), 2

(Feature extraction), 5,10,12,16 (Pyramid)
The numerical results are shown in Figure 1 through 6.
Figure 1 sets our desktop baseline and represents run times
of processing a Terabyte volume on a desktop with a 6-core
CPU and 64GB of RAM. Figure 2 compares flat field
correction with Teragen on the Hadoop Raritan cluster since
both image and text operations are very I/O intensive.
Figure 3 shows image segmentation and Terasort
computations executed on the Raritan cluster for the same
input file sizes and file numbers. The image spatial filtering
(kernel multiplications of an image matrix) and sorting
(number/word comparisons) are frequently the key
discriminators between image and text processing. Figure 4
illustrates the comparison of Hadoop and Java RMI based
management of the Raritan cluster for image pyramid
building in terms of the number of parallel processes. The
map tasks in Hadoop and the number of threads per node in
Java RMI show similar performance with Hadoop
outperforming Java RMI for larger number of nodes. Figure
5 and Figure 6 focus on run time decomposition of pyramid
building and feature extraction computations to understand
the overheads and gains for various cluster configurations.
The overhead of pushing data to HDFS in Hadoop could be
minimized by running multiple computations on the same
data over many nodes since the Hadoop-based computation
is only slightly outperforming the Java RMI based
computation (~9% at 60 nodes, feature extraction).

By way of an aside, the numerical results in the
graphs are reported for the number of client nodes that were
allocated by the Raritan cluster. Thus, the number of
requested nodes was higher than the number shown in the
figures below. Computations that deal with a large number
of small input files (flat field correction) or output files
(pyramid building) were programmed to package the files
by either tarring them or creating a serialized Hadoop
Sequence File for better I/O efficiency.

Figure 1: Pyramid and feature extraction computations executed on a 6 core
desktop with various number of threads. Feature extraction with more than
2 threads is limited by the desktop RAM size equal to 65GB (each feature
extraction job requires more than 24GB of RAM).

Figure 2: Flat field correction (FFC) computation executed on the Hadoop
Raritan cluster and compared to Teragen that generates the same number of
files as FFC.

Figure 3: Image segmentation and Terasort computations executed on
Raritan cluster for the same input file sizes and file numbers. The Hadoop
execution (blue) slightly outperforms RMI execution (red) for more than 10
nodes and is faster than the Terasort computation. All power
approximations have a residual R2 higher than 0.949 indicating a very good
fit.

Figure 4: Pyramid computation executed on the Hadoop Raritan cluster
with one or two map tasks per node and on the Java RMI cluster with one
or two threads per node. Hadoop with K map tasks outperforms Java RMI
with the same number of K threads for more than 25 nodes (K=1) or 10
nodes (K=2).

Figure 5: Pyramid computation executed on the Hadoop Raritan cluster
with one or two map tasks per node and presented with 5 contributions to
each run time. The key benefit of launching multiple map tasks is the
reduction of the pyramid building time (green color bars).

Figure 6: Feature extraction executed on the Raritan cluster using Hadoop
(solid green line) and Java RMI (dashed orange line). Feature extraction
using Hadoop is slightly faster than using Java RMI if the overhead of
pushing data to HDFS is viewed as a one-time overhead. All power
approximations have a residual R2 higher than 0.9778 indicating a very
good fit.

E. Computational Reliability
In our case, running benchmarks for image processing
operations has also served the purpose of stress testing the
Raritan Hadoop cluster. By default, Hadoop middleware
has a built-in mechanism for handling possible hardware
failures or straggler tasks through speculative execution
[33]. We have used the default speculative execution setting
and documented the errors of failed executions. The NIST
Raritan cluster is quite heterogeneous. Although we did not
observe single straggler tasks, we have encountered task
failures due to the entire system overload such as many
tasks failing at the same time, SSH connection closed as a
function of possible network overload, socket timeout
exception from Hadoop or sometimes failing to push data to
HDFS without a notification. Future stress tests for image
processing computations can be designed for the users
running image processing on Hadoop clusters similar to the
analyses reported based on text logs [34], [35].

