
A General Conformance Testing Framework
for IEEE 11073 PHD’s Communication Model

Linbin Yu1, Yu Lei1, Raghu N. Kacker2, D. Richard Kuhn2, Ram D. Sriram2, Kevin Brady2

1
Dept. of Computer Science and Engineering

University of Texas at Arlington

Arlington, TX 76019, USA

{linbin.yu@mavs.uta.edu, ylei@cse.uta.edu}

2
Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

{raghu.kacker, kuhn, ram.sriram,

kevin.brady}@nist.gov

ABSTRACT

ISO/IEEE 11073 Personal Health Data (IEEE 11073 PHD) is a set

of standards that addresses the interoperability of personal

healthcare devices. As an important part of IEEE 11073 PHD,

ISO/IEEE 1107-20601 optimized exchange protocol (IEEE

11073-20601) defines how personal healthcare devices

communicate with computing resources like PCs and set-top

boxes. In this paper, we propose a general conformance testing

framework for IEEE 11073-20601 protocol stack. This framework

can be used to ensure that different implementations of the

protocol stack conform to the specification and are thus able to

interoperate with each other. We are developing a prototype

research tool that applies the proposed framework to Antidote, an

open-sourced IEEE 11073-20601 protocol stack. We report some

preliminary testing results.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]

General Terms

Measurement, Design, Reliability

Keywords

IEEE 11073, Healthcare, Sequence testing.

1. INTRODUCTION
Personal healthcare is a rapidly growing market nowadays. A

variety of personal healthcare devices such as weighing scales,

blood pressure monitors, blood glucose monitors, and pulse

oximeters have been developed in recent years. However, many of

these devices cannot easily interoperate with each other. To

address this problem, ISO/IEEE 11073 Personal Health Data

(IEEE 11073 PHD) standards are developed to achieve

interoperability between different personal healthcare devices.

These standards are based on an earlier set of standards, i.e.,

ISO/IEEE 11073, which mainly focused on hospital medical

devices. Compared to hospital medical devices, which are

typically connected with an external power source, personal

healthcare devices are normally portable, energy-limited, and

have limited computing capacity. IEEE 11073 PHD standards

adapt the earlier 11073 standards to take into account these unique

characteristics of personal healthcare devices.

IEEE 11073 PHD is being adopted by more and more personal

healthcare devices in the market. These devices typically have

Bluetooth or ZigBee connectivity, and are able to transmit

measured health data to healthcare professionals for remote health

monitoring or health advising. To ensure that these products can

interoperate with each other, it is important to ensure that these

products conform to the standard communication behavior as

specified by IEEE 11073 PHD.

In this paper, we propose a general conformance testing

framework for the IEEE 11073-20601 protocol (Optimized

Exchange Protocol) [1]. IEEE 11073-20601 is a core component

in the standards family of IEEE 11073 PHD. Specifically, IEEE

11073-20601 defines a communication model that allows personal

healthcare devices to exchange data with computing resources like

mobile phones, set-top boxes, and personal computers. The

proposed framework consists of four major components, test

sequence generator, test data generator, test executor, and test

evaluator, each of which corresponds to a major step in the testing

process. The test sequence and data generator adopts a technique

called t-way testing, which has been shown to be a very effective

software testing strategy [2] [3] [4]. The test executor is

responsible for actually executing the tests generated by the test

sequence and data generator. The test evaluator is responsible for

checking whether the actual outcome of each test execution is

consistent with the expected outcome.

This paper is organized as follows. Section 2 briefly introduces

IEEE 11073 PHD. Section 3 presents the general conformance

testing framework. Section 4 describes a prototype tool that

implements the general framework on Antidote, which is an open-

source implementation of IEEE 11073-20601. Section 5 discusses

related work. Section 6 provides some concluding remarks and

several directions for future work.

