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Abstract—We present a characterization of four basic 
Terabyte-sized image computations on a Hadoop cluster in 
terms of their relative efficiency according to the modified 
Amdahl’s law. The work is motivated by the lack of standard 
benchmarks and stress tests for big image processing 
operations on a Hadoop computer cluster platform. Our 
benchmark design and evaluations were performed on one of 
the three microscopy image sets, each consisting of over one 
half Terabyte. All image processing benchmarks executed on 
the NIST Raritan cluster with Hadoop were compared against 
baseline measurements, such as the Terasort/Teragen designed 
for Hadoop testing previously, image processing executions on 
a multiprocessor desktop and on NIST Raritan cluster using 
Java Remote Method Invocation (RMI) with multiple 
configurations. By applying our methodology to assessing 
efficiencies of computations on computer cluster 
configurations, we could rank computation configurations and 
aid scientists in measuring the benefits of running image 
processing on a Hadoop cluster.  

Keywords- Big Data Industry Standards, Big Data Open 
Platform, Big Data Applications and Infrastructure 

I.  INTRODUCTION 
Our objective is to characterize Terabyte-sized image 
processing computations in terms of their computational 
scalability on Hadoop computer cluster platforms with 
multi-processor nodes.  The computations of interest include 
image background (flat field) correction, segmentation, 
image feature extraction and pyramid building for Deep 
Zoom visualization. These computations range from 
computationally intensive to data intensive, and operate 
either on thousands of Mega-pixel images (image tiles) or 
on hundreds of a half Giga-pixel images (stitched images). 
From an image processing perspective, these operations are 
very typical in the image to knowledge workflow consisting 
of intensity corrections, visualization and information 
extraction over regions of interest. 

In general, computational platforms for processing 
large size images can be categorized as multi-processor 
desktop computers, computer clusters, high-performance 
computing (HPC) resources with big shared memory, grid 
computing on loosely coupled and networked computers, 
and computing on novel hardware architectures (e.g., 
Graphical Processing Units (GPUs), Field Programmable 
Gate Arrays (FPGAs)). Advantages and disadvantages of 
several above categories for life science applications can be 

found in Schadt et al. [1]. Our work focuses on computer 
clusters in order to support run time and configuration 
decisions for research centers and governmental 
organizations with security concerns about the use of 
external computational resources. Nevertheless, the 
fundamental problems in characterizing Terabyte-sized 
image processing computations are similar to cloud 
platforms and are also tied to security (access to physical 
and virtual storage and compute resources). 

Our specific focus is on Hadoop clusters because 
Hadoop includes file system and computation solutions for 
utilizing distributed computational resources. For example, 
the advantages of Hadoop Distributed File System (HDFS) 
are in data replication and collocation of data and 
computation [2]. The Map and Reduce computational 
paradigm of Hadoop has been shown very efficient 
especially for sorting computations [3], [4].  This work is 
exploring image processing computations on Hadoop 
clusters with HDFS while running Map tasks.  

The main goal is to establish benchmarks and 
stress tests for big image data processing operations on a 
Hadoop cluster platform. The computational benchmarks 
provide experimental characteristics of the above image 
processing computations and image partitions for (a) 
assessing the efficiency of a computer cluster configuration 
with respect to a given computation (number of nodes, 
number of tasks per node, RAM per node, job resource 
managers such as Hadoop middleware or Java Remote 
Method Invocation (RMI) and Portable Batch System (PBS) 
scripts), and (b) predicting run times for various input data 
distribution patterns. The stress tests are useful for 
understanding the system limits, and how to manage 
hardware failures and deal with cluster heterogeneity.  

The application specific motivation of our work 
comes from live cell imaging applications of very large 
fields of view (FOV). Given the advances in microscopy 
imaging and its applications in many bio-medical 
applications, a single microscope generates a large number 
of spatial image tiles with several measurements at each 
location over time. The image tiles can be stitched into a 
large FOV image with hundreds of Mega-pixels or tens of 
Giga-pixels. Multiple time slices of stitched images 
accumulate to Terabytes of image data. These image data 
cannot be analyzed without computations that calibrate, 
segment and visualize image channels, as well as extract 



image features for further analyses. Such image processing 
computations are very common across many application 
domains and represent a sample subset for our work.   

