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ABSTRACT 

ISO/IEEE 11073 Personal Health Data (IEEE 11073 PHD) is a set 

of standards that addresses the interoperability of personal 

healthcare devices. As an important part of IEEE 11073 PHD, 

ISO/IEEE 1107-20601 optimized exchange protocol (IEEE 

11073-20601) defines how personal healthcare devices 

communicate with computing resources like PCs and set-top 

boxes. In this paper, we propose a general conformance testing 

framework for IEEE 11073-20601 protocol stack. This framework 

can be used to ensure that different implementations of the 

protocol stack conform to the specification and are thus able to 

interoperate with each other. We are developing a prototype 

research tool that applies the proposed framework to Antidote, an 

open-sourced IEEE 11073-20601 protocol stack. We report some 

preliminary testing results.  

Categories and Subject Descriptors 

J.3 [Life and Medical Sciences]  

General Terms 

Measurement, Design, Reliability 

Keywords 

IEEE 11073, Healthcare, Sequence testing. 

 

1. INTRODUCTION 
Personal healthcare is a rapidly growing market nowadays. A 

variety of personal healthcare devices such as weighing scales, 

blood pressure monitors, blood glucose monitors, and pulse 

oximeters have been developed in recent years. However, many of 

these devices cannot easily interoperate with each other. To 

address this problem, ISO/IEEE 11073 Personal Health Data 

(IEEE 11073 PHD) standards are developed to achieve 

interoperability between different personal healthcare devices. 

These standards are based on an earlier set of standards, i.e., 

ISO/IEEE 11073, which mainly focused on hospital medical 

devices. Compared to hospital medical devices, which are 

typically connected with an external power source, personal 

healthcare devices are normally portable, energy-limited, and 

have limited computing capacity. IEEE 11073 PHD standards 

adapt the earlier 11073 standards to take into account these unique 

characteristics of personal healthcare devices.  

IEEE 11073 PHD is being adopted by more and more personal 

healthcare devices in the market. These devices typically have 

Bluetooth or ZigBee connectivity, and are able to transmit 

measured health data to healthcare professionals for remote health 

monitoring or health advising. To ensure that these products can 

interoperate with each other, it is important to ensure that these 

products conform to the standard communication behavior as 

specified by IEEE 11073 PHD. 

In this paper, we propose a general conformance testing 

framework for the IEEE 11073-20601 protocol (Optimized 

Exchange Protocol) [1]. IEEE 11073-20601 is a core component 

in the standards family of IEEE 11073 PHD. Specifically, IEEE 

11073-20601 defines a communication model that allows personal 

healthcare devices to exchange data with computing resources like 

mobile phones, set-top boxes, and personal computers. The 

proposed framework consists of four major components, test 

sequence generator, test data generator, test executor, and test 

evaluator, each of which corresponds to a major step in the testing 

process. The test sequence and data generator adopts a technique 

called t-way testing, which has been shown to be a very effective 

software testing strategy [2] [3] [4]. The test executor is 

responsible for