2. IEEE 11073 PHD STANDARDS
IEEE 11073 PHD defines an efficient data exchange protocol as

well as the necessary data models for communication between

two types of devices, i.e., agent and manager devices. Section 2.1

introduces two key notions of the protocol, i.e., agent and

manager. Section 2.2 presents the architecture of IEEE 11073

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PETRA'13, May 29 - 31, 2013, Island of Rhodes, Greece.

Copyright © 2013 ACM 978-1-4503-1300-1/13/05... $15.00

PHD. Section 2.3 present IEEE 11073-20601, which specifies the

communicating behavior of agent and manager in terms of two

state machines.

2.1 Agent and Manager

Agents are personal healthcare devices that are used to obtain

measured health data from the user. They are normally portable,

energy-efficient and have limited computing capacity. Examples

of agent devices include blood pressure monitors, weighing scales

and blood glucose monitors. Managers are designed to manage

and process the data collected by agents. Examples of manager

devices include personal computers, mobile phones and set top

boxes. Manager devices are typically connected to an external

power source. Data collected by agent devices can be used for

further purposes such as fitness advising, health monitoring and

aging services provided by remote professionals. A typical

scenario of using IEEE 11073 PHD personal healthcare devices

and remote healthcare services is shown in Fig.1. In the left area

of Fig.1, there are various personal healthcare devices (agents)

like blood pressure monitors, weighing scales and blood glucose

monitors. Agents communicate with managers such as mobile

phones, PCs, and set-top boxes. The collected data can be sent to

professionals for various remote services. IEEE 11073 PHD

focuses the communication between agents and managers, as

shown in the red box in Fig 1.

Figure 1. A Scenario of Using IEEE 11073 PHD Devices

IEEE 11073 PHD emphasizes the interoperability between

various devices. That is, different devices should be able to

communicate with each other out-of-box. In addition to data

exchange, an agent device typically provides certain interface that

allows a manager device to configure the device. For example, the

operating frequency of a pulse oximeter can be adjusted by a

manager device. IEEE 11073 PHD takes into account the different

characteristics of agent and manager devices and treats them

differently. In particular, communication between an agent and a

manager is typically initiated and terminated by the agent when

the measured data is available. This helps to reduce power

consumption of the agent device as otherwise the agent would

have to keep listening to incoming requests. Also, since agent

devices typically have limited processing capability, they perform

minimal data processing. The data exchange between agent and

manager devices is designed to be very concise.

2.2 Architecture

IEEE 11073 PHD consists of three major models, i.e., the domain

information model (DIM), the service model, and the

communication model, as shown in Fig 2. In the domain

information model, a personal healthcare device is modeled as an

object with multiple attributes. These attributes indicate

configuration options, measured data and other particular

functionalities. The service model defines data access procedures

such as GET, SET, ACTION and Event-Report between agent

and manager. On the one hand, an agent is able to measure data

and report it to the manager. On the other hand, the manager can

configure certain agent attributes such as the operating frequency.

The communication model describes a general point-to-point

connection protocol between an agent and a manager in terms of

the agent state machines and the manager state machine.

Figure 2. Three Major Models in IEEE 11073 PHD

2.3 IEEE 11073-20601

In this paper, we focus on IEEE 11073-20601, which is a core

component of IEEE 11073 PHD. Multiple agents are allowed to

establish connections to a single manager. The point-to-point

connection between an agent and a manager is independent with

the underlying transport layers such as Bluetooth, USB or ZigBee.

The behavior of an agent or manager is described in the agent or

manager state machine, respectively.

 Figure 3. Agent State Machine

Figure 3 is an overview of the agent state machine diagram [1].

There are 7 states in this diagram, and we briefly introduce these

states. When the personal healthcare device (agent) is turned on, it

enters the Disconnected state and is ready to connect. When the

transport-layer connection between agent and manager is

established, both agent and manager enter the Unassociated state.

The agent then requires association with the manager by sending a

request, entering the Associating state. The manager will check

the configuration of the agent, and then either accept this

association request, or ask the agent for more information, or deny

this request, e.g., due to an unsupported protocol version. If the

manager accepts association request, then both agent and manager

enter the Operating states, and proceed to exchange data.

