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We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic prop-
erties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite
size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice
boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy
of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic
boundary conditions can also be employed to reduce computation time. Advantages to this method
include easy definition of chemical and physical structure (or surface roughness) of the lattice and
site-specific monomer-specific energetics, and straightforward relatively fast computations. We show
the usefulness and ease of implementation of this extension by examining the effect of energy vari-
ation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes
in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look partic-
ularly at the polymer density profile as a function of temperature in the confined region for very long
polymers. One particularly striking result is the shift in the critical condition for adsorption due to sur-
face energy inhomogeneities and the length scale of the inhomogeneities; an observation that could
have important implications for polymer chromatography. Our method should have applications to
both copolymers and biopolymers of arbitrary molar mass. [http://dx.doi.org/10.1063/1.4857355]

I. INTRODUCTION

Phenomena related to polymers at interfaces and poly-
mers under confinement are scientifically and technologically
important (see supplementary material30 for a brief listing of
possible problems). As a result, problems related to polymers
at interfaces and under confinement have attracted wide at-
tention by theorists and experimentalists alike. (Some useful
recent theoretical work can be found in the papers by Freed
et al.,1 Klushin et al.,2 and Muthukumar,3 and the references
therein.) Exact treatments, such as the one presented in this
paper, can be useful in understanding the underlying physics.
Perhaps the earliest exact treatment of the polymer at an at-
tractive interface was the work of Di Marzio and McCracken.4

It was valid only for the body centered cubic lattice, but it
yielded both a true second-order thermodynamic phase tran-
sition as well as the notion of a depletion thickness, i.e., dearth
of monomers at the surface even if one end is covalently tied
to the surface. Results of methods based on a subsequent ex-
act matrix method approaches,5, 6 i.e., the Di Marzio-Rubin
formalism, to isolated polymer molecules confined between
two parallel walls can tell us two important things. First, the
introduction of a polymer-surface interaction leads to exactly
solved phase transition phenomena for various lattices,5, 6 and
one learns much when a phase transition can be solved ex-
actly. Second, it may be possible to self-consistently extend
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the treatment that we will develop in this paper, which is also
based on the Di Marzio-Rubin formalism, to polymers com-
peting for the same space, since this was done previously and
successfully for a polymer confined between parallel walls.7, 8

(A recent review of approaches to treating polymers self-
consistently is given by Fredrickson.9)

One area particularly well served by studies of isolated
polymer chains near surfaces is the field of polymer chro-
matography. Previous matrix10 and continuum1 (Gaussian)
approaches to various chromatography challenges focused on
evaluation of the partition function and enthalpies to look at
the adsorption phase transition clearly, since both of these re-
late to the thermodynamics involved in the chromatography of
polymers at the so-called critical point, or critical condition.
The chromatographic critical point separates the condition of
complete exclusion in the chromatography process to that of
complete binding of the polymer by the wall. In the case of
complete exclusion, we have size exclusion chromatography
(SEC). Here, separation of polymers is viewed as a thermo-
dynamic process in which the chains are partitioned by size
into and out of pores.11–13 In the absorption region, the poly-
mer is separated by the interactions with the walls with the
larger polymers lingering longer on the walls. One changes
from one process to another by changing temperature (T) or
changing interaction energy (solvent mix or solvent quality).
In our previous approaches to chromatography using the one-
dimensional matrix method, we varied the interaction of the
chain with the surface by varying the energy of interaction
or temperature of a single chain with the surface,4, 6 and then
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changed from a homopolymer to a copolymer and showed the
effect of interaction of the different parts of the copolymer
with the wall.10, 14 Through the latter approach, it was shown
(1) that it is insufficient to model a copolymer as a homopoly-
mer by using some average of the copolymer adsorption en-
ergies and (2) that the matrix formalism is useful in predict-
ing the elution behavior of copolymers, e.g., random or block,
near the critical condition. In a block copolymer, by using a
mixed solvent one can tune out one of the blocks so that it is
neutral towards the surface (this happens at its critical point).
Then, the remaining block can be eluted out on the basis of
its molecular mass only. Some of the more unique predictions
regarding the elution behavior of block copolymers have been
subsequently validated experimentally.15

In this paper, we extend the matrix formalism of the one-
dimensional (pseudo 3D) Di Marzio-Rubin model to higher
dimensions using Di Marzio-Guttman,17 with each site on
the lattice having its own affinity for each of the individual
monomers in the polymer. We note in advance that much of
what can be accomplished with the matrix method can also be
accomplished with continuum methods; however, continuum
models are insensitive to chain structural details. As pointed
out by Gorbunov and Skvortsov,16 continuum methods are
more convenient for analysis of global conformational char-
acteristics of molecules; however, they have a “limited ‘re-
solving power’, whereas a lattice model permits accounting
for the local structure of a macromolecule.” Additionally, the
matrix method has certain advantages over continuum meth-
ods in that it is far easier to define fine-scale boundary con-
ditions such as roughness and energetics. We, therefore, look
at the matrix approach as a complementary method to many
problems that can be solved using continuum methods.3 In
this paper, we develop the theory that enables local structure
analyses and chain length dependent studies, but focus our
demonstrations on the limit of freely jointed large chains, to
allow qualitative comparisons with the expectations of contin-
uum (Gaussian) methods. As such, we demonstrate the abil-
ity of the technique to reproduce well-understood polymer
physics phenomena, but show how the technique is capable
of changing the fine structure of the boundary conditions to
enable examination of far more complex structures. One large
advantage to being able to explicitly define non-uniform sur-
face energetics is the ability to examine the effect of varying
surface energies, roughness, or combinations of the two along
a given surface or regions of space; all three of these combina-
tions are of particular relevance to polymer chromatography.
We specifically will examine pseudo three-dimensional (3D)
structures, which are infinite rectangular cylinders – the sur-
face walls are defined in terms of the top, bottom, left, and
right sides of a rectangle and unrestrained motion is allowed
in the third dimension, and we allow variation of the ener-
getics as a function of distance along one wall or on objects
contained within the lattice. The effects of chain confinement
will be examined as well.