Our computer science motivation lies in the lack of 
benchmarks and stress tests for big image processing 
operations on a Hadoop computer cluster platform.  For 
instance, as biologists increase robustness of their 
conclusions by increasing the number of experimental 
replicas, their access to elastic computational resources and 
to benchmarks for optimal reconfiguration become apparent.  
The image data type and the variety of image processing 
computations are different from the existing Hadoop 
benchmark tests that primarily focus on textual data and low 
level operations.  

While the Apache Hadoop distribution includes 
several basic tests, it does not provide sufficient 
understanding about executions of image processing 
operations. The four common basic tests are MRBench, 
NNBench, TestDFSIO, and Gridmix [4], [5]. MRBench  is 
designed to check whether small job runs are running 
efficiently. NNBench introduces a high HDFS management 
stress on the NameNode by requesting a large number of 
files to be created, read, renamed and deleted. TestDFSIO 
writes into or reads from a user specified number of files. 
Gridmix mimics a variety of data-access patterns seen in 
practice. There is also an interest in understanding the 
Hadoop performance as a function of processor and cluster 
hardware configurations [6] or against relational database 
management systems  [7], [8]. These Hadoop tests together 
with general networking performance tests (Netperf [9], 
Iozone [10] or other [11]) provide excellent probes into a 
Hadoop cluster for low level operations.  However, these 
tests are typically applied to many small-sized elements 
such as random bytes or words which are different from 
high-dimensional images with varying file sizes. 
Furthermore, the differences between the above 
computations and the image processing computations are in 
the additional support of various image formats on each 
cluster node and in spatial dependency of image 
computations (e.g., spatially local intensity changes versus 

spatially global image filtering or co-occurrence matrix-
based feature extraction).  

In order to design a suite of benchmark tests for 
image processing computations on Hadoop clusters, one has 
to sample commonly used image computations and their 
various image inputs and outputs.  The approach is similar 
conceptually to the design of the PUMA test suite [12], 
where the Hadoop tests are extended by additional types of 
text-based computations (e.g.,  K-mean clustering, inverted  
index, adjacency list, self-join). It can also be related to 
Almer’s case study [13] that is comparing a Hadoop cluster 
and dual core personal computer run times. This case study 
considered a set of image format conversion, auto-contrast, 
sharpening and resizing operations applied to 200 Landsat 
satellite images of 139 Mega pixels each (total 83.3 GB of 
imagery). In our case, the sampling of computations tries to 
cover a wider range of input and output scenarios, and the 
run times are compared against a broader range of 
benchmarks on 0.6TB of imagery. The image input and 
output scenarios are summarized in Table 1. The details of 
each computation are provided in Section II.  

Next, the designed suite of Hadoop cluster 
benchmark and stress tests for image processing are 
compared against baseline computations. In our work, the 
baseline computations are either (1) a well-benchmarked 
non-image computation on a Hadoop cluster such as 
Teragen or Terasort, or (2) the same image processing 
operations (a) running on a multicore desktop instead of a 
Hadoop cluster, and (b) running on a cluster without 
Hadoop middleware.  

Terasort is one of the most popular text-based 
computations for sorting a Terabyte of numbers [14].  The 
algorithm running on a Hadoop cluster was initially 
developed by Yahoo! [3] and later advanced by Google 
[15].  Ideally, the well-understood Terasort computational 
performance on Hadoop clusters can be related to a priori 
unknown performance of image processing computations on 
Hadoop clusters for similar input file sizes. We reviewed the 
Hadoop Image Processing Interface (HIPI) library [16] that 
focused on filtering and bundling very small images 

Table 1: Summary of computations, and input and output image data files. 
 