F. Relative Efficiency of Image Processing Computations
As the number of nodes in the cluster increases,
computations can be run in shorter amounts of time, but the
efficiency of computation naturally decreases. We adopted
Amdahl’s law [36] for measuring parallel efficiency and
computed the relative efficiency of cluster computations
(elapsed time for 1 worker/client divided by the
multiplication of M workers and elapsed time for M
workers). Our modification is introduced on the right side
of Equation (3) for two reasons. First, benchmarking of
image processing computations is very time consuming
when using only one node of a cluster. For all practical
purposes, users should be able to compute the parallel
efficiency based on the elapsed run time on any small
number of cluster nodes. Second, each benchmark has an
inherent temporal uncertainty due to variable system loads
no matter how many times the execution is re-run. Relative
efficiency values larger than one do not have practical
meaning and can be avoided by considering the minimum
sample for the numerator of the following equation

1 L
RELATIVE

M M

T LTE
MT MT

= = (3)

Here 1T is the run time on a single cluster node, MT is the
runtime on M nodes where M is in the sample set of
working nodes of size NumSamples (1{ }NumSamples

i iM w =∈),
and LT is the runtime on the number of L cluster nodes for
which * min{ * }L MM

L T M T= . Ideally, the parallel efficiency

would be always one for any number of nodes. The
efficiency formula can also be extended in the future to
include power considerations [37]. Modified relative
efficiency coefficients for all four image processing and
Terasort computations are reported in Figure 7.

Figure 7: Modified relative efficiency computed for all sample points.

Based on the results in Figure 7, we computed a cluster
computing suitability score S per computation configuration
according to Equation (4). It is an average of deviations
from the ideal relative efficiency (equal to one).

()1

1 1 ()
1

NumSamplesCONFIG CONFIG
RELATIVEi

S E i
NumSamples =

= −
− ∑ (4)

According to the scores shown in Figure 8, the majority of
image processing operations executed on a Hadoop cluster
outperformed their corresponding benchmarks run on Java
RMI clusters or compared against number/text sorting
computations for the same input file sizes.

IV. SUMMARY
There is a lack of algorithms for processing Giga to
Terabyte-sized images that can leverage very powerful
parallel and distributed hardware architectures such as
Hadoop clusters. We have researched four image processing
algorithms and the corresponding Hadoop infrastructure for
running these algorithms on Hadoop clusters. The software
enabled (a) quantitative characterization of a Hadoop cluster
against several baseline measurements, and (b) assessment
of relative efficiency of image processing computation
running on a cluster and their suitability for Hadoop
platforms. The research also serves as a potential
contribution to the suite of benchmark and stress tests for
the Apache Hadoop project and to a future development of a
standard for big image data processing on distributed
platforms. Similar results to those showed in Figure 8 could
be developed as reference measurements to aid cluster
performance ‘calibration’ across smaller groups and larger
institutions or to assess benefits of cluster configurations for
various computation types.

We concluded that image processing operations
benefit from scalability on a Hadoop cluster because of the
computational elasticity of cluster platforms and the
collocation of data and computation in Hadoop. The spatial
extent of image processing operations defined the data
access pattern during many computations. It was a factor for
the RAM requirements per node since a half GB size files
had to be loaded without sub-dividing the input images. On
the other side, close to one hundred images as inputs (flat
field correction) or 2.4 million images as outputs (pyramid)
pose challenges on efficient data transmission to the cluster
nodes, and handling I/O operations. Image processing on a
Hadoop cluster would not be efficient without additional
considerations of RAM requirements, data transmission
packaging and I/O tasks, and therefore a Hadoop
infrastructure for benchmarking image analyses becomes
important. To illustrate this point, although the total
runtime of all reported benchmarks was about 95 hours, the
actual runtime was about three times as much due to test
replicates of runs, configuration efficiency experimentations
and failed computations.

In the future, we plan to design specific stress tests
for image processing computations running on Hadoop
clusters. Our aim is to make the transitions from a desktop
solution for image processing to a solution running on
Hadoop cluster hardware architectures much easier for all
scientists.

Figure 8. Computation and configuration ranking according to the cluster
computation efficiency score. Lower scores imply better cluster computing
suitability.

V. ACKNOWLEDGMENT
This work was sponsored by NIST as a part of the
Computational Science in Biological Metrology project. We
would like to acknowledge all project team members for
their contributions.

VI. DISCLAIMER
Commercial products are identified in this document in
order to specify the experimental procedure adequately.
Such identification is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that
the products identified are necessarily the best available for
the purpose.

VII. REFERENCES
[1] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.

Nolan, “Computational solutions to large-scale data management
and analysis.,” Nature reviews. Genetics, vol. 11, no. 9, pp. 647–
57, Sep. 2010.

