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ABSTRACT 

This paper explores the thermodynamic performance limits of the vapor compression cycle. We have applied 

evolutionary algorithms to explore the performance of hypothetical refrigerants defined by the 

thermodynamic parameters used by the extended corresponding states model for fluid properties. We 

identified optimal values of these parameters required to reach the performance limits. The study confirmed 

the fundamental trade-off between the coefficient of performance (COP) and volumetric capacity, and 

indicated refrigerant critical temperature as the dominant parameter influencing the tradeoff. 

Thermodynamic performance limits depend on the operating conditions and the cycle design. These limits 

are represented by Pareto fronts developed for the objective functions COP and volumetric capacity. As 

expected, the performance of current refrigerants falls below the Pareto front limits. We demonstrate that for 

practical cycles the developed methodology and resulting Pareto fronts are more realistic benchmarks for the 

performance potentials of refrigerants than is COP alone, which is an efficiency only metric. 
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NOMENCLATURE 
 

 COP   coefficient of performance 

 Cp˚   heat capacity in the limit of zero pressure (J mol-1 K-1) 

 ECS   extended corresponding states 

 EOS   equation of state 

 GWP   global warming potential 

 LL/SL-HX  liquid-line/suction-line heat exchanger 

 p   pressure (kPa) 

 Qvol   volumetric heating or cooling capacity (kJ m–3) 

 T   temperature (˚C or K) 

 VCC    vapor compression cycle 

 α1, α2   shape factor fitting coefficients* 

 β1, β2    shape factor fitting coefficients* 

 ω   acentric factor  

 γ   Cp˚ temperature dependence parameter* 

 

Subscripts: 

 cond   condenser inlet, dew point 

 evap   evaporator outlet, dew point 

 

Superscript: 

 crit   critical point value                       

*used in the ECS model, see McLinden et al. (2012) 
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1. INTRODUCTION 

The coefficient of performance (COP) and volumetric capacity (Qvol) are two parameters, which stem from 

thermodynamic properties, which are used for characterizing the performance of a refrigerant in a vapor 

compression cycle (VCC).  When it comes to presenting performance merits of different refrigerants, they 

are typically listed in the order of their COPs with their volumetric capacity given alongside. Often, a ratio of 

the COPVCC to that of the Carnot cycle is used to benchmark the refrigerant performance against the ultimate 

thermodynamic limit of a fully reversible Carnot cycle. The COPVCC/COPCarnot index is not influenced by the 

volumetric capacity. This approach disregards the fundamental tradeoff between high Qvol and high COP, 

which has been broadly noted and discussed in the literature (e.g., McLinden and Didion, 1987). However, 

there is no commonly accepted methodology to compare refrigerant performance based on both COP and 

Qvol.  

Theoretical VCCs come in several variations. Among single-stage cycles, the simple cycle consists of the 

compression process, heat rejection associated with high-pressure vapor desuperheating and condensation, 

adiabatic expansion in the throttling device, and heat absorption associated with liquid refrigerant 

evaporation. As compared to the Carnot cycle, the simple VCC suffers from thermodynamic irreversibilities 

associated with the adiabatic throttling process and desuperheating of the compressed vapor. The most 

common variation of the simple VCC − the cycle with a liquid-line/suction-line exchanger (LL/SL-HX) – 

improves COP for most refrigerants through reduction of throttling irreversibilities at the expense of some 

increase in compression work.  Other variations of the simple VCC − cycles with the economizer, ejector, 

and expansion work recovery device – reduce throttling irreversibilities and the external work required for 

the compressions process. These “advanced” cycles improve COP for every refrigerant.  The level of COP 

improvement depends on a refrigerant’s thermodynamic properties and varies from cycle to cycle 

(Domanski, 1995). 

In this study we explore the thermodynamic performance limits for four different VCCs and identify optimal 

refrigerant thermodynamic parameters that lead to the best performance. Based on the obtained VCC 

performance limits represented by a Pareto front in terms of 1/COP and 1/Qvol, we propose a new approach 

for presenting the refrigerant cycle performance. This paper extends the work presented earlier by McLinden 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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et al. (2012). The findings on optimal refrigerant thermodynamic parameters are utilized in a search for low-

GWP refrigerants reported in a companion paper (McLinden et al., 2013).  