Otherwise, they enter the Sending Config state and the agent

needs to send the complete configuration profile to the manager,

so that the manager can interoperate with the agent.

State transitions are triggered by specific events. For example, the

transition from the Unassociated state to the Associating state is

triggered by the assocReq event, which represents that the agent

sends an association request to the manager. Similarly, the

transition from the Associating state to the Associated state is

triggered by the RxAssocRsp (accepted) event, which represents

that the agent receives from the manager a positive response to its

association request. For more details about each event, one may

refer to the protocol specification [1].

The manager state machine, as shown in Fig. 4, is very similar to

the agent state machine. One major difference is that, the roles of

sender and receiver are reversed. For example, the event of

association request (assocReq) in the agent state machine

corresponds to the event of receiving association request

(RxAssocReq) in the manager state machine.

 Figure 4. Manager State Machine

We use an example scenario to illustrate how the agent and

manager exchange data. In Figure 5, the agent device is a

weighting scale. It sends an association request to the manager.

The association request contains the weighting scale’s system ID,

protocol version number and other device configuration

information. The manager may be configured to support certain

devices. If the manager recognizes the system ID, it sends to the

agent a response of association acceptance. Then both devices

enter the Operating states. The agent sends a measurement data

(weight) to the manager using a service type called “Conformed

Event Report” defined in the service model. It requires the

recipient to send an acknowledgement. The manager successfully

receives the weight value and sends back the acknowledgement.

Finally the agent requests association release and the manager

responds to this request. Both devices now enter the Unassociated

state.

Figure 5. An Example Scenario of Data Exchange

3. THE GENERAL CONFORMANCE

TESTING FRAMEWORK
Fig. 6 shows an overview of the proposed testing framework. The

test sequence generator first generates test sequences from the

state machine model as specified by IEEE 11073-20601. Next the

test data generator generates test data for each test sequence,

based on the domain information model. Then, the generated test

sequences and data are executed by the test executor. The test

evaluator checks the outcome of each test execution and reports

the evaluation results.

As discussed earlier, there are two state machines in the

communication model as specified by IEEE 11073-20601. The

agent state machine is maintained by the agent application, and

the manager state machine is maintained by the manager

application. These two state machines are tested separately in our

general testing framework. A test driver is employed to interact

with the agent or manager state machine that is currently being

tested. When we test the agent state machine, the test driver acts

like the manager state machine. When we test the manager state

machine, the test driver acts like the agent state machine.

3.1 Test Sequence Generator
The test sequence generator adopts an effective software testing

strategy called t-way testing for test sequence generation [5]. The

key idea of t-way testing is the following. While a system as a

whole could be affected by many factors, individual faults are

typically affected by only a few factors. A widely cited NIST

study of several practical applications reports that all the faults in

these applications are caused by no more than 6 factors [3]. If test

factors are modeled properly, t-way testing is guaranteed to reveal

all the faults that are caused by no more than t factors.

Figure 6. An Overview of the Proposed Framework

The notion of t-way sequence testing, i.e., the notion of applying

t-way testing for test sequence generation, appeared in [6].

Several efficient algorithms for general t-way sequence generation

are also reported in [5]. In the following, we first introduce the

basic idea of t-way sequence testing. We then discuss how to

apply t-way sequence testing to IEEE 11073.

A system under test can be modeled as a labeled transition system

(LTS). An LTS is represented by a directed graph, in which each

vertex represents a state, and each directed edge labeled with an

event represents a transition between two states. A path from one

node to another is also called a transition sequence. A complete

transition sequence is a transition sequence that is exercised by a

complete system execution and that must begin with an initial

state and end with a final state. An example LTS graph is shown

in Figure 7.