Type of Image 
Processing  

Spatial Extent of 
Image Processing 

Input & Output File 
Characteristics Computational Complexity Data-Access Pattern 

During Computations 

Flat Field Correction Local 
Input & Output: Tens of 
thousands of a few MB size 
files 

Low (two subtractions and one 
division per pixel) 

Medium (accessing three 
files and creating one file, 
data skew on two input files) 

Segmentation based on 
convolution kernels 

Global with fixed 
kernel 

Input & Output: Hundreds of 
a half GB size files 

Medium (tens of subtractions, 
multiplications, comparisons 
per pixel) 

Low (accessing one file and 
creating one file) 

Feature Extraction 
 

Global with mask 
defined kernel 

Input: Co-located pairs of 
hundreds of a half GB files 
Output: hundreds of KB size 
tables  

High (several thousands of 
basic numerical operations per 
pixel) 

Medium (accessing two files 
and creating one file) 

Deep Zoom Pyramid 
Building 

Global with fixed 
kernel 

Input: Hundreds of a half GB 
size files 
Output: Millions of KB size 
files 

Medium (tens of additions and 
divisions per pixel) 

High (creating thousands of 
directories, accessing one 
input file and writing 
millions of pyramid tiles) 



(HipiImageBundle & CullMapper classes) before running 
Hadoop. In our case, Terabyte collections of several 
megabyte files do not fit HIPI and the bundling was 
replaced by the Hadoop Sequence File and tar 
representations. Finally, two of the baselines are desktop 
and cluster configurations without Hadoop. The desktop has 
six cores of Intel Xeon @ 2GHz with 64GB of RAM and 
hyper threading activated. The cluster is the NIST Raritan 
cluster which is composed of more than 800 heterogeneous 
nodes controlled by Portable Batch System (PBS) as a job 
resource manager.  

The novelty of the work lies in designing a suite of 
benchmark and stress tests for image processing 
computations on Hadoop clusters that can complement the 
existing tests in the Apache Hadoop project. The 
infrastructure could be integrated into a larger image 
processing community effort to build an open source image 
processing library running on a Hadoop cluster. 

The paper is organized as follows. Section II introduces 
the image processing computations and their characteristics. 
Section III presents experimental data, hardware and 
software platforms, exploratory and baseline benchmarks, 
and relative efficiency evaluations. We conclude with a 
summary in Section IV. 

II. IMAGE PROCESSING COMPUTATIONS 
To address the algorithmic development of image 
processing, one approach is to take an existing well-
established image processing library and enable running its 
functionality on a Hadoop cluster. A candidate for such a 
widely used library is an instance of NIH ImageJ/Fiji, 
ImageJDev or BioImageXD [17], [18]. This approach faces 
challenges in executing functionalities in a headless mode 
and in dealing with a code base that has not been designed 
with Terabyte image sizes in mind. People have blogged 
about “parallel ImageJ”[19] running in the Amazon cloud 
by adding a Hadoop InputFormat to handle image types in 
HDFS and encapsulating ImageJ operations in map and 
reduce methods. However, the encapsulation has been 
performed for a very small number of operations in the 
ImageProcessor class of the ImageJ library. In addition, the 
developed source code is not publicly available, the 
ImageProcessor-based execution lacks process control (not 
knowing when execution is done), and has the overhead of 
starting ImageJ and loading plugins.  

These considerations led us to a development of our own 
image processing functionality in Java for the following 
computations: flat field correction, segmentation, image 
feature extraction and pyramid building for Deep Zoom 
visualization. These computations range from 
computationally intensive to data intensive, and have to 
operate either on thousands of Mega-pixel images (image 
tiles) or on hundreds of a half Giga-pixel images (stitched 
images).  Next, we characterize these four computations.  

A. Flat Field Correction 
Flat field correction (FFC) is described mathematically 
below: 

( , ) ( , )( , )
( , ) ( , )

RAW
FFC I x y DI x yI x y

WI x y DI x y
−

=
−

                         (1) 

where ( , )FFCI x y  is the flat-field corrected image intensity, 
( , )DI x y  is the dark image acquired by closing the camera 

shutter, ( , )RAWI x y is the raw uncorrected image intensity, 
and  ( , )WI x y  is the flat field intensity acquired without any 
object to correct primarily for spatial shading. This is the 
simplest computation that consists of two subtractions and 
one division per pixel. It needs the DI and WI images co-
located from the distributed execution perspective. 

B. Segmentation 
There are many segmentation methods applied to cell 
microscopy images [20]. We selected a segmentation 
method that consists of four linear workflow steps: (1) 
Sobel-based image gradient computation, (2) thresholding 
by a value equal to twice the intensity histogram mode, (3) 
morphological opening (dilation of erosion) to remove small 
holes and islands, and (4) connectivity analysis to assign the 
same label to each contiguous group of 4-connected pixels.   
       The Sobel-based image gradient is defined over a 3×3 
convolution kernel, and estimates the gradient in the column 
and row directions. The gradient image contains the 
magnitude of each estimate as shown below. 