II. THEORETICAL DEVELOPMENT

The core of our method lies in the transition probability
matrix W. To demonstrate how easily W can be set up, we

FIG. 1. An example of a square lattice of 3 × 5 (Nx × Ny) sites. A monomer
touching site j will have the weight wj = p exp(−εj/kBT). This allows us
to accommodate surface energetics, but it also allows the monomer to have
an energy that is a function of position throughout the lattice. Our initial de-
scription will be for the case where each monomer has the same energies
of attraction for a lattice site as any other, but later we will describe a sim-
ple generalization which allows the energy to be monomer specific, that is,
to say wj,n = p exp(−εj,n /kBT), where n is the ordinal location of the nth
monomer in a linear chain of N monomers (1 ≤ n ≤ N) and j is the lattice site
number.

will work with a two-dimensional rectangular lattice of Nx by
Ny, where Nx = 3 and Ny = 5. We use this notation since it
will be our notation in the latter part of this paper. As we work
through the solution, we will illustrate how these methods
can be extended to (1) any dimension, (2) lattices with struc-
ture, (3) lattices of any size and of any degree of openness,
(4) lattice-site specific energies of attraction of the monomer
for the lattice site, and (5) monomer-specific strengths of at-
traction for the various lattice sites. (Note that items 4 and
5 are different. Item 4 arises because each lattice site has its
own energy of attraction for monomers in the transition prob-
ability matrix, whereas Item 5 arises because each different
monomer in the chain has its own associated matrix.) In the
numerical calculations that follow, we will look at a variety of
rectangular cylinders, where we allow steps unconstrained in
the z direction (pseudo 3D lattice), but the theory is applicable
to arbitrary dimensions and lattice types.

In Fig. 1, we label the 15 lattice sites of our 3 × 5 rectan-
gular lattices from 1 to 15. Now consider the 15 × 15 tran-
sition probability matrix W in Fig. 2, which describes the
probability of placement of each monomer unit (or “stepping”
from one lattice site to another). Each column has the statisti-
cal weight of the site represented by the column. For example,
column 7 has the weight w7 but only at those row locations
corresponding to its nearest neighbors. For site 7 these loca-
tions are 2, 6, 8, and 12. (The extension to explicitly three
dimensions would result in a second layer numbered from
16 to 30, etc. Site 7 would then also have a nearest neigh-
bor at location 22.) The weight wj is given by the Boltzmann
exponential:

wj = p exp(−εj /kBT ), (1)

where εj is the attractive energy of the lattice site for the poly-
mer segment, kB is Boltzmann’s constant, and p defines the
polymer segment’s transition probability. For a freely jointed
chain, p is typically just the inverse of the lattice coordina-
tion number s, i.e., 1/s. To generalize Eq. (1) to synthetic
copolymers or biological polymers, the equation needs to be
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FIG. 2. This figure describes the transition probability matrix W used to
determine the statistics and thermodynamics of a polymer molecule of N
monomers confined to the two-dimensional lattice of Fig. 1. The linear di-
mension M of the matrix is equal to the number of lattice sites (M = 15).
The column labeled j has a weight wj at every location corresponding to the
nearest neighbor sites to site j; the other sites in the column each have the
weight zero. The above statements are invariant to the way we label the sites.
In the text, it is shown that the partition function (sum over states) is obtained
by multiplying the matrix by itself N − 1 times along with the multiplication
by proper fore and aft row and column vectors. (N.B. The matrix to be used
for the computations later in this paper will differ from this matrix in shape,
in that there will also be non-zero elements on the diagonal describing un-
constrained motion in a 3rd dimension. Table I later in this paper elaborates
on the differences for different dimensionalities.)

modified such that each monomer unit along the chain can
have its own unique affinities for the lattice, i.e.,

wj,n = p exp(−εj,n/kBT ). (2)

Here, the subscript j labels the column of the matrix and the
subscript n labels the location of the monomer unit in the
chain.

If we multiply a column vector with a 1 in position 7
and a zero in the other 14 positions by the matrix (we use
the convention row on left multiplies column on right), then
we would obtain a new column vector with w7 at locations
2, 6, 8, and 12. We now multiply this new vector by the ma-
trix again. To envisage what happens it helps to imagine the
new column vector to be written as a sum of 4 column vec-
tors, one with zeros everywhere except for a w7 at location 2,
one with w7 only at location 6, one with w7 only at location 8,
and one with a w7 only at location 12. Thus, we have, by mul-
tiplying the matrix twice, properly accounted for taking two
steps starting at location 7, i.e., placing two bonds connecting
three monomer units starting with a monomer at location 7.
If we multiply by the matrix again we will have counted all
of the ways one can have taken three steps, and so on. (See
Appendix B for this example in a more detailed matrix form.)

Here, using standard transfer matrix methods, multiply-
ing the starting vector by the matrix W a total of N − 1 times
corresponds to taking N − 1 steps on the lattice. To determine
the partition function Q (sum over states) for a polymer of N
monomer units starting at lattice site k and ending at lattice
site j, WN−1 is multiplied from the left by a row vector P(..0..
wj ..0..)T with wj at location j and zeros elsewhere and from
the right by a column vector Uk with 1 at location k and zeros

everywhere. Thus, the partition function defined by Q is

Q = (P(..0..wj ..0..))T WN−1Uk (chain from site k to site j ).

(3)

(P(..0..wj ..0..))T is the row vector of Eq. (3) since it is the
weight of the last monomer of the polymer chain. The col-
umn vector Uk can also be thought of as “reading” the prob-
ability density at site k. Additionally, if “1” were placed at a
number of sites in a vector similar to Uk, it would provide the
combined probability densities from those sites. When seri-
ally multiplying the matrices of Eq. (3), the weights carried
are from the sites that have been visited while the weight
gained is from the site being stepping onto. For copoly-
mers, Eq. (1) is replaced by Eq. (2) and instead of WN−1 in
Eq. (3) we have

WN−1 →
∏

Wn, (4)

where Wn is the W matrix with wj,n replacing wj. Addi-
tionally, in the row vector of Eq. (3) wj is replaced by wj,n.
Notice that the order of the matrices is now important. This
generalization has two uses. First, it can be of use to treat syn-
thetic polymers whose monomers are not all the same, such
as random copolymers and block copolymers as was done
by Guttman et al.10 It can also be used for the various bi-
ological polymers whose monomers are invariably diverse.
Second, one can now use the method of Guttman et al.10 to
treat star molecules and branched molecules.