[2] Xyratex, “Using Lustre with Apache Hadoop,” 2010. [Online].
Available:
http://wiki.lustre.org/images/1/1b/Hadoop_wp_v0.4.2.pdf.
[Accessed: 31-May-2013].

[3] O. O. Malley, “TeraByte Sort on Apache Hadoop,” 2008.
[Online]. Available: http://sortbenchmark.org/YahooHadoop.pdf.
[Accessed: 31-May-2013].

[4] O. O. Malley, “Hadoop Benchmarking,” in Workshop on Big
Data Benchmarking, 2012, no. May, pp. 1–13.

[5] Apache, “Hadoop Benchmarking Code,” Grepcode, 2013.
[Online]. Available:
http://grepcode.com/file/repository.cloudera.com/content/reposito
ries/releases/org.apache.hadoop/hadoop-test/0.20.2-
cdh3u0/org/apache/hadoop/mapred. [Accessed: 31-May-2013].

[6] INTEL, “Optimizing Hadoop* Deployments,” 2010. [Online].
Available:
http://software.intel.com/sites/default/files/m/f/4/3/2/f/31124-
Optimizing_Hadoop_2010_final.pdf. [Accessed: 31-May-2013].

[7] M. Stonebreaker, D. Abadi, D. J. Dewitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “MapReduce and Parallel DBMSs :
Friends or Foes ?,” Communications of the ACM, vol. 53, no. 1,
2010.

[8] P. Kent, “Hadoop Benchmarking from a SAS Perspective,” in
Workshop on Big Data Benchmarking, 2012, pp. 1–9.

[9] R. Jones, “NetPerf Benchmark, Computer Program,” 2013.
[Online]. Available: http://www.netperf.org/netperf/. [Accessed:
31-May-2013].

[10] W. D. Norcott. and D. Capps, “Iozone Filesystem Benchmark,”
2013. [Online]. Available:
http://www.iozone.org/docs/IOzone_msword_98.pdf. [Accessed:
31-May-2013].

[11] D. Heger, “Hadoop Performance Tuning - A Pragmatic &
Iterative Approach,” 2013. [Online]. Available:
http://www.cmg.org/measureit/issues/mit97/m_97_3.pdf.
[Accessed: 31-May-2013].

[12] F. Ahmad, S. Lee, M. Tothenthodi, and T. N. Vijaykumar,
“PUMA : Purdue MapReduce Benchmarks Suite, Tech. Report,”
2012. [Online]. Available:
http://web.ics.purdue.edu/~fahmad/benchmarks.htm. [Accessed:
31-May-2013].

[13] M. H. Almeer, “Cloud Hadoop Map Reduce For Remote Sensing
Image Analysis,” Journal of Emerging Trends in Computing and
Information Sciences, vol. 3, no. 4, pp. 637–644, 2012.

[14] C. Nyberg, M. Shah, and N. Govindaraju, “Sort Benchmark Web
Page,” 2013. [Online]. Available: http://sortbenchmark.org/.
[Accessed: 15-May-2013].

[15] Google, “Google I/O conference,” Google’s developer
conference, 2012. [Online]. Available:
http://www.engadget.com/event/googleio2012/articles/.
[Accessed: 05-May-2013].

[16] J. Lawrence, S. Arietta, C. Sweeney, and L. Liu, “Hadoop Image
Processing Interface, Computer Program,” 2010. [Online].
Available: http://hipi.cs.virginia.edu/about.html. [Accessed: 31-
May-2013].

[17] W. Rasband, “ImageJ & Fiji & ImageJA & ImageJ2, Computer
Program,” 2013. [Online]. Available: http://rsbweb.nih.gov/ij/.
[Accessed: 15-May-2013].

[18] “BioimageXD, Computer Program,” 2013. [Online]. Available:
http://www.bioimagexd.net/. [Accessed: 31-May-2013].

[19] T. Plunkett, M. A. Sick, and J. Su, “Cloud Analytics Tools by
Serene Software Inc.,” SBIR DOD/OSD, 2010. [Online].
Available: http://www.sbir.gov/sbirsearch/detail/13117.
[Accessed: 15-May-2013].

[20] A. A. Dima, J. T. Elliott, J. J. Filliben, M. Halter, A. Peskin, J.
Bernal, M. Kociolek, M. C. Brady, H. C. Tang, and A. L. Plant,
“Comparison of segmentation algorithms for fluorescence
microscopy images of cells.,” Cytometry. Part A: the journal of
the International Society for Analytical Cytology, vol. 79, no. 7,
pp. 545–59, Jul. 2011.