( ) ( )22( , ) x yG x y = ∆ + ∆   (2) 

1 0 1 ( 1, 1) ( 1, ) ( 1, 1)
2 0 2 * ( , 1) ( , ) ( , 1)
1 0 1 ( 1, 1) ( 1, ) ( 1, 1)

x

I x y I x y I x y
I x y I x y I x y

I x y I x y I x y

− − − − − +   
   ∆ = − − +   
   − + − + + +   

    

1 2 1 ( 1, 1) ( 1, ) ( 1, 1)
0 0 0 * ( , 1) ( , ) ( , 1)
1 2 1 ( 1, 1) ( 1, ) ( 1, 1)

y

I x y I x y I x y
I x y I x y I x y

I x y I x y I x y

− − − − +   
   ∆ = − +   
   − − − + − + + +   

  

Sobel filtering has been explored on a Hadoop cluster by 
Almer [13], and serves as an input to parallel gradient 
domain computing [21] (e.g., computations of the 
divergence of gradient using Message Passing Interface 
(MPI)). Multiple reports of run time versus image file size 
(e.g., in [13] Fig. 2) improve general understanding of the 
performance benchmarks for various Hadoop cluster setups.  

Another widely used computation of segmentation is 
morphological opening (dilation of erosion). During this 
operation, a thresholded binary image is convolved with the 
min and max operators over a 3×3 kernel. This computation 
has been explored in the past on distributed memory 
machines [22] (multiple-instruction-multiple-data (MIMD) 
Intel Paragon and single-instruction-multiple-data (SIMD)  
MasPar MP-1) showing advantages of data partitioning. 



C. Feature Extraction 
Similar to segmentation, there is a large number of feature 
extraction methods designed for cell microscopy images. 
The number ranges from hundreds [23], [24] to thousands 
[25] and serves as an input to image characterization and 
classification. We have categorized features according to 
their type as intensity, shape and texture descriptors. Each 
feature type is represented by sample representatives listed 
in Table 2.   
 
Table 2. Description of extracted features. 
Feature 
Type 

Feature Name Mathematical 
Model 

Intensity Basic central moments according to 
statistics: Mode, Mean, Standard 
Deviation, Skewness, Kurtosis, Fifth and 
Sixth moments 

Integral 
computations 

Shape Hu’s moment invariants are computed 
according to [26] : Centroid, area, 
perimeter, circularity, aspect ratio, 
extend, orientation, eccentricity 

Integral 
computations 

Texture The Gray Level Co-Occurrence matrix is 
computed according to [27] and the 
following four features are extracted  
Correlation, Energy, Contrast and  
Homogeneity 

Directional 
counting  

 
The features of intensity and shape types are extracted by 
implementing integral equations over a masked region, and 
hence can be denoted as integral image computations. The 
extraction of texture features is also viewed as a directional 
counting computation of all intensity pairs within a masked 
region. In general, the directional counting computation has 
higher requirements on CPU & RAM than the integral 
computations because there are many more counting co-
occurrence bins than the central moment accumulator 
variables. In terms of computation, the counting is less 
demanding than computing the higher moment powers.  We 
have evaluated both integral and directional counting 
computations together because most microscopy image 
analyses do not have a priori knowledge about preferred sets 
of features [28].   

D. Pyramid Building 
One way to view images with very large pixel counts is to 
use the Deep Zoom image pyramid representation [29] and 
the OpenSeadragon javascript library [30]. The visualization 
of Terabyte-sized images is critical for many applications 
and requires building a multi-resolution pyramid. This 
computation is I/O bound because it generates many small 
files for fast data transmission and rendering purposes. The 
pyramid building computation was explored by Kooper and 
Bajcsy [31], [32] on a cluster with 16 nodes, each node with 
8 cores and 16GB RAM. It took 30 days to build a pyramid 
for a 79 Gigapixel image and generated 1.6M tiles stored on 
redundant array of independent disks (RAID-5). A speed-up 
by a factor of 20 was achieved after custom image loading. 
These previous benchmarks as well as the benchmarks with 
storage on NO RAID, RAID 0, and RAID 1 configurations 

contribute to a better understanding of the pyramid 
computation on a Hadoop cluster and serve as comparison 
benchmarks. 