For completeness, it should be noted that Q can also be
given by the transpose of the right hand side of Eq. (3):

Q = (Uk)T (WT )N−1P(..0..wj ..0..). (5)

The one-dimensional treatment given previously worked
with the transpose.6

To compute the partition function corresponding to start-
ing anywhere and ending anywhere with an N monomer (N −
1 step) chain, we sandwich WN−1 with the row vector P(0)T

on the left and the unity column vector U = (1,1,1,..,1,1) on
the right. Here, we wish to reflect by P(0)T the vector which
contains wj at each location j, which corresponds to the prob-
ability density vector for placing a single monomer anywhere
on the lattice:

Q = (P(0))TWN−1U

(chain starting anywhere and ending anywhere). (6)

As an aside, with our approach being an extension of
the matrix method to higher dimensions, we need to remark
on the difference between linearity and dimensionality. The
matrix development of Ref. 6 is linear, but it is not one-
dimensional. In fact, the exact solution of the statistics of a
single polymer chain between parallel walls that was solved
in Ref. 6 is a three-dimensional problem, although the method
was limited to uniform surface energetics on smooth surfaces.
The method of the present paper is linear in the exact same
way as that of Ref. 6, but now enables definition of physical
and chemical structure. This linearity emerges from the con-
struction of the polymer molecule one segment at a time. As
such, the general formulae of Ref. 6 which depend on matrix
algebra are a fortiori applicable here as well.
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If the matrix W in Eq. (3) is diagonalized, then with re-
sulting eigenvalues given by

{λ0, λ1, λ2, . . .}, where λ0 > λ1 > λ2, etc, (7)

it can be shown that

ln Q ∼= ln[d0 (λ0)N + d1 (λ1)N + d2 (λ2)N + . . .], (8)

where di is the degeneracy of the ith eigenvalue. Simplifying
yields

ln Q ∼= ln{λ0
N [d0 + d1 (λ1/λ0)N + d2 (λ2/λ0)N + . . .]}

∼= ln λ0
N + ln[d0 + d1 (λ1/λ0)N + d2 (λ2/λ0)N + . . .]

(9)

and in the limit of large N is simply

ln Q ∼= N ln λ0, (10)

which is analogous to the “ground state dominance” ap-
proximation used in continuum methods.3 The connections
with thermodynamics are given by the usual formula for the
Helmholtz free energy F, entropy S, and energy U:

F = −kBT ln Q = U − T S, S = −∂F/∂T . (11)

In studying polymer/site interactions, a useful quantity is
the polymer monomer density as a function of position within
the confining walls. For the jth site this is achieved by multi-
plying each non-zero element of the jth column of the matrix
of Fig. 2 by a marker exp(θ j), and then taking the derivative of
the transition probability matrix with respect to θ j in the limit
of θ j = 0. This then returns only those elements of the tran-
sition probability matrix that correspond to transitions to site
j. (For this method, we have used Eq. (3). If we were using
the transpose of Eq. (3) (Eq. (5)), then we would have multi-
plied the row of the matrix by exp(θ j) as was done in Ref. 6.)
The expected number 〈ν j〉 of monomers on site j is then given
by the aforementioned derivative divided by the appropriate
normalization factor:

〈νj 〉 = 1

Q

∂Q

∂θj

∣∣∣∣
θj =0

= ∂ ln Q

∂θj

∣∣∣∣
θj =0

. (12)

In the case where the first term in Eq. (9) dominates the par-
tition function, the number of segments at any lattice site can
also be computed from the eigenvector corresponding to the
largest eigenvalue, of the matrix W. If the right eigenvector
corresponding to the largest eigenvalue λ0 is

r0 = (r0,1, r0,2, r0,3, . . . . r0,M) (13)

and the corresponding left eigenvector is given by

l0 = (l0,1, l0,2, l0,3, . . . . l0,M), (14)

then the normalized probability that there is a segment at lat-
tice site m, ρm, or the normalized segment density probability,
is given by

ρm =
[(

∑
i=nearest neighbors to m

l0,i ) + s0l0,m]r0,mwm

λ0l0r0
(15)

as is derived in Appendix A. (The meaning of s0 will be ex-
panded upon in Sec. III, but it is only relevant to cases where

we allow unconstrained motion in a higher dimension.) This
form makes intuitive sense. The right eigenvector describes
building the chain up from one end to site m, and the left
eigenvector describes the chain being built from its opposite
end to sites that are nearest neighbors to site m, thus making a
complete chain at site m. This also suggests that the density of
the joining segment in a block copolymer could be examined
using the left and right eigenvectors for each of the blocks
in an AB block copolymer, respectively. To make the density
computation clearer, we refer to the two-dimensional lattice
and corresponding matrix of Figs. 1 and 2, respectively, and
provide three examples of how to compute the numerator in
Eq. (15):

at the corner (lattice site 1) = (l0,2 + l0,6)r0,1w1,
the wall (lattice site 2) = (l0,1 + l0,3 + l0,7)r0,2w2, and
and in the “bulk” (lattice site 7) = (l0,2 + l0,6 + l0,8

+ l0,12)r0,7w7.

These results are exact and can account for many types of
interactions but cannot take global excluded volume into ac-
count. The effect of local excluded volume, i.e., prohibiting
immediate step reversal, and local bond structure can be put
into the matrix formalism using a sub-matrix approach as de-
scribed in Sec. V of the Di Marzio-Rubin paper, at the cost of
an enlarged matrix.6

III. COMPUTATION POSSIBILITIES AND METHODS

Computationally, the method falls into two main stages.
First, we produce the matrix W that describes the problem.
Second, we use matrix algebra to obtain the partition function
Q from which the various thermodynamic quantities can be
derived. The latter stage also allows calculation of polymer
density.

A. Transition probability matrix

In this paper, our calculations will focus on the sim-
ple cubic lattice. It is useful to work in the context of
Table I.