 

2. EXPLORATION OF THERMODYNAMIC SPACE 

 
2.1 Exploration methodology 
 
By the term “thermodynamic space” we denote a search domain containing refrigerant parameters (and their 

appropriate value ranges) which are chosen such that the full range of possible thermodynamic behaviors are 

encompassed. These parameters are those used by an equation of state (EOS) model for calculating the 

thermodynamic properties of a refrigerant. We explored the thermodynamic space with a VCC simulation 

model, which used thermodynamic refrigerant properties determined by the parameter values selected from 

this search domain. The goal of this exploration was to find an optimum combination of these parameters to 

maximize both COP and the Qvol. COP is an indicator of the energy efficiency (operating cost) of the system. 

Qvol is defined as the refrigeration capacity per unit volume of refrigerant vapor flowing into the compressor; 

it is a measure of equipment size (first cost). Since a fundamental tradeoff exists between COP and Qvol, the 

employed exploration of thermodynamic space used a bi-objective optimization process. We may think of 

this exploration (optimization) process as an attempt to analytically “engineer” an optimal fluid by 

appropriate selection of parameter values from the thermodynamic space. 

2.2 Representation of refrigerant properties 
 
For the representation of refrigerant properties we employed the extended corresponding states (ECS) model 

of Huber and Ely (1994). The strength of the ECS approach is its ability to provide a representation of fluid 

properties with good accuracy given only a limited set of data or, for the present application, to provide 

thermodynamically consistent properties in terms of a limited number of parameters. This approach is not 

limited to fluids that are known, although corresponding states calculations are tied to real “reference fluids” 

and this ensures that thermodynamic consistency between properties is maintained. The NIST REFPROP 

database (Lemmon et al., 2010) implements the ECS model (among a number of thermodynamic models) 

and was used for the calculation of refrigerant properties in the cycle simulations. McLinden et al. (2012) 

present more detail on representation of refrigerant properties using the ECS approach. 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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The applied ECS model used nine refrigerant parameters; hence the thermodynamic space we explored was 

nine-dimensional. Table 1 lists the parameters that were varied in the optimization and their ranges. The 

critical temperature and pressure, Tcrit and pcrit, are the upper limit of the two-phase "dome." The acentric 

factor ω is related to the slope of the vapor pressure curve with temperature. The ideal-gas heat capacity, Cp˚, 

is the heat capacity of the vapor phase in the limit of zero pressure; Cp˚ is a function of temperature, and we 

focus here on its value at 300 K. Tcrit, pcrit, ω, and Cp˚ are fundamental thermodynamic parameters of a fluid, 

and the others are fitting parameters for the model used; together they describe the thermodynamic behavior. 

Two reference fluids were used:  propane and R-32. These two fluids are typical of non-polar and polar 

refrigerants, respectively, and both have very good equations of state that are valid over wide ranges of 

temperature and pressure—requirements for a reference fluid formulation.  

Value ranges must be specified to constrain the optimization to physically reasonable bounds. The ranges 

given in Table 1 are based on the 105 pure fluids in REFPROP; these include all of the common refrigerants 

(both synthetic and natural) as well as additional simple organic and inorganic molecules that have boiling 

points in the range of current refrigerants. The critical temperature covers the range from near the condenser 

temperature in the cycles to be investigated here to a temperature near the critical temperature of water. All 

other parameters span the range of values observed for fluids in REFPROP, with only a few exceptions. 