III. EXPERIMENTAL RESULTS 
We have executed about one hundred runs of image 
processing computations with the data set described in 
Section III.A  and with the Terasort generated data. The 
hardware and software specifications are provided in 
Section III.B as well as observations about our 
computational reliability in Section III.E. Sections III.D and 
III.E. document the relative efficiency of each computation 
and the suitability of individual image processing operations 
based on these benchmarks. 

A. Characteristics of Image Data Sets 
We experimented with three data sets where each raw image 
data set is about 0.6TB. For benchmarking and stress 
testing, we have selected a data set that consists of 18×14= 
252 image tiles covering approximately 180 square 
millimeters of a stem cell colony dish, over five days under 
both phase contrast and green fluorescence channels, with 
images acquired every 15 minutes. This example data set is 
composed of 195,552 images at 2.8 MB/image equal to 
0.527 TB of data (388 time samples of 252 images with 2 
color channels acquired over 97 hours every 15 minutes). 
The H9 human embryonic stem cell line was engineered to 
produce green fluorescent protein (GFP) under the influence 
of Oct4 promoter and cells were cultured under feeder-free 
conditions on MatrigelTM. After correcting the GFP image 
tiles, all tiles were stitched and yielded 388 stitched time 
frames stored in a TIFF file format (0.527 TB; GFP only: 
0.264 TB). Table 3 summarizes the data with respect to 
image processing computations. Note that the “Size per 
File” refers to compressed files via pack bits of the TIFF 
format that become much larger in RAM after loading. 
 
 Table 3. A summary of inputs and outputs for each benchmarked 
computation. 
Type of 
Image 
Processing 

Input Data in TIFF File 
Format 

Output Data  mostly in 
TIFF File Format 

Total Files Per-File 
Size 

Total Files Per-File 
Size 

Flat Field 
Correction 

97,776 GFP 
channel 
corrected 
tiles~264 GB 

2 bytes 
per pixel: 
2.83 MB 

97,776 
GFP 
channel 
corrected 
tiles~527G
B 

4 bytes per 
pixel: 
5.6MB 

Segmentation 
based on 
convolution 
kernels 

388 frames of 
stitched 
images 
~219GB 

2 bytes 
per pixel: 
593 MB 

388 frames 
of mask 
images 
~86GB 

2 bytes per 
pixel 
71MB-
331MB 

Feature 
Extraction 

388 frames of 
stitched and 
segmented 
images ~ 
219GB + 
80.7GB 

2 bytes 
per pixel:  
~593 MB 
+  
~66MB-
336MB  

388 files ~ 
40MB 

CSV file 
format 
~100KB 



Deep Zoom 
Pyramid 
Building 

388 frames of 
stitched 
images ~ 
219GB 

2 bytes 
per pixel: 
593 MB 

6,596 
folders; 
2,476,683 
files; 151 
GB 

JPG file 
format 
2-18KB 
per file 

B. Computer Hardware and Software Characteristics 
We ran the benchmarks on the NIST Raritan cluster and on 
a desktop computer. Table 4 summarizes the cluster and 
desktop hardware and software specifications. The cluster 
nodes differ in terms of CPU speed and RAM, and are 
allocated to jobs based on the requested resources in a 
Portable Batch System (PBS) script. We installed Hadoop 
and Java 1.7 on the cluster to support Java code execution 
and Java Remote Method Invocation (RMI). The desktop 
computer had similar software configuration to the cluster.  
 