Figure 7. An Example LTS

An LTS is typically built from behavioral specifications, high-

/low-level designs, or implementations at a certain level of

abstraction. The size of an LTS can be controlled by choosing an

appropriate level of abstraction and by modeling components that

are of interest, i.e., instead of the whole system.

A t-way target sequence is a sequence of t events that could be

exercised in the given order, consecutively or inconsecutively, by

a single system execution. The same event can be exercised for

multiple times in a t-way target sequence. Note that not every

sequence of t arbitrary events is a t-way target sequence. A test

sequence is a complete transition sequence, i.e., it starts from an

initial state and ends with a final state in the LTS graph.

Intuitively, a test sequence is a transition sequence that can be

exercised by a test execution.

The notion of t-way sequence coverage is defined based on the

notions of t-way target sequences and test sequences. T-way target

sequences are test requirements, i.e., sequences that must be

covered; test sequences are test cases that are generated to cover

all the t-way target sequences. Coverage of t-way sequences

requires that every t-way target sequence be covered by at least

one test sequence, where t is typically a small integer. For

example, if t is 2, then t-way coverage requires all pair of events

(not transitions) must be tested, consecutively or inconsecutively.

Note that a target sequence is a sequence of events, while a test

sequence is a sequence of transitions.

To apply t-way sequence testing to IEEE 11073-20601, we first

build two system models, one for the agent state machine and the

other for the manager state machine. This requires the hierarchical

structures of the state machines shown in Fig. 3 and Fig. 4 to be

flattened. The key observation is that if a transition starts from a

group of states, it can essentially start from any state in this group.

For example, in Fig. 3, the transition labeled as Transport

disconnect indication can start from every state in the Connected

group, which contains 6 sub-states. Similarly, if a transition ends

with a group of states, it can essentially end with any state in this

group. Fig. 8 shows the flattened manager state machine, which

consists of 7 states, 32 transitions and 15 unique events.

Figure 8. Flattened Manager State Machine

Our test sequence generator generates test sequence uses an

algorithm proposed in our earlier work [5]. This algorithm builds

a test sequence from each target sequence that needs to be covered,

and then selects a minimal set of these test sequences that covers

all the target sequences using a greedy algorithm. A test sequence

set that covers all the target sequences is minimal if no proper

subset also covers all the target sequences. Take the system in

Figure 7 as an example. There are 16 possible 2-way sequences

for 4 events a, b, c, and d. But only 5 of them are 2-way target

sequences, which are {ab, bb, bc, bd, cb}. Other sequences such

as cd cannot be exercised according to the transition structure.

Thus, these sequences are not 2-way target sequences.

Next we generate a test sequence to cover each target sequence.

For target sequence ab, test sequence r1r4 is generated. For

target sequence bb, test sequence, r2r3r4 is generated. For bc

and cb, they are already covered by r2r3r4. Thus no new test

sequences are generated for these two target sequences. For bd,

test sequence r2r5 is generated. The three test sequences r1r4,

r2r3r4, and r2r5 cover all the 2-way target sequences. Note

State Machine

Model

Test Sequence

Generator

Domain

Information

Model

Test Data

Generator

Test

Sequences

Test Data

Test

Executor

Evaluation

Report

Execution

Traces

Test Evaluator User Defined

Evaluation

Rules

that these three test sequences form a minimal set, i.e., all of them

are needed to cover all the 2-way target sequences.

For the flattened agent state machine, we generated 60 test

sequences for 2-way testing. The same number of test sequences

is generated for the manager state machine. The length of each

test sequence ranges from 6 to 12, with an average of 10.6.

3.2 Test Data Generator
A test sequence only specifies the types of events that need to be

exercised. To execute a test sequence, test data must be generated

for each event in the sequence. There are four types of events in

the state machines, including application requests, condition

indications, receive events and send events. Application requests

like association request and association release request are

triggered by higher level end-user application. Condition

indications like transport connect indication and transport

disconnect indication are triggered by lower level transports like

TCP/IP connection. These events can be exercised by invoking

certain API functions, and no data are needed. However, test data

are needed for executing the other two kinds of events, send and

receive events.