Critical pressures lower than 2.0 MPa are observed only for hydrogen, helium, and complex molecules, 

which are not suitable for a vapor compression cycle at normal refrigeration temperatures. While water has a 

critical pressure of 22.064 MPa, the upper bound for the current optimization was set to 12 MPa, which is 

slightly above the next-highest pcrit, namely 11.333 MPa for ammonia. This greatly limits the search space 

for this parameter, a space that is not likely to contain any actual fluids. Negative values of the acentric 

factor ω are observed only for hydrogen and helium. Values of Cp˚(300 K) larger than 300 J·mol–1·K–1 are 

observed for heavy hydrocarbons (greater than about C8), but again, these are not suitable for our 

application.   The "granularity" is the smallest increment for a parameter deemed to have a significant 

impact on the solution. 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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2.3 Implementation of evolutionary algorithm 

 
In general, the optimization process involves evaluating different candidate solutions from a given domain 

space and selecting the solution that is the “best one” for the given objectives. Our approach is to apply the 

principles of genetic optimization, whereby a set of candidate solutions (known as a “population” or 

“generation”) are evaluated and the results are used to select “children”, which are members for the next 

“population“ to be assessed.  The process is continued for a prescribed number of generations (Ashlock, 

2006). In our case, candidate refrigerants are the “candidate solutions”, and they are represented by a set of 

thermodynamic parameters. Through the optimization run, new members for the population are created by 

varying the values of these thermodynamic parameters with the objective to achieve the best COP and Qvol 

values.  

Multi-objective optimization − in most cases, including ours − does not provide a unique “best” solution 

satisfying every objective. In our case, the search algorithm will encounter, at first, fluids that have both 

better COP and Qvol than those of the candidates it has evaluated thus far, but at some point it will no longer 

be possible to improve one objective without accepting lower values for the other. In multi-objective 

optimization, this fact is described by the term “Pareto optimality”, and the collected tentative solutions are 

referred to as non-dominated (Goldberg, 1989). For our bi-objective problem, this set of non-dominated 

solutions forms the so-called Pareto front on the 1/COP-1/Qvol plane. Hence, the Pareto front is a collection 

of fluids, which have the highest COP for a given Qvol, and vice-versa, among all fluids evaluated, and it 

graphically represents the limit of performance that can actually be realized.  

Optimization runs were executed by EOS-EVOL, a multi-objective evolutionary optimization tool developed 

for this work. EOS-EVOL worked in tandem with a cycle simulation model, which evaluated the refrigerant 

performance. For each member of the “population” (i.e., candidate refrigerant) EOS-EVOL generated sets of 

EOS parameters following its evolutionary scheme and provided these to the cycle model, which calculated 

the COP and Qvol values. Upon completion of the optimization run, EOS-EVOL identified the solutions (i.e., 

sets of fluid parameters) laying on the Pareto front for further “manual” analyses and interpretation.  

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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EOS-EVOL can be classified as an evolutionary method, a type of population-based optimization method in 

which a set of candidate solutions (population) is used to generate new candidate solutions (children). EOS-

EVOL combines random/semi-random operators traditionally used in evolutionary methods with guided 

machine-learning-based approaches (Wojtusiak and Michalski, 2006; Wojtusiak et al., 2012). The 

optimization run starts with a set of randomly generated candidate solutions, which constitute the first 

population. Then, new candidate solutions are created using (1) machine learning-based, (2) traditional 

evolutionary, and (3) random methods, as elaborated below. At this stage, the program also adjusts the 

precision of the parameters in the most promising search areas.   

(1) Machine-learning-based creation of new candidate solutions is a two-step process. First, rule-

learning software AQ21 (Wojtusiak et al. 2006) is applied to generate/learn hypotheses on why some 

candidate solutions perform better than others. The hypotheses, in the form of IF-THEN rules, capture 

areas of the parameter search space that are the most promising for further exploration. In other words, 

these areas are machine-learning-based generalizations of characteristics of candidate solutions near the 

Pareto front. Then, new candidate solutions are created by sampling these promising areas of the search 

space covered by rules. 

(2) Traditional evolutionary operators include mutation and cross-over. Mutation randomly changes a 

candidate solution by modifying values of one or more parameters. Cross-over combines two “parent” 

candidate solutions by exchanging their parameters. 

(3) Random generation produces new candidate solutions uniformly distributed in the search space. 

The main reason for using random generation is to prevent the method from getting stuck in local 

optima due to lack of diversity in the current population. 