[21] S. Philip, B. Summa, P. Bremer, and V. Pascucci, “Parallel
Gradient Domain Processing of Massive Images,” in
Eurographics Symposium on Parallel Graphics and Visualization
(2011), 2011, p. 9.

[22] M. D. Theys, R. M. Born, M. D. Allemang, and H. J. Siege,
“Morphological Image Processing on Three Parallel Machines,”
in Frontiers of Massively Parallel Computing, Sixth Symposium,
1996, pp. 327–334.

[23] C. Bakal, J. Aach, G. Church, and N. Perrimon, “Quantitative
morphological signatures define local signaling networks
regulating cell morphology.,” Science (New York, N.Y.), vol. 316,
no. 5832, pp. 1753–6, Jun. 2007.

[24] K. Huang and R. F. Murphy, “From quantitative microscopy to
automated image understanding.,” Journal of biomedical optics,
vol. 9, no. 5, pp. 893–912, 2004.

[25] N. Orlov, L. Shamir, T. Macura, J. Johnston, D. M. Eckley, and I.
G. Goldberg, “WND-CHARM: Multi-purpose image
classification using compound image transforms,” Pattern
Recognition Letters, vol. 29, no. 11, pp. 1684–1693, Aug. 2008.

[26] M.-K. Hu, “Visual Pattern Recognition by Moment Invariants,”
IRE Transactions on Information Theory, pp. 179–188, 1962.

[27] R. M. Haralick, M. Shanmugan, and I. Dinstein, “Textural
features for Image Classification,” IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-3, no. 6, pp. 610–621,
1973.

[28] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature
selection techniques in bioinformatics.,” Bioinformatics (Oxford,
England), vol. 23, no. 19, pp. 2507–17, Oct. 2007.

[29] Microsoft, “Deep Zoom Silverlight,” Microsoft Developer
Network (MSDN), 2010. [Online]. Available:
http://msdn.microsoft.com/en-us/library/cc645050(v=vs.95).aspx.
[Accessed: 27-May-2013].

[30] “Open Seadragon,” Open Seadragon project, 2013. [Online].
Available: http://openseadragon.codeplex.com/. [Accessed: 15-
May-2013].

[31] R. Kooper and P. Bajcsy, “Computational Scalability of Large
Size Image Dissemination,” in IS&T/SPIE Electronic Imaging,
2011, pp. 7872–23.

[32] R. Kooper, P. Bajcsy, and N. M. Hernández, “Stitching Giga
Pixel Images Using Parallel Computing,” in IS&T/SPIE
Electronic Imaging, 2011, pp. 7872–17.

[33] Yahoo!, “Hadoop Tutorial from Yahoo!,” On-Line Tutorial,
2013. [Online]. Available:
http://developer.yahoo.com/hadoop/tutorial/module4.html.
[Accessed: 14-May-2013].

[34] R. Dudko, A. Sharma, and J. Tedesco, “Effective Failure
Prediction in Hadoop Clusters,” 2012. [Online]. Available:
https://wiki.engr.illinois.edu/download/attachments/195766887/J
AR-2nd.pdf?version=3&modificationDate=1333424381000.
[Accessed: 31-May-2013].

[35] E. Bortnikov, A. Frank, K. Tivon, and E. Hillel, “Predicting
Execution Bottlenecks in Map-Reduce Clusters,” 2010. [Online].
Available:
https://www.usenix.org/system/files/conference/hotcloud12/hotcl
oud12-final50.pdf. [Accessed: 31-May-2013].

[36] I. Foster, Designing and Building Parallel Programs. Chicago,
IL: ADDISON WESLEY Publishing Company Incorporated,
1995, p. 381.

[37] D. H. Woo and H. S. Lee, “Extending Amdahl’s Law for Energy-
Efficient Computing in the Many-Core Era,” IEEE Computer, pp.
24–32, 2008.

	I. Introduction
	II. Image Processing Computations
	A. Flat Field Correction
	B. Segmentation
	C. Feature Extraction
	D. Pyramid Building

	III. Experimental Results
	A. Characteristics of Image Data Sets
	B. Computer Hardware and Software Characteristics
	C. Characteristics of Image Processing Benchmarking Software
	D. Benchmark and Baseline Runs
	E. Computational Reliability
	F. Relative Efficiency of Image Processing Computations

	IV. Summary
	V. Acknowledgment
	VI. Disclaimer
	VII. References