Table 4. NIST Raritan cluster and test desktop characteristics.  
 Specs Cluster Desktop 
Hardware Cluster 

Nodes 
800 computer nodes 
having from 2 to 16 
virtual processors 
with 4 to 32GB of 
RAM 

Intel Xeon @ 2GHz 
6 cores, 64GB of 
RAM and hyper 
threading activated 

Networking 1Gbit/second   
Software Java Virtual 

Machine 
Java version 
"1.7.0_17" 
Java(TM) SE 
Runtime 
Environment (build 
1.7.0_17-b02) 
Java HotSpot(TM) 
64-Bit Server VM 
(build 23.7-b01, 
mixed mode) 

Java version 
"1.7.0_15" 
Java(TM) SE 
Runtime 
Environment (build 
1.7.0_15-b03) 
Java HotSpot(TM) 
64-Bit Server VM 
(build 23.7-b01, 
mixed mode) 

Hadoop hadoop-2.0.3-alpha  
Operating 
System 

CentOS 5.9 
Linux 2.6.18-
274.3.1.el5 x86_64 

Ubuntu 12.10 
Linux 3.5.0-28-
generic x86_64 

File System Lustre parallel 
distributed file 
system 

ext4 on top of 
Logical Volume 
Manager (LVM) 

 

C. Characteristics of Image Processing Benchmarking 
Software 

All four computations were implemented as independent 
Java libraries and used on the desktop, Java RMI and 
Hadoop cluster platforms. Thus, the same image processing 
code is invoked regardless of the platform. The desktop 
implementation is a Java program starting a fixed number of 
threads (specified on the command line) using a fixed thread 
pool. One image is processed by each thread. As soon as a 
thread has finished processing an image, it starts processing 
a new image.  

The Java RMI Application Programming Interface 
(API) invokes methods on remote computers (i.e., on the 
cluster nodes). We build a simple job scheduler with a 
client-server architecture using the Java RMI API. The Java 
RMI-based server provides a method to fetch the next image 
to process. When a client node has finished processing an 
image, it notifies the server with another RMI call and 

fetches the next image to process. Similar to the desktop 
implementation, the client nodes can run multiple threads 
(one per image). 

In order to invoke the four image processing 
computations from Hadoop, we implemented a new Hadoop 
FileInputFormat named ImageInputFormat. This class reads 
an image file from HDFS and submits it as a map task input. 
The map tasks then retrieve a BufferedImage from the 
ImageInputFormat and pass it to the processing 
implementations. Once the processing is done, the result is 
saved back to HDFS directly from the map task. Thus, the 
jobs do not have any reduce task. The design of our Hadoop 
implementation leverages Hadoop data and computation 
colocation as summarized in Table 5. The key differences 
among the three platform-specific implementations lie in the 
computational elasticity associated with each platform and 
in the locality of the data and computation. We have 
observed on average 98.4% of tasks getting input data from 
local node for image segmentation and 99.8% of tasks for 
flat field correction computations except accessing two 
common files from HDFS.   
Table 5.  Characteristics of computational elasticity and data & 
computation collocation for the three experimental platforms.  
Computational 
Platform 

Computational 
Elasticity  

Data & Compute 
Collocation  

Desktop Low: limited by the 
RAM and CPU of the 
executing computer 

Yes: all data are on a 
local disk 

Java Remote 
Method Invocation 
(RMI)/Raritan 
Cluster 

High: nodes can be 
requested as needed 

No: all data are 
transferred over 
network to the 
computing node 

Hadoop/Raritan 
Cluster 

High: nodes can be 
requested as needed 

Yes with high 
probability: After 
pushing 3 data 
replicas to HDFS, 
Hadoop launches 
computations where 
the data are.  

D. Benchmark and Baseline Runs  
We have documented the following samples in the space of 
image processing computations, and hardware and software 
configurations applied to the selected data set. 
• Four image processing computations described in Table 

1 and the Terasort computation from the Apache 
Hadoop test suite [4]. 

• Raritan hardware cluster configurations used for 
computations (8 virtual processors @2.5 GHz available 
per node with local storage:  >100GB): 

o Number of client nodes: 5, 10, 20, 30, 40, 50, 
60 

o RAM on cluster nodes: 16GB (Segmentation 
Java RMI), 24GB (Feature extraction), 32GB 
RAM (all other computations) 

• Raritan software cluster configurations used for 
computations:  



o Cluster computation management: Simple Java 
RMI server started with PBS script or Hadoop 
middleware. 

o Number of map tasks per node: 1 (all 
computations), 2 ( Pyramid building) 

• Desktop software configurations:  
o Number of threads: 1 (all computations), 2 