Newly created candidate solutions along with ones in the current population go through an evolutionary 

selection process to select the new population. This selection process combines principles of survival of the 

fittest in Darwinian evolution (here designs closest to the Pareto front are considered the fittest) with 

maintaining diversity in the population. The process of generating new candidate solutions and selecting new 

populations is repeated until stopping criteria are met. In the presented work EOS-EVOL was stopped after a 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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fixed number of generations, or when no further progress was made. The program returns a set of candidate 

solutions that constitute the Pareto front, or are close to the front. 

We executed each optimization run using the following main EOS-EVOL control parameters:  population 

size = 100; number of populations = 200; number of children/solutions generated for each population = 25; 

number of random candidate solutions in each population = 5. Accordingly, each optimization run examined 

100 × 200 = 20 000 candidate solutions. To obtain a sufficient number of non-dominated solutions to create 

a smooth Pareto front, we executed five optimization runs for each cycle option and application condition, 

which involved a total of 100 000 candidate fluids.  

2.4 Cycle Analysis 
 
A modified version of the cycle simulation model CYCLE_D, Version 5 (Brown et al., 2012) was used for 

the cycle analyses. The three operating conditions considered—cooling, refrigeration, and heating—were 

characterized by the temperatures in the condenser and evaporator. The evaporator superheat and condenser 

subcooling were assumed to be zero; the evaporator and the condenser were assumed to have no pressure 

drop; the refrigerant lines were assumed to have no pressure drop and no heat losses/gains to/from the 

ambient; and the compressor isentropic efficiency was assumed to be 100 %.  For each application, four 

cycle configurations (see Figure 1) were studied:  (a) the simple (baseline) cycle as described above, (b) the 

simple cycle with the inclusion of a liquid-line suction-line heat exchanger (LL/SL-HX effectiveness of 

50 % and 100 % were considered), (c) an economizer cycle with two-stage compression, and (d) a cycle 

replacing the expansion device of the simple cycle with a work-recovery device (efficiencies of 50 % 

and 100 % were considered). These resulted in six cycle options, as listed in Table 2. 

3. RESULTS 

A total of 36 optimization cases (runs) resulted from the combination of three applications (cooling, heating, 

and refrigeration), six VCC options, and two reference fluids (R-32 and propane) for the ECS model. 

Approximately 1.2 million sets of thermodynamic parameters representing hypothetical fluids were 

simulated for each application. The goal of the optimization was to answer two fundamental questions: 

• What are the thermodynamic limits for COP and Qvol in a VCC? 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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• What thermodynamic parameters are most influential in bringing the refrigerant performance 

to those limits? 

3.1 COP and Qvol limits for the vapor compression cycle 
 
The results were qualitatively similar for the three applications and two reference fluids. For presenting 

results of this study we selected the simulations obtained with R-32 used as the reference fluid; they were 

more robust than the propane-based simulations, i.e., they included extreme values of the COP and Qvol 

ranges where propane-based simulations sometimes failed. The cooling case results were reported earlier by 

McLinden et al. (2012). The main results discussed here are for the refrigeration application.  

Figure 2 presents the optimization results for four cycle options: the simple cycle, the cycle with a 100 % 

effective LL/SL-HX, the economizer cycle, and the cycle with 100 % efficient work recovery from the 

expansion process. For clarity, only those points defining the Pareto front are plotted. Following the 

convention in such optimizations, the inverse of COP and Qvol are plotted, so that solutions satisfying 

reasonably well both objectives lie at the lower left corner. For comparison, the figure includes several 

selected refrigerants being developed or in current commercial use. 

The figure demonstrates that the evolutionary optimizations yielded distinct Pareto fronts, suggesting that the 

starting populations, number of generations, and other parameters of the optimization process were 

appropriate. The Pareto front for the simple cycle is located farthest from each axis indicating the poorest 

performance among the various cycle options studied. Notice that the Pareto front for the cycle with 100 % 

expansion work recovery has a different shape than the other cycles and reaches the COPCarnot limit for a 

wide range of Qvol. This result is due to the 100 % efficient work recovery device used in our simulations; 

with the throttling irreversibilities eliminated, a fluid with an insignificant vapor superheat after compression 

will approach the COP of the Carnot cycle. The Pareto front for the cycle with 50 % work recovery (not 

shown in Figure 2) has a similar shape to the Pareto line for the economizer cycle.  