For a send event, data is sent from the test driver. The test driver

is responsible for constructing the concrete message, and sending

it to the system under test. These messages are constructed

according to information like message type, current state, and the

domain information model, which is provided by the user through

an XML file. For example, assume we are testing the manager

state machine, and we need a send event RxAssocReq. This event

means the agent sends a request of association. The test driver

builds a message using user-provided information like device

config-ID, and then sends it to the manager under test to execute

this event.

For a receive event, data is sent from the system under test itself.

The message is constructed by the underlying protocol stack, thus

only some system configuration like system ID are needed. For

example, assume we are testing the agent, and it just sends an

association request to the test driver (manager). The current state

of agent is Associating. The next state could be either

Unassociated, if the manager rejects the association request; or be

Associated, if the manager accepts this request. The decision is

based on the configuration of agent. Thus in order to exercise the

particular event, we have to generate correct configurations for the

system under test.

3.3 Test Executor
The test executor deals with how to actually execute a specific test

sequence, i.e., how to make sure that the events in the test

sequence be exercised in order. As discussed earlier, there are four

major types of events in state machines. In the following, we

discuss how each type of event is executed:

 Application requests are sent by the end-user applications,

which are built on top of the protocol state machines. These

events are executed by invoking the appropriate access points.

The specific syntax of these access points may vary in

different protocol implementations.

 Condition indications come from low level software layer

like transport plug-in. The indications can also be executed

by invoking the appropriate access points as defined in the

service model. Similar to application requests, the specific

syntax of these access points may vary in different protocol

implementations

 Send events are determined by the current state and certain

conditions. These conditions are defined by the IEEE 11073

specification. As discussed earlier, we generate test data for

send events. If these data are correctly generated, these

events will be exercised as expected.

 Receive events are triggered by incoming messages sent

from the test driver. If we are testing an agent device, the test

driver acts like a manager application to communicate with

the device. The test executor will read the generated data and

then encode them properly, and then communicate with the

system under test.

There are two methods to execute send/receive events, i.e.,

through the transport layer or through the APIs exposed by the

protocol implementation. The former method is more general,

since a standalone program can be used to communicate with the

protocol implementation under test through a transport protocol

such as Bluetooth. Our framework adopts the latter method, which

is more efficient since we invoke certain APIs to directly supply

messages to the system under test, without network transmission.

Since different IEEE 11073 applications may provide different

APIs, we provide a set of common interfaces to exercise a well-

defined set of protocol events. For different protocol

implementations, different adapters can be used to trigger these

events.

3.4 Test Evaluator
After a test sequence is executed, we need to evaluate the outcome

of the test execution in order to determine whether the device

under test works as expected. The evaluation consists of two parts.

The first part is to ensure that individual messages are correct,

both in terms of the message format and the actual data values in

the message. Existing tools like Validate PDU [7] developed by

NIST can be used for this purpose. The second part of the

evaluation is to ensure that messages are exchanged in a sequence

that is expected. The type of each message received by the test

driver is checked to ensure that it is the expected message type. In

addition, check certain data fields are checked based on user-

defined evaluation rules, if provided.

The evaluation results for each test sequence are aggregated and

analyzed to generate a test report that summarizes the results. The

test report displays the statistics of test execution, including the

number of successful test executions, the number of failed events,

and the results of user-defined evaluation rules.

4. A PROTOTYPE TOOL
A prototype research tool is being built by applying the proposed

testing framework to Antidote, an open source implementation of

IEEE 11073-20601.

4.1 Antidote
Antidote [1] is an open source implementation of IEEE 11073-

20601. Antidote provides a library of APIs that can be used to

develop IEEE 11073 applications. The main design goal of

Antidote is to provide a set of convenient APIs that can handle

communications for IEEE 11073 PHD Agent and Manager. The

architecture of Antidote [8] is illustrated in Fig.9.