(Feature extraction),  5,10,12,16 (Pyramid)  
The numerical results are shown in Figure 1 through 6. 
Figure 1 sets our desktop baseline and represents run times 
of processing a Terabyte volume on a desktop with a 6-core 
CPU and 64GB of RAM. Figure 2 compares flat field 
correction with Teragen on the Hadoop Raritan cluster since 
both image and text operations are very I/O intensive. 
Figure 3 shows image segmentation and Terasort 
computations executed on the Raritan cluster for the same 
input file sizes and file numbers. The image spatial filtering 
(kernel multiplications of an image matrix) and sorting 
(number/word comparisons) are frequently the key 
discriminators between image and text processing. Figure 4 
illustrates the comparison of Hadoop and Java RMI based 
management of the Raritan cluster for image pyramid 
building in terms of the number of parallel processes. The 
map tasks in Hadoop and the number of threads per node in 
Java RMI show similar performance with Hadoop 
outperforming Java RMI for larger number of nodes. Figure 
5 and Figure 6 focus on run time decomposition of pyramid 
building and feature extraction computations to understand 
the overheads and gains for various cluster configurations. 
The overhead of pushing data to HDFS in Hadoop could be 
minimized by running multiple computations on the same 
data over many nodes since the Hadoop-based computation 
is only slightly outperforming the Java RMI based 
computation (~9% at 60 nodes, feature extraction).  

By way of an aside, the numerical results in the 
graphs are reported for the number of client nodes that were 
allocated by the Raritan cluster. Thus, the number of 
requested nodes was higher than the number shown in the 
figures below. Computations that deal with a large number 
of small input files (flat field correction) or output files 
(pyramid building) were programmed to package the files 
by either tarring them or creating a serialized Hadoop 
Sequence File for better I/O efficiency. 

 

Figure 1: Pyramid and feature extraction computations executed on a 6 core 
desktop with various number of threads. Feature extraction with more than 
2 threads is limited by the desktop RAM size equal to 65GB (each feature 
extraction job requires more than 24GB of RAM).  

 
Figure 2: Flat field correction (FFC) computation executed on the Hadoop 
Raritan cluster and compared to Teragen that generates the same number of 
files as FFC.  

 
Figure 3: Image segmentation and Terasort computations executed on 
Raritan cluster for the same input file sizes and file numbers. The Hadoop 
execution (blue) slightly outperforms RMI execution (red) for more than 10 
nodes and is faster than the Terasort computation. All power 
approximations have a residual R2 higher than 0.949 indicating a very good 
fit.  

 
Figure 4: Pyramid computation executed on the Hadoop Raritan cluster 
with one or two map tasks per node and on the Java RMI cluster with one 
or two threads per node. Hadoop with K map tasks outperforms Java RMI 
with the same number of K threads for more than 25 nodes (K=1) or 10 
nodes (K=2). 
 



 
Figure 5: Pyramid computation executed on the Hadoop Raritan cluster 
with one or two map tasks per node and presented with 5 contributions to 
each run time. The key benefit of launching multiple map tasks is the 
reduction of the pyramid building time (green color bars). 

 
Figure 6: Feature extraction executed on the Raritan cluster using Hadoop 
(solid green line) and Java RMI (dashed orange line). Feature extraction 
using Hadoop is slightly faster than using Java RMI if the overhead of 
pushing data to HDFS is viewed as a one-time overhead.  All power 
approximations have a residual R2 higher than 0.9778 indicating a very 
good fit.  

E. Computational Reliability  
In our case, running benchmarks for image processing 
operations has also served the purpose of stress testing the 
Raritan Hadoop cluster.  By default, Hadoop middleware 
has a built-in mechanism for handling possible hardware 
failures or straggler tasks through speculative execution 
[33]. We have used the default speculative execution setting 
and documented the errors of failed executions. The NIST 
Raritan cluster is quite heterogeneous. Although we did not 
observe single straggler tasks, we have encountered task 
failures due to the entire system overload such as many 
tasks failing at the same time, SSH connection closed as a 
function of possible network overload, socket timeout 
exception from Hadoop or sometimes failing to push data to 
HDFS without a notification. Future stress tests for image 
processing computations can be designed for the users 
running image processing on Hadoop clusters similar to the 
analyses reported based on text logs [34], [35].  