The matrix describing a walk within the 2D lattice of
Fig. 1 is that of Fig. 2 (Dimension = 2D in Table I). As shown
in Table I, if the zeroes in the jth element of the diagonal of
Fig. 2 are replaced by 2wj, walks perpendicular to the plane
of the 2D lattice are allowed (Dimension = 2D to pseudo-
3D). The factor of 2 arises because each time we step along
the z-axis, we can step in the plus or minus z direction. The
only requirement is that the energy of these sites be given by
wj (x, y, z) = wj (x, y, 0), i.e., there are no z-dependent en-
ergetics; the x and y energetics project infinitely in the plus
and minus z directions. (At this point, the meaning of s0, in-
troduced in Eq. (15), can be made clear. It is simply equal to
the number of lattice directions that are unconstrained. For the
case of “2D to pseudo-3D,” s0 = 2, as we allow unconstrained
movement in the plus and minus z directions. For lattices
that do not allow unconstrained motion in some dimension s0

= 0. The entries in the column labeled “Diagonal elements”
of Table I could thus all be written as s0wj.) The case of
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TABLE I. Six separate problems for a polymer walking on a cubic lattice are listed above. The dimensions of the cubic lattice along the x, y, and z orientations
are, respectively, a, b, and c; that of the square lattice are a and b; that of the one-dimensional lattice is a. The work of Ref. 6 corresponds to “1D to pseudo-3D”
but the present work is more general in that the monomer site interaction energy for the lattice can be an arbitrary function of x. In the case of “1D to pseudo-3D,”
the meaning of the x, y, z dependence of wj, wj (x, y, z) = wj (x, 0, 0) is that the energetics are defined only in the x direction and hence are extended infinitely
in the plus and minus y and z directions. The work of our arxiv.org paper17 solves the 2D problem and allows for generalization to any dimension. The other 4
problems are simple elaborations of these two solved problems. A similar table can be written for the face centered and body centered lattices. Although we are
working here with line and plane boundaries, the method works equally well for other boundaries - arbitrary cylindrical boundaries, for example.

Dimension Matrix size Off-diagonal elements Diagonal elements Describes x, y, z dependence of wj

1D a × a wj 0 Walk on a line wj (x) = wj (x)
1D to pseudo-2D a × a wj 2wj Walk on a plane wj (x, y) = wj (x, 0)
1D to pseudo-3D a × a wj 4wj Walk in 3d wj (x, y, z) = wj (x, 0, 0)
2D ab × ab wj 0 Walk in 2d wj (x, y) = wj (x, y)
2D to pseudo-3D ab × ab wj 2wj Walk in 3d wj (x, y, z) = wj (x, y, 0)
3D abc × abc wj 0 Walk in 3d wj (x, y, z) = wj (x, y, z)

“2D to pseudo-3D” is useful if we wish to examine the statis-
tics and thermodynamics of a polymer molecule in an infinite
cylinder. In Sec. IV, we shall calculate and display figures for
such infinite rectangular cylinders. Note especially that struc-
ture can be easily added into the lattice by preventing certain
transitions, i.e., by setting the wj for various sites equal to zero
(swiss cheese-like structures could be created this way).

B. Computational methods

The above formulation of the confined polymer prob-
lem will be of value only if the matrices can be handled
successfully on the computer. A cube of 30 lattice sites on
a side means we are dealing with a large sparse matrix of
linear dimension 30 × 30 × 30 = 27 000, which at 27 000
× 27 000 would amount to 729 000 000 matrix elements.
Even the rectangular cylinder problem would involve a ma-
trix of linear dimension 30 × 30 = 900 so the matrix would
be 900 × 900. Thus, it is clear that progress can be made
only if we can treat these sparse matrices conveniently. This
was done using several readily available open source sparse
matrix packages in Fortran95: Sparsekit18, 19 for matrix ma-
nipulation and multiplication, and ARPACK20, 21 (ARnoldi
PACKage) for solution of eigenvalues and eigenvectors via an
implicitly restarted Arnoldi method.22 (Appropriate matched
pairs of left and right eigenvectors for degenerate eigenval-
ues were identified as those vectors that produced the abso-
lute maximum dot product.) A multithread optimized version
of BLAS23 (Basic Linear Algebra Subprograms) was invoked
by ARPACK enabling more rapid computation. The Sparsekit
matrix methods were modified to enabling parallelization us-
ing OpenMP. Derivatives, when needed, were computed us-
ing a Savitzky-Golay algorithm.24 Density probability con-
tour plots were generated automatically using PLplot.25 Us-
ing compressed matrix storage, in particular, the compressed
sparse row (CSR) format, reduced the initial 30 × 30 × 30s
matrix elements from 729 000 000 down to a more manage-
able size of fewer than 351 001 elements [2 arrays of length
less than (6 diagonals)(27 000 elements each) + one array of
length 27 001].

C. Application of computational methods

Using the methods described above, we examine a few
simple examples of a chain confined to an infinite rectangu-
lar cylinder (simple cubic lattice, lattice coordination number
s = 6): (1) uniform energetics (−ε/kBT) on a single wall, (2)
uniform energetics (−ε/kBT) on opposite walls, (3) uniform
energetics (−ε/kBT) on adjacent walls, (4) uniform energet-
ics (−ε/kBT) on all four walls, (5) alternating energetics every
two lattice sites (−ε/kBT vs. −(0.6)ε/kBT) on a single wall,
and (6) neutral walls (−ε/kBT = 0) on the lattice but an object
in the center with uniform energetics (−ε/kBT) on its surface
(see Fig. 3). All other walls, and all other lattice sites, have
neutral energetics (−ε/kBT = 0). We allow for unrestrained
motion in the z-direction (2D to pseudo 3D, s0 = 2), and the
bulk of the lattice has no specific affinities (−ε/kBT = 0). The
weighting factors (wj) are given by Eq. (1) with p = s0/s
(p = 2/6) and p = 1/s (p = 1/6) for the diagonal and
off-diagonals, respectively, and using the energetics defined
above.

Because, in the cases studied here, we limit the (−ε/kBT)
dependence to the walls, it can also be used as a marker
variable. Previously, we used the fact that d[A exp(θ )]/dθ

= A exp(θ ) to show how θ could be used to “mark” certain lat-
tice sites or combinations of sites to compute their monomer
density (with θ = 0). However, since the energies are limited
to the surfaces, θ = −ε/kBT, and thus (without setting θ =
0) Eqs. (8) and (12) can be combined to write the fraction of
segments on the surface as

〈νs〉
N

= lim
N→∞

(
1

N

)
∂ ln Q

∂ (ε/kBT )

= lim
N→∞

(
1

N

) ∂ ln

{
λN

0

[
1 + d1

d0

(
λ1
λ0

)N

+ . . .