In Fig. 9, green components, i.e., manager application,

communication plug-in and transcoding plug-in do not belong to

Antidote implementation. They are implemented by the user for

developing an executable application. Components in the dark

blue area are IEEE 11073 PHD stack, including domain

information model, service model and communication model,

which are defined in the 11073 specification. Other components

are Antidote specific components that are designed to facilitate

the development for IEEE 11073 PHD applications.

Figure 9. The Architecture of Antidote [8]

We briefly introduce some major components as follows.

 Manager and agent APIs provides useful functions to the

user for dealing with communication for IEEE 11073 PHD

applications.

 Data encoders are used to encode data such as measurements

and configuration in an independent format like XML and

JSON, so that the developer does not need to deal with the

data format used in IEEE 11073 PHD.

 The communication plug-ins offer different choices for the

transport layer. Antidote provides an interface for

communication plug-ins, and allows the user to provide

customized implementations for the interface.

 The transcoding plug-in allows devices that do not support

IEEE 11073 PHD to communicate with Antidote.

4.2 Implementation
As shown in Fig. 6, the general framework has four major

components, test sequence generator, test data generator, test

executor, and test evaluator. Only the test executor component

needs to be implemented in a way that is specific to Antidote,

while the other components can be implemented in a way that is

independent from Antidote. In the following, we focus on the

implementation of the test executor for Antidote.

From Fig. 6, test data are needed for executing test sequences. In

order to execute each event in a test sequence, we have to invoke

corresponding APIs provided by Antidote, or communicate with

the system under test through message passing. Since in Antidote,

the API for receiving messages is provided by the communication

plug-in, we can construct messages and feed them directly to the

system under test, without actually sending and receiving

messages across a network.

We use an example to illustrate how to execute a test sequence for

the manager state machine. The example test sequence consists of

5 events. The transition sequence is shown in Fig. 10. These 5

events are also listed in Table 1. Columns 2, 3, and 4 shows the

current state, the event name and the event type, respectively,

according to the protocol. Column 5 shows the corresponding

event name defined in Antidote. The last column shows the

Antidote API used to execute each event.

 Figure 10. An Example Transition Path (Manager)

The first event “Transport connect indication” is triggered by a

manager API function called “manager_start”. By executing this

function, the transport (TCP/IP in this example) is established.

Then the agent requests association (RxAssocReq). For the manager

state machine, this event is an incoming message sent from the

agent. The test driver builds a correct message msg, and then

sends it to the manager using function

“communication_process_apdu” provided by the TCP/IP

communication plug-in. Then the manager should accept this

request automatically based on the agent configuration, assuming

that the agent state machine is configured properly. A correct

message containing “known configuration” will lead the manager

to the Operating state, while an incorrect message containing

“unknown configuration” will lead the manager to the Waiting for

configure states. Then in the next event, the manager requests

association release (assocRelReq) and this can be done by calling

an API “manager_request_association_release” provided by

Antidote. In the last step, the transport layer is disconnected by

invoking another API “manager_stop”.

4.3 Preliminary Results
In this section we report some preliminary results of testing

Antidote using the prototype research tool. We only tested the

manager state machine. The flattened manager state machine

shown in Fig. 8 contains 7 states, 32 transitions and 15 unique

events. Using the t-way sequence generation algorithm in [5], we

generated 60 2-way test sequences with length ranging from 6 to

12. Each test sequence starts from the disconnected state, and ends

with the same state. We executed these sequences and collected

code coverage using a tool LCOV [9].

Table 1. An Example of Manager Test Sequence Execution

 State Protocol Event Event Type Antidote Event Antidote API

1 Disconnected
Transport connect

indication
condition indication fsm_evt_ind_transport_connection manager_start()

2 Unassociated RxAssocReq send event fsm_evt_rx_aarq communication_process_apdu(msg)

3 Associating TxAssocRsp(accepted) receive event fsm_evt_rx_aare_accepted_known -

4 Operating assocRelReq application request fsm_evt_req_assoc_rel manager_request_association_release()

5 Disassociated
Transport disconnect

indication
condition indication fsm_evt_ind_transport_disconnect manager_stop()

Fig. 11 shows the structure of the Antidote source code [8] .