F. Relative Efficiency of Image Processing Computations 
As the number of nodes in the cluster increases, 
computations can be run in shorter amounts of time, but the 
efficiency of computation naturally decreases. We adopted 
Amdahl’s law [36] for measuring parallel efficiency and 
computed the relative efficiency of cluster computations 
(elapsed time for 1 worker/client divided by the 
multiplication of M workers and elapsed time for M 
workers).  Our modification is introduced on the right side 
of Equation (3) for two reasons. First, benchmarking of 
image processing computations is very time consuming 
when using only one node of a cluster. For all practical 
purposes, users should be able to compute the parallel 
efficiency based on the elapsed run time on any small 
number of cluster nodes. Second, each benchmark has an 
inherent temporal uncertainty due to variable system loads 
no matter how many times the execution is re-run. Relative 
efficiency values larger than one do not have practical 
meaning and can be avoided by considering the minimum 
sample for the numerator of the following equation  

1 L
RELATIVE

M M

T LTE
MT MT

= =                                             (3) 

Here 1T  is the run time on a single cluster node, MT  is the 
runtime on M nodes where M is in the sample set of 
working nodes of size NumSamples ( 1{ }NumSamples

i iM w =∈ ), 
and LT  is the runtime on the number of L cluster nodes for 
which * min{ * }L MM

L T M T= . Ideally, the parallel efficiency 

would be always one for any number of nodes. The 
efficiency formula can also be extended in the future to 
include power considerations [37]. Modified relative 
efficiency coefficients for all four image processing and 
Terasort computations are reported in Figure 7.   

 
Figure 7: Modified relative efficiency computed for all sample points.  
 
Based on the results in Figure 7, we computed a cluster 
computing suitability score S per computation configuration 
according to Equation (4). It is an average of deviations 
from the ideal relative efficiency (equal to one).  
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According to the scores shown in Figure 8, the majority of 
image processing operations executed on a Hadoop cluster 
outperformed their corresponding benchmarks run on Java 
RMI clusters or compared against number/text sorting 
computations for the same input file sizes. 

IV. SUMMARY 
There is a lack of algorithms for processing Giga to 
Terabyte-sized images that can leverage very powerful 
parallel and distributed hardware architectures such as 
Hadoop clusters. We have researched four image processing 
algorithms and the corresponding Hadoop infrastructure for 
running these algorithms on Hadoop clusters. The software 
enabled (a) quantitative characterization of a Hadoop cluster 
against several baseline measurements, and (b) assessment 
of relative efficiency of image processing computation 
running on a cluster and their suitability for Hadoop 
platforms. The research also serves as a potential 
contribution to the suite of benchmark and stress tests for 
the Apache Hadoop project and to a future development of a 
standard for big image data processing on distributed 
platforms.  Similar results to those showed in Figure 8 could 
be developed as reference measurements to aid cluster 
performance ‘calibration’ across smaller groups and larger 
institutions or to assess benefits of cluster configurations for 
various computation types. 

We concluded that image processing operations 
benefit from scalability on a Hadoop cluster because of the 
computational elasticity of cluster platforms and the 
collocation of data and computation in Hadoop. The spatial 
extent of image processing operations defined the data 
access pattern during many computations. It was a factor for 
the RAM requirements per node since a half GB size files 
had to be loaded without sub-dividing the input images. On 
the other side, close to one hundred images as inputs (flat 
field correction) or 2.4 million images as outputs (pyramid) 
pose challenges on efficient data transmission to the cluster 
nodes, and handling I/O operations. Image processing on a 
Hadoop cluster would not be efficient without additional 
considerations of RAM requirements, data transmission 
packaging and I/O tasks, and therefore a Hadoop 
infrastructure for benchmarking image analyses becomes 
important.  To illustrate this point, although the total 
runtime of all reported benchmarks was about 95 hours, the 
actual runtime was about three times as much due to test 
replicates of runs, configuration efficiency experimentations 
and failed computations. 

In the future, we plan to design specific stress tests 
for image processing computations running on Hadoop 
clusters. Our aim is to make the transitions from a desktop 
solution for image processing to a solution running on 
Hadoop cluster hardware architectures much easier for all 
scientists. 

 

 
Figure 8. Computation and configuration ranking according to the cluster 
computation efficiency score. Lower scores imply better cluster computing 
suitability. 
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