Other than the cycle with a 100 % work recovery device, the Pareto fronts display asymptotic behavior for 

both COP and Qvol; i.e., they show the upper limit of COP or Qvol that can be obtained if one is willing to 

accept a low value for the other parameter. The variation in COP has a total span of only 20 % compared to a 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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variation of Qvol of up to two orders of magnitude. Different ranges (lengths) of the Pareto fronts on the 

charts result from convergence issues in property calculations for the hypothetical fluids when stressed to 

their thermodynamic limits. The cycle with a LL/SL-HX shows a lower Qvol limit than the economizer cycle 

but a higher COP limit; however, one must bear in mind that this option assumed an idealized 100 % 

effective LL/SL-HX, which is not attainable in practice.  

Figure 3 presents the COP of the Pareto front referenced to the COPCarnot as a function of Qvol for the simple 

cycle at the cooling and refrigeration operating conditions. The figure also includes COP/COPCarnot values for 

selected refrigerants. Since the COP for the Pareto front is affected by Qvol and the COPCarnot is not, the 

COP/COPCarnot line for the Pareto front departs from unity on the chart with increasing Qvol. The COP 

deviation from the COPCarnot is greater for the refrigeration application than the cooling application. This can 

be explained by the larger temperature lift (Tcond – Tevap) in the refrigeration application (50 K) than cooling 

(30 K), which increases irreversibilities due to vapor superheat during compression and throttling. 

3.2 Optimal refrigerant EOS parameters 
 
The optimization runs showed Tcrit, pcrit, Cp˚ and ω to be the most influential EOS parameters. Figure 4 

presents their distributions for the refrigerants forming the Pareto front for the refrigeration application for (a) 

the simple cycle, (b) the cycle with the LL/SL-HX with 50 % effectiveness, and (c) the cycle with the 

LL/SL-HX with 100 % effectiveness. Each set of vertically aligned symbols represents the EOS parameters 

for a single hypothetical refrigerant. The scale for the vertical axis normalizes the value of each parameter by 

its range given in Table 1; for example, normalized values of –1 and +1 represent Tcrit values of 305 K and 

605 K, respectively.  

A common feature for all three cases is a strong positive dependence of COP on Tcrit; it is the strongest trend 

shown on the charts. This is another representation of the COP versus Qvol tradeoff. The cycles differ 

markedly in the location of symbols denoting Cp˚; the optimal values for the simple cycle are at about 10 % 

above the bottom of its range; the optimal values increase to about 15 % for the cycle with the 50 % effective 

LL/SL-HX, and reach the upper limit (Cp˚ ≈ 300 J·mol–1·K–1) for the cycle with the 100 % effective LL/SL-

HX. The optimal values for pcrit lay in the top 25 % and 10 % for the simple and LL/SL-HX cycles, 

respectively. The values of ω are consistently at the very bottom for all the cycles.  

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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The other parameters had smaller effects on the COP and capacity; they are given in Figure 5. The values of 

α2 and β1 are consistently at the bottom and top, respectively, of their ranges. The optimal values of α1 and β2 

show considerable scatter, indicating that there are no strong optimal values for these parameters. The 

remaining parameter, γ, is scattered for the simple cycle and is concentrated at the top of its range for the 

cycles with LL/SL-HX.   

The optimal values of the key thermodynamic parameters (Tcrit, pcrit, Cp˚ and ω) for the economizer cycle are 

very similar to those identified for the simple cycle. The reason is that the simple cycle and economizer cycle 

have the same “outline” on a thermodynamic diagram. The work recovery cycle differs in that the expansion 

process follows a path that is different than the constant enthalpy process of a throttling valve in the simple 

cycle; 100 % efficient work recovery is a constant entropy process, while the 50 % efficient work recovery 

case is  intermediate between a constant-enthalpy process and a constant-entropy process. An interesting 

phenomenon is the dependence of the optimum Cp˚ value on the efficiency of the work recovery cycle; the 

higher the efficiency of work recovery, the higher is the optimum value of Cp˚, as it was also observed for 

the LL/SL-HX cycle where the optimal value of Cp˚ was affected by the effectiveness of the LL/SL-HX. 