]}
∂ (ε/kBT )

.

=
(

1

λ0

)
∂λ0

∂ (ε/kBT )
. (16)
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FIG. 3. Schematic showing the placement of surface energetics (thick lines) in the six examples presented in this paper. (a) Uniform energetics on a single wall,
(b) uniform energetics on opposite walls, (c) uniform energetics on adjacent walls, (d) uniform energetics on all four walls, (e) alternating energetics on a single
wall, with the relative energetics being 1:0.6, and (f) uniform energetics on an object in the center of the lattice and neutral energetics on the walls of the lattice.
For (f), transitions through the walls of the object in the center were not allowed. Recall that these rectangles and the energetics on the walls extend (project)
infinitely above and below the plane of the paper page.

IV. RESULTS AND DISCUSSION

Figure 4(a) is a plot of the fraction of surface contacts
computed from Eq. (16), using the largest eigenvalue. Exclud-
ing the case of the energetic striping (Fig. 3(e)), the shapes of
the four remaining curves seem similar. Some differences ex-
ist, as can be seen in Fig. 4(b), where the deviation between
the curves as a function of −ε/kBT is plotted. Note that the
case of opposite walls is nearly identical to the single wall,
but it seems apparent that the effect of energetics on adja-
cent walls changes the shape somewhat. This is due to the
added attractive energy near the corner sites, which will be-
come readily apparent when we plot the density of chain seg-
ments as a function of −ε/kBT. It is also apparent that en-
ergetic striping not only significantly changes the shape of
the curve, but also shifts the phase transition to lower tem-
peratures, i.e., higher −ε/kBT. This point will be examined in
more depth, later in this paper.

Figure 5 contains contour plots computed using Eq. (15)
of the normalized chain segment density probability on the
defined x-y lattice at temperatures above the phase transition,

during the phase transition, and after the phase transition. The
first thing that can be seen from the −ε/kBT = 0 cases (top
row) is that chain segment density is effectively zero near the
surfaces and the effect of segment exclusion is even greater
at the corners due to the far larger reduction in the number of
configurations that would be available to the polymer chains
in those regions. The “corner effect” is clear even after the
phase transition, i.e., surface adsorption. In those cases where
the adjacent wall has neutral energetics, the highest chain seg-
ment density is near the center of the wall and drops off to
zero near the corners, as can be seen in Figs. 5(a) and 5(b).
In cases where the adjacent walls have equally attractive sur-
faces, adsorption will occur at the corners, but only at very
high −ε/kBT, as can be seen in Figs. 5(c) and 5(d). As men-
tioned previously, this explains the differences in the phase
transition shape shown in Fig. 4(b).

The use of this matrix method on lattices such as those
shown in Figs. 3(a)–3(d) shows largely what is intuitively ex-
pected from polymer physics. The true power of the lattice
technique really comes out when considering lattices such
as Figs. 3(e) and 3(f) or more intricate extensions of these

FIG. 4. (a) Fraction of surface contacts as a function of −ε/kBT, computed from the largest eigenvalue for a 100 × 200 (Nx × Ny) lattice, and (b) plot of
the deviation of the fraction of contacts from that corresponding to energetics on one wall (note the striping case was excluded from (b) due to the obvious
difference in its shape in (a)).
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FIG. 5. Density probability contour plots of 100 × 200 lattice (Nx × Ny).
Red indicates areas of highest segment density and dark blue indicates ar-
eas of zero or nearly zero segment density, (red > orange > yellow > green
> cyan > blue). (a)–(d) correspond to the matrices indicated in Figs. 3(a)–
3(d), respectively. In each column moving from the top to the bottom cor-
responds to decreasing temperature (increasing wall attraction) with −ε/kBT
= 0, 0.167, 0.194, 0.444.

FIG. 6. Density probability contour plots of 100 × 200 lattice (Nx × Ny)
for the case of striping of the energetics as shown in Fig. 3(e). Red indicates
areas of highest segment density and dark blue indicates areas of zero or
nearly zero segment density (red > orange > yellow > green > cyan >

blue). Starting at the top of the figure, the plots correspond to decreasing
temperature (increasing wall attraction), of −ε/kBT = 0, 0.222, 0.250, 0.444.
Note that the middle two values of −ε/kBT differ from those in Fig. 5 due
to the shift in the phase transition. The inset in the bottom contour plot is an
enlarged version of the bottom left hand corner (−ε/kBT = 0.444) to show
the structure of density due to the striping.

lattices, which are difficult,26–28 if not impossible, to treat us-
ing continuum methods. As shown previously in the case of
striping, i.e., non-uniform surface chemistry, a shift in the
phase transition temperature (critical condition) (−ε/kBT) oc-
curs. This result is of immediate importance to the field
of polymer chromatography, as it tells us that if the sur-
face chemistry is not uniform then the binding strength must
be larger to cause adsorption of the polymer molecules.
Figure 4(a) shows that the fraction of segments on the surface
is less than the case of uniform energetics, i.e., 0.82 versus
0.94 (for −ε/kBT = 0.944), respectively. Through the use of
the density plot, Fig. 6, we can explore the nature of this ef-
fect. In the plot for −ε/kBT = 0.444 (bottom plot), it is clear
that the energetic striping is causing structuring in the surface
density (see inset). In the next paper in this series, we will
examine this effect as a function of chain length.

In addition to varying the surface energies, we can de-
fine structures in the lattice. These structures could either be
on the walls of the lattice, such as exploring the effects of
surface roughness, or creating a specifically shaped object in
the center of the lattice with unique site-specific energetics
as would be useful in examining protein binding. A coaxial
geometry, shown in Fig. 3(f), was treated as an example. (Re-
call that unrestrained motion in the z-axis is allowed, so we
are examining an infinite rectangular cylinder. The object in
the center that looks like a box is effectively a smaller infinite
rectangular cylinder centered in the middle of the lattice.)