Figure 11. Antidote Code Structure [8]

Since we focus on the communication model, we only present

code coverage data for the source files in the communication

folder. This folder contains files that implement the

communication model, in terms of state machines, transition rules,

event handling, etc. The files in the sub-directories like parser

and plugin are not counted, since they are not at the core of the

communication model and thus are not the target of our

experiment.

Figure 12. Code Coverage Results

Fig. 12 shows the code coverage results. For three files, i.e.,

context_manager.c, fsm.c, and stdconfigurations.c, we achieved

more than 80% coverage. For two files, i.e., association.c and

communication.c, we achieved close to 50% coverage. Whereas

the coverage results for other files are low, these results are

consistent with or even better than our expectation because of the

limited scope of our preliminary study. In particular, we only

tested the implementation of the manager state machine, and we

did not consider all the events like error handling or operations

defined in the service model. We note that four files, i.e.,

agent_ops.c, disassociating.c, operating.c, and service.c, were not

executed because they are out of scope. Specifically, file

agent_ops.c and disassociating.c are only used when we testing

the agent state machine. Files operating.c and service.c are used

to implement the service model which was not tested in our

experiments. We emphasize that this is only a preliminary

experiment and it is our plan to test the entire implementation,

including the agent state machine, the service mode, and the error

handling mechanism.

5. RELATED WORK
In recent years, much research has been conducted on

conformance and interoperability testing for medical/healthcare

devices. These works can be divided into two categories, i.e.,

testing health information systems and testing medical or

healthcare devices.

Snelick et. al. [10] compared conformance testing strategies for

HL-7, a widely used standard for healthcare clinical data

exchange. They analyzed two techniques for conducting

conformance testing, i.e., using Upper Tester and Lower Tester,

and using an actor based strategy. Namli [11] proposed a

complete test execution framework for HL7-based systems. The

framework is built on top of an extensible test execution model.

This model is represented by an interpretable test description

language, which allows dynamic test setup. Berube and Pambrun

[12] presented a web application for testing interoperability in

healthcare for sharing images between different institutions.

These works have mainly focused on developing a general test

execution framework. This is in contrast with our work, which

focuses on the communication model of IEEE 11073 PHD, and

proposed a general conformance testing framework that

streamlines the entire testing process, i.e., from test generation to

test execution to test evaluation..

Garguilo et. al. [7] developed conformance testing tools based on

an XML schema derived directly from IEEE 11073 standard and

corresponding electronic representations. This approach allows

users to define abstract devices using device profiles and

implementation conformance statements. They are subsequently

used to provide syntactic and semantic validation of individual

medical device messages, according to IEEE 11073. This is

complementary to our work. We focus on testing event sequences

and their tool can be used to check correctness of individual

messages. Lim et. al. [13] proposed a toolkit that can generate

standard PHD messages using user-defined device information.

This facilitates users who are not familiar with the standards

details. This is similar to our test data generator, which generates

individual messages from the domain information model.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a general conformance testing

framework for IEEE 11073 PHD’s communication model. This

framework aims to streamline the entire testing process, including

test generation, test execution and test evaluation. A novel aspect

of this framework is that we adopt a technique called t-way

testing to generate test sequences. The notion of t-way testing has

been shown very effective for software testing. We also report a

prototype research tool that implements this framework for an

open-source implementation of IEEE 11073 PHD’s

communication model, i.e., Antidote. This prototype research tool

demonstrates how to implement the proposed framework for a

given implementation.

We note that in practice, the communication model is typically an

embedded component inside a medical device. As a result, the

communication model may not be fully implemented. In

particular, some message exchange sequences that are allowed by

the communication model may not be allowed by a particular

implementation. In this case, the test sequences need to be

generated from a reduced state machine.