Similar to the COP charts shown in Figure 4, a Qvol chart can be constructed as presented by McLinden et al 

(2012). Such a chart presents the same data sets as those in the COP chart except that they are sorted and 

displayed in order of increasing volumetric capacity. Thus to some degree, the Qvol chart is a mirror image of 

the COP chart, which is consistent with the COP versus Qvol tradeoff demonstrated by the Pareto front. 

The implications of the thermodynamic analysis for refrigerant selection are as follows:  Select a refrigerant 

with a critical temperature based on the economic tradeoff between first costs and operating costs that is 

appropriate for the application. Select a refrigerant with as high a value of critical pressure and as low a 

value of acentric factor as possible given the other constraints. The Cp˚ should be low for the simple vapor 

compression cycle or higher for a cycle with liquid line/suction line heat exchange. Or, conversely, this last 

point can be interpreted as:  implement a LL/SL-HX (or other cycle modifications) as appropriate to match 

the thermodynamic characteristics of the refrigerant. 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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3.3 Performance of current refrigerants 
 
The currently used refrigerants are located well away from the Pareto front for every cycle configuration, 

except for 100 % work recovery. The relative location of these refrigerants on the different charts indicates 

that different cycle modifications will have different effects depending on the thermodynamic properties of 

the individual refrigerants. The currently used refrigerants are most widely scattered on the simple cycle 

chart (Figure 2a), and are most tightly grouped for the cycle with work recovery (Figure 2d). The work 

recovery device improved COP for every fluid; however, it provided a larger COP improvement for poorer 

performers than for better- performing fluids. The economizer cycle also improved COP for every refrigerant 

but to a smaller degree than the work recovery cycle.  The cycle with the LL/SL-HX provided a mixed 

influence  depending  on the molar heat capacity of the refrigerant (Domanski et al., 1994). For example, 

compared to the simple cycle, the COPs for propane and R-125 (large heat capacities) improved in the cycle 

with the LL/SL-HX, while the COPs for ammonia (NH3) and R-32 (small heat capacities) decreased. It is 

interesting to note that the performance of R-1234yf (a HFO of considerable industrial interest) is 

substantially improved by the addition of a LL/SL-HX.  

Figure 3 shows how COPs of the current refrigerants deviate from the Pareto front COPs. It is easy to see 

how the concept of the Pareto front as a representation of the performance limit on the 1/COP-1/Qvol plane 

can be used to obtain a more insightful comparison of the performances of different refrigerants than the 

commonly used comparison based on COP alone. Specifically, a ratio of the evaluated refrigerant COP to the 

COP of the “optimal” refrigerant represented on the Pareto front and having the same Qvol as the evaluated 

refrigerant would introduce to refrigerant benchmarking the fundamental tradeoff between COP and Qvol, 

which is lacking when the absolute COP value is used or referenced to the COPCarnot. 

4. CONCLUSIONS 

We have employed evolutionary optimization techniques, a theoretical cycle model, and the ECS model for 

representation of refrigerant thermodynamic properties to outline the upper performance limits of a vapor 

compression cycle (VCC) in terms of COP and Qvol for four cycle variations. We identified optimal values of 

refrigerant thermodynamic parameters required to reach these performance limits. The identified “optimal 

fluids” form a Pareto front on coordinates of 1/COP versus 1/Qvol representing the best performance that is 

http://dx.doi.org/10.1016/j.ijrefrig.2013.09.036
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allowed by thermodynamics. The study confirmed the fundamental tradeoff between the COP and Qvol, and 

indicated Tcrit as the most dominant parameter influencing it. As expected, performance of current 

refrigerants falls below the Pareto front. 