During the phase transition (see Fig. 7), the outside cor-
ners of the object end up with the highest segment density,
due to the increased number of configurations relative to the
surfaces of the object as contrasted with its inverse, the “cor-
ner effect,” we mentioned previously. A slight modification
to the size/placement of this object reveals a size dependent
phenomenon. In Fig. 8, the object’s size is reduced by one

FIG. 7. Density probability contour plots of 100 × 100 lattices (Nx × Ny)
with rectangular 21 × 21 objects in the center with uniform energetics on all
sides of the object. The surface energetics vary as −ε/kBT = (a) 0, (b) 0.139,
(c) 0.167, (d) 0.194, (e) 0.444, and (f) 0.944.
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lattice row and column each in the x and y dimensions, with-
out moving the position of the lower left hand corner of the
object. This provides just slightly more room in the upper
right hand corner of lattice, inducing a quite prominent ef-
fect at the highest temperatures (Figs. 8(a) and 8(b), low-
est −ε/kBT). After the phase transition, the effect disappears
when the attraction of the surfaces becomes the dominating
force (Figs. 8(d)–8(f)). This shows that this technique has the
capability to examine finite size effects, as would be relevant,
for example, to the case of confined films or polymer chains
tethered to nanoparticles as the particles get closer together.

Thus far these lattices have shown clear finite size effects;
however, it is possible to remove some of the constraints, and
thus some finite size effects, without increasing the size of the
lattice. In the infinite chain limit, examined here, the chain
can explore all space within the lattice. As such, under cer-
tain circumstances, periodic boundary conditions can be em-
ployed on the “neutral” walls such that the “corner” and finite
size effects described above can be eliminated or minimized,
by including some additional matrix elements that allow for
transitions between the lattice sites on the neutral walls. For
example, referring once more to the lattice of Fig. 1, transi-
tions can be allowed between lattice sites 1 and 11 (by adding
w11 at row 1, column 11 and w1 at row 11, column 1 in the
matrix of Fig. 2), lattice sites 2 and 12 (by adding w12 at row
2, column 12 and w2 at row 12, column 2 in the matrix of Fig.
2), etc.

Figures 9(a) and 9(b) show density probability contours
for the lattices of Fig. 3(b) (at −ε/kBT = 0) and Fig. 3(e)
(for −ε/kBT = 0.250), respectively, where periodic bound-
aries have been placed on the top and bottom neutral walls.
Figures 9(c) and 9(d) show equivalent plots to Figs. 7(a) and
8(a) for the symmetric and asymmetric objects in the center
of the lattice but with transitions now allowed between the top

FIG. 8. Density probability contour plots of 100 × 100 lattices (Nx × Ny)
with rectangular 20 × 20 slightly off-centered objects with uniform energet-
ics on all sides of the object. The surface energetics vary as −ε/kBT = (a) 0,
(b) 0.139, (c) 0.167, (d) 0.194, (e) 0.444, and (f) 0.944.

FIG. 9. Density probability contour plots employing periodic boundary con-
ditions as described in the text. (a) Lattice of Fig. 3(b) (at −ε/kBT = 0) con-
necting top and bottom walls; (b) lattice of Fig. 3(e) (for −ε/kBT = 0.250)
connecting top and bottom walls; (c) lattice of Fig. 3(f) (at −ε/kBT = 0) with
20 × 20 object and connecting top and bottom and left and right walls; and
(d) lattice of Fig. 3(f) (at −ε/kBT = 0) with 21 × 21 object and connecting
top and bottom and left and right walls.

and bottom and left and right neutral walls. The shapes of the
density contours are exactly as would be expected from the re-
moval of the corner and wall constraints, as seen in Figs. 9(a)
and 9(b). The strong effect of the asymmetry of the object has
almost been eliminated, as can be seen by comparing plots
in Figs. 9(c) and 9(d). The differences are primarily a scale
effect – such that the plot is “zoomed” in more on the larger
(21 × 21) object. Hence, when one is interested solely in the
adsorption behavior on a structured surface, the surface size
(number of lattice sites) need be made only large enough to
adequately describe the repeating period in the surface, thus
reducing the total size of the matrix, and hence the computa-
tion time.

To demonstrate the validity and usefulness of combining
surface energy structuring and periodic boundary conditions,
we chose to examine a structure similar to the one studied
by Seok et al.,26 who used an analytical density functional
theory of alternating stripes of attractive and repulsive ener-
getics as a function of stripe width. Because of the shift in
phase transition observed for the striping case studied ear-
lier in this paper, we first examined the location of the phase
transition (critical condition for adsorption −εc/kBT) as a
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FIG. 10. (a) Critical condition for adsorption (−εc/kBT) as a function of inverse stripe width (1/L) for stripes with alternating attractive and repulsive energetics
computed on a 100 × 100 lattice. (b) Surface density [ρ(y = 0)] at a reduced adsorption energy of (−ε/kBT)/(−εc/kBT) = 0.25 versus surface position (x)
normalized against stripe width for stripe widths L = 1, 2, 5, and 10 lattice sites.

function of the width of the stripe. Figure 10(a) shows the re-
sult, which appears to be a nearly linear relationship between
the location of the phase transition and the inverse stripe width
for stripes ranging from a lattice width of 1 to an infinite lat-
tice width, i.e., uniform surface coverage. The limiting value
for the critical condition at 1/L = 0 is equal to 0.18, which is
approximately equivalent to the expected value of ln(6/5) de-
rived analytically by the original DiMarzio-Rubin pseudo 3D
matrix method.2, 6 The linearity of the plot suggests an under-
lying scaling relationship for the phase transition that could
be useful in analyzing the effect of surface heterogeneities
for polymer chromatography. This dependence of the critical
condition on the stripe width indicates that a proper compar-
ison of the surface density as a function of stripe width must
be performed by examining the density profiles at a reduced
adsorption energy2 defined as (−ε/kBT)/(−εc/kBT).

Figure 10(b) shows the surface density as a function of
position on the surface normalized against the stripe width
for a reduced adsorption energy of 0.25. The datasets show
reasonable agreement, with the largest deviation being at
L = 1. The results show qualitative agreement with the shapes
of curves in the work of Seok et al. The main differences are
the sharpness of the density peaks on the attractive stripes.
We attribute this to the fact that we are not accounting for
excluded volume in the current method and thus far higher
surface densities are possible, although as we have men-
tioned self-consistent approaches are possible with the matrix
method.