In our future work, we will complete our study of testing Antidote

using the proposed framework. In particular, we will generate test

sequences from the complete state machine, and also measure the

effectiveness of the framework using real and/or seeded faults in

addition to code coverage. Furthermore, we will apply our

framework to test some real devices to check their compliance

with the IEEE 11073 PHD standards. The goal of our project is to

develop a set of tools that can automate, as much as possible, the

conformance testing process of medical devices designed to be

IEEE 11073 PHD compliant.

ACKNOWLEDGMENT

This work is partly supported by grants (70NANB9H9178,

70NANB10H168, 70NANB12H175) from Information

Technology Laboratory of National Institute of Standards and

Technology (NIST).

Disclaimer: Identification of commercial products in this

report does not imply recommendation or endorsement by NIST.

REFERENCES
[1] IEEE Std 11073-20601™, Health informatics – Personal

health devicecommunication– Part 20601: Optimized

exchange protocol.

[2] D. R. Kuhn, D. R. Wallace, and A. J. Gallo Jr., "Software fault

interactions and implications for software testing," IEEE

Transactions on Software Engineering , vol. 30, no. 6, pp.

418-421 , 2004.

[3] D. R. Kuhn and M. J. Reilly, "An investigation of the

applicability of Experiments to Software Testing," in 27th

NASA/IEEE Software Engineering Workshop, 2002.

[4] D. R. Wallace and D. R. Kuhn, "Failure modes in medical

device software: An analysis of 15 years of recall data,"

International Journal of Reliability, Quality and Safety

Engineering, pp. 301-311, 2001.

[5] L. Yu, Y. Lei, R. Kacker, D. R. Kuhn, and J. Lawrence,

"Efficient Algorithms for T-way Test Sequence Generation,"

in 2012 IEEE 17th International Conference on Engineering

of Complex Computer Systems, 2012.

[6] D.R. Kuhn, J. Higdon, J. Lawrence, R.N. Kacker, and Y. Lei,

"Combinatorial Methods for Event Sequence Testing," in First

Intl Workshop on Combinatorial Testing, in conjunction with

Fifth Intl Conference on Software Testing, Verification and

Validation, 2012.

[7] J.J. Garguilo, S.I. Martinez, and M. Cherkaoui, "Medical

Device Communication: A Standards-based Conformance

Testing Approach," in the 9th International HL7 Inter-

operability Conference, 2008.

[8] Antidote Program Guide. [Online]. http://oss.signove.com/

index.php/File:AntidoteProgramGuide.pdf

[9] LCOV: graphical GCOV front-end. [Online]. http://ltp.

sourceforge.net/coverage/lcov.php

[10] R.D. Snelick, L.E. Gebase, and M.W. Skall, "Conformance

Testing and Interoperability: A Case Study in Healthcare Data

Exchange," in International Conference on Software

Engineering Research and Practice, 2008.

[11] T. Namli, G. Aluc, and A. Dogac, "An Interoperability Test

Framework for HL7-Based Systems, Information Technology

in Biomedicine," IEEE Transactions on Information

Technology in Biomedicine, vol. 13, no. 3, pp. 389- 399 ,

2009.

[12] R. Berube and J.F. Pambrun, "Interoperability Testing

Software for Sharing Medical Documents and Images," in

Fifth International Conference on Internet and Web

Applications and Services, 2010, pp. 432- 437.

[13] J.H. Lim, C. Park, S.J. Park, and K.C. Lee, "ISO/IEEE 11073

PHD message generation toolkit to standardize healthcare

device," in IEEE Engineering in Medicine and Biology

Society, 2011.

[14] Continua Health Alliance. [Online]. http://www.continua

alliance.org/

[15] Y.W. Tung and W. S. Aldiwan, "Automating test case

generation for the new generation mission software system,"

in Proceedings of IEEE Aerospace Conference, 2000.