The obtained information can be helpful in preliminary screening of refrigerant candidates, which should be 

followed by rigorous modeling once a complete set of thermodynamic data is available. The VCC 

performance limits, as represented by the Pareto front, can be used to express the performance of a 

refrigerant by relating its COP to the COP of the “thermodynamically optimal” refrigerant having the same 

volumetric capacity as the evaluated refrigerant. This approach provides a more equitable benchmarking 

when refrigerants of different volumetric capacities are evaluated and compared.  
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Figure 1. Vapor compression cycles studied:  (a) simple (baseline) vapor compression cycle; (b) cycle with 

LL/SL-HX (effectivenesses of 50 % or 100 %); (c) economizer cycle with two-stage compression; and (d) 

cycle with work recovery from expansion device (efficiency of 50 % or 100 %). 
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Figure 2. Pareto front (×), and selected refrigerants () for a refrigeration application and different cycle 

options:  (a) simple VCC; (b) cycle with 100 % effective LL/SL-HX; (c) economizer cycle; and  

(d) cycle with 100 % efficient work recovery. 
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Figure 3. COP of Pareto front and selected refrigerants referenced to COPCarnot for  

simple cycle for cooling and refrigeration applications. 
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Figure 4. Refrigerant parameters (Tcrit, pcrit, Cp˚ and ω) normalized by the ranges defined in Table 1 and 

ordered by COP for fluids on the Pareto front for the different cycle options:  (a) simple VCC;  

(b) cycle with 50 % effective LL/SL-HX; (c) cycle with 100 % effective LL/SL-HX. 
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Figure 5. Refrigerant parameters (α1, α2, β1, β2, and γ) normalized by the ranges defined in Table 1 and 

ordered by COP for fluids on the Pareto front for the different cycle options: (a) simple VCC;  

(b) cycle with 50 % effective LL/SL-HX; (c) cycle with 100 % effective LL/SL-HX. 
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Figure caption 

Figure 1. Vapor compression cycles studied:  (a) simple (baseline) vapor compression cycle; (b) cycle with 

LL/SL-HX (effectivenesses of 50 % or 100 %); (c) economizer cycle with two-stage compression; 

and (d) cycle with work recovery from expansion device (efficiency of 50 % or 100 %). 

Figure 2. Pareto front (×), and selected refrigerants () for a refrigeration application and different cycle 

options:  (a) simple VCC; (b) cycle with 100 % effective LL/SL-HX; (c) economizer cycle; and  

(d) cycle with 100 % efficient work recovery. 
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simple cycle for cooling and refrigeration applications. 
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(b) cycle with 50 % effective LL/SL-HX; (c) cycle with 100 % effective LL/SL-HX. 
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ordered by COP for fluids on the Pareto front for the different cycle options: (a) simple VCC;  

(b) cycle with 50 % effective LL/SL-HX; (c) cycle with 100 % effective LL/SL-HX. 
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Table 1. ECS Fluid Parameters Varied in the Optimization Runs, and Their Ranges and Granularity 

Parameter Units Range Granularity 

Tcrit K 305 to 650 0.5 
pcrit MPa 2.0 to 12.0 0.05 
ω – 0.0 to +0.6 0.005 
α1 – –0.3 to +0.3 0.01 
α2 – –0.8 to 0.0 0.1 
β1 – –1.0 to +1.0 0.01 
β2 – –0.8 to +0.8 0.1 

Cp˚(300 K) J·mol–1·K–1 20.8 to 300 0.2 
γ K–1 0.0 to 0.0025 0.0001 
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Table 2. Cycle Simulation Cases 

Application   Tevap 
  (°C) 

 Tcond 
(°C) 

Cycle 
option Upgrade over baseline cycle 

Cooling 10 40 

1 
2 
3 
4 
5 
6 

None 
LL/SL-HX; 50 % effectiveness 

LL/SL-HX; 100 % effectiveness 
Economizer; optimized intermediate pressure 

Work recovery device; 50 % efficiency 
Work recovery device; 100 % efficiency 

Commercial 
Refrigeration –20 30 As  

Above As above 

Heating –10 30 As  
Above As above 
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