V. CONCLUSIONS

The power of matrix methods was already well estab-
lished when they were limited to uniform surface energies,
and we have extended it to higher dimensions to enable exam-
ination of a myriad of problems of a polymer at an interface.
The flexibility of this exact method for treating energy gra-
dients, arbitrarily shaped surfaces, arbitrarily shaped objects,
and dimensionalities beyond the pseudo-three-dimensional
case of the original Di Marzio-Rubin model, has been demon-

strated. We have also identified some phenomena that bear
further examination. The case of uneven surface energies
(striping) was shown to cause a shift in the phase transition
temperature (critical condition) and changes in the shape of
the curve, which will have real relevance and is of great im-
portance to polymer chromatography. We have also shown
the capability of this technique to examine finite size effects
caused by asymmetries that will be present in nearly any sys-
tem, i.e., at small enough regions of confinement the motion
of objects will result in asymmetries in the amount of space
available to the polymer chain. While in this case we cannot
examine the dynamics, we can examine the equilibrium solu-
tions corresponding to the different states. In the next paper
in this series, we will expand upon the theoretical framework
for the case of finite chain length. The method described in
this paper in many ways lies between continuum approaches
and Monte Carlo methods, as it can rapidly provide equi-
librium solutions while enabling easy definition of boundary
conditions. The advantages to our expanded method are: (1)
finite length polymers are treated easily, in contrast to the
Gaussian approximation, which only works for large molar
masses. Thus, it is complementary to, rather than in compe-
tition with, the Gaussian approximation. (2) Copolymers can
be treated easily because the monomer attraction to the lattice
site is monomer specific as well as lattice site specific. This
feature will be useful for biopolymers as well as synthetic
polymers. (3) The structure of the monomers can be modeled
to mimic actual chemical monomer structure. This circum-
vents the “resolution limitation” of the Gaussian (continuum)
approximation.16 While not presented in this work, we can
write matrices for straight line monomers of k sites thereby
having a Kuhn-like approach to the problem. The ultimate aim
is to model a chemical monomer as a specific arrangement of
k monomers, which we can chain together to form a realistic
polymer. (4) The surface can be made both chemically inho-
mogeneous as well as physically inhomogeneous. This allows
for stereospecific interaction simultaneously with chemically
specific interaction. We have already discussed the relevance
of this concept to chromatography. This “hand and glove”
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approach to molecular interaction has obvious biological and
catalysis implications.

As a final note, we point out that our work has applica-
tions beyond those to polymers. The method presented in this
paper is also a solution to the diffusion equation. As such,
polymer chain length can be replaced by time, and diffusion
can be studied on a lattice with a temporally evolving struc-
ture or in a time-dependent chemical or electrical field. More
formally, the equation describing the diffusion of particles
in a spatially varying field V is, according to Kac,29 given
by

∂�

∂t
= D∇2� − V

kBT
�. (17)

If we allow t to be proportional to monomer number as we cre-
ate the polymer chain, then we see that our work describes the
Green’s function of �. An improvement over the Kac equa-
tion is that our Green’s function describes the case when V
is a function of both position and time. This is because our
energies wj are monomer specific.
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APPENDIX A: DERIVATION OF THE DENSITY
RELATIONSHIP

The notation and the beginning of the derivation in this
appendix are taken closely from the paper by Di Marzio and
Rubin. However, it is extended (1) to arbitrary dimensions
and (2) to allow for site-specific affinities throughout the ma-
trix. Additionally, since Eq. (3) is used in this paper instead of
Eq. (5), the order of many of the variables will be different.

If P(N)T is the probability vector describing the proba-
bility of being at each lattice site after N steps, then it can be
defined as

P(N )T = P (0)T WN . (A1)

From this equation, the normalization sum (or equivalently
the partition function Q) is computed as [P(N)U]. We can then
re-write Eq. (12), the normalized probability of finding a seg-
ment at lattice site m, as

ρm =
d

dθm

[
P(N )TU

]∣∣
θm=0

P(N )TU
(A2)

and

d

dθm

[P(N )TU]

∣∣∣∣
θm=0

=
N∑

n=1

P (n − 1)T dW
dθm

∣∣∣∣
θm

WN−nU

=
N∑

n=1

P (0)TWn−1 dW
dθm

∣∣∣∣
θm

WN−nU.

(A3)

λj is the jth eigenvalue of the matrix W, with corresponding
left and right eigenvectors lj and rj, respectively, which means
by definition that

lj W = λj lj , (A4)

Wrj = λj rj . (A5)

It follows readily from vector mathematics that we can
rewrite both P(0) and U in terms of the eigenvectors. We
define U as

U =
M∑

j=1

cj rj , (A6)

and multiply both sides by lj

lj · U = lj ·
M∑

j=1

cj rj , (A7)

but recall that for eigenvectors

lirj = 0 for i 	= j. (A8)

Thus, Eq. (A6) is only valid when

cj = lj · U
lj · rj

= 1

lj · rj

M∑
k=1

lj (k). (A9)

Similarly, P(0)T can be given by

P (0)T =
M∑
i=1

di li , (A10)

when

dj = P(0)T · rj

lj · rj

. (A11)

Then by substituting Eqs. (A6) and (A10) into Eq. (A3), we
obtain

d

dθm

[
P(N )TU

]∣∣
θm=0 =

∑
i,j,n

dj lj Wn−1 dW
dθm

∣∣∣∣
θm

WN−nciri .

(A12)

Using Eqs. (A4) and (A5) (n − 1) and (N − n) times each,
respectively, yields

d

dθm

[
P(N )TU

]∣∣
θm=0 =

∑
i,j,n

dj lj λn−1
j

dW
dθm

∣∣∣∣
θm

λN−n
i ciri

=
∑
i,j,n

djλ
n−1
j

[
lj

dW
dθm

∣∣∣∣
θm=0

ri

]
λN−n

i ci .

(A13)

Excluding the fact that we have used Eq. (3) instead of Eq.
(5), and the implications thereof, we have closely followed
the approach of Di Marzio and Rubin to this point, however,
due to the additional energetics of the lattice and higher di-
mensionalities, we will now deviate from it. For the pseudo
four-dimensional cubic lattice, it can easily be shown
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that away from corners and edges of the lattice:

dW
dθm

∣∣∣∣
θm=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

(wm)m−Ny−Nx,m

...

(wm)m−Ny,m

...

(wm)m−1,m

0 · · · · · · · · · · · · · · · · · · (s0wm)m,m · · · · · · · · · · · · 0

(wm)m+1,m

...

(wm)m+Ny,m

...

(wm)m+Ny+Nx,m

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Nx×Ny×Nz),(Nx×Ny×Nz)

where “. . . ” in above matrix means all zeros and wm is the
weighting factor defined earlier. Multiplication on the left by
lj and on the right by ri yields

lj
dW
dθm

∣∣∣∣
θm=0

ri

= (lj,m−Ny−Nx
+ lj,m−Ny

+ lj,m−1 + lj,ms0 + lj,m+1

+ lj,m+Ny
+ lj,m+Ny+Nx

)wmri,m. (A14)

For corners and edges, terms that are unphysical are removed,
i.e., at a lattice site on a wall, there are no sites defined on the
other side of the wall, only nearest neighbor sites are retained.
If we now substitute Eq. (A14) into Eq. (A13), it yields the
following:

d

dθm

[
P(N )TU

]∣∣
θm=0

=
∑
i,j,n

djλ
n−1
j [(lj,m−Ny−Nx

+ lj,m−Ny
+ lj,m−1 + lj,ms0

+ lj,m+1 + lj,m+Ny
+ lj,m+Ny+Nx

)ri,mwm]λN−n
i ci .

(A15)

For sufficiently large N, the maximum eigenvalue, designated
by a subscript 0, will dominate, and we can, therefore, write

d

dθm

[
P(N )TU

]∣∣
θm=0

= d0λ
N−1
0 [(l0,m−Ny−Nx

+ l0,m−Ny
+ l0,m−1 + l0,ms0

+ l0,m+1 + l0,m+Ny
+ l0,m+Ny+Nx

)r0,mwm]c0. (A16)

The normalization sum [P(N)TU] can be written directly
as

P(N )T U =
⎡
⎣ M∑

j=1

dj lj

⎤
⎦WN

⎡
⎣ M∑

j=1

cj rj

⎤
⎦

=
⎡
⎣ M∑

j=1

djλ
N
j lj

⎤
⎦
⎡
⎣ M∑

j=1

cj rj

⎤
⎦

=
M∑

j=1

djλ
N
j cj lj rj

= d0λ
N
0 c0l0r0, (A17)

where again only the maximum eigenvalue has been retained
in the final summation. Substitution of Eqs. (A16) and (A17)

FIG. 11. Schematic of Fig. 1, showing possible moves for a chain starting
at lattice site 7 and passing through lattice site 8. The sites marked with bold
red lines are the possible ending sites.
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into Eq. (A2) and simplifying yields

ρm =

[( ∑
i=nearest neighbors to m

l0,i

)
+ s0l0,m

]
r0,mwm

λ0l0r0
. (A18)

By examining this derivation, it is now clear that the above
equation is generalized to any dimensionality or lattice coor-
dination.

APPENDIX B: EXAMPLE OF A CHAIN WALKING
ON THE LATTICE OF FIG. 1

Consider the following example, the case of a polymer
chain with N monomers starting at position 7 on the lattice of
Fig. 1 and ending at lattice site j. In this case, we begin with
Eq. (3), with k = 7, i.e.,

Q = (P(..0..wj ..0..))T WN−1Uk=7,

then WN−1Uk=7 is given for the 2d lattice of Fig. 1 as

WN−1Uk=7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 w2 0 0 0 w6 0 0 0 0 0 0 0 0 0

w1 0 w3 0 0 0 w7 0 0 0 0 0 0 0 0

0 w2 0 w4 0 0 0 w8 0 0 0 0 0 0 0

0 0 w3 0 w5 0 0 0 w9 0 0 0 0 0 0

0 0 0 w4 0 0 0 0 0 w10 0 0 0 0 0

w1 0 0 0 0 0 w7 0 0 0 w11 0 0 0 0

0 w2 0 0 0 w6 0 w8 0 0 0 w12 0 0 0

0 0 w3 0 0 0 w7 0 w9 0 0 0 w13 0 0

0 0 0 w4 0 0 0 w8 0 w10 0 0 0 w14 0

0 0 0 0 w5 0 0 0 w9 0 0 0 0 0 w15

0 0 0 0 0 w6 0 0 0 0 0 w12 0 0 0

0 0 0 0 0 0 w7 0 0 0 w11 0 w13 0 0

0 0 0 0 0 0 0 w8 0 0 0 w12 0 w14 0

0 0 0 0 0 0 0 0 w9 0 0 0 w13 0 w15

0 0 0 0 0 0 0 0 0 w10 0 0 0 w14 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= WN−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
w7

0
0
0
w7

0
w7

0
0
0
w7

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the vector on the right hand side can be written as a sum of individual vectors, i.e.,

WN−1Uk=7 = WN−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
w7

0
0
0
0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
w7

0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
w7

0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
w7

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and with one more multiplication by W we get

WN−1Uk=7 = WN−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w7w2

0
w7w2

0
0
0

w7w2

0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w7w6

0
0
0
0
0

w7w6

0
0
0

w7w6

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

w7w8

0
0
0

w7w8

0
w7w8

0
0
0

w7w8

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WN−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

w7w12

0
0
0

w7w12

0
w7w12

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The third vector in the summation describes the possible moves starting at lattice site 7 and passing through lattice site 8. This
is shown pictorially in Fig. 11, with the sites marked by bold red lines as possible ending sites, i.e., non-zero probabilities. Note
that site 7 is one of the possibilities, because we have not accounted for excluded volume.

To finalize our example, we will now compute the partition function for a 3-monomer chain starting at lattice site 7 and
ending at lattice site 13. So using the above result, we can write

Q = P(0, . . . , w13,, . . . , 0)TW2Uk=7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

w13

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

W2Uk=7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

w13

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w7w2

0
w7w2

0
0
00

w7w2

0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w7w6

0
0
0
0
0

w7w6

0
0
0

w7w6

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

w7w8

0
0
0

w7w8

0
w7w8

0
0
0

w7w8

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

w7w12

0
0
0

w7w12

0
w7w12

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

which is simply

Q = w7w8w13 + w7w12w13,

which is the expected correct answer for a chain starting at
site 7 and ending at site 13 in 2 steps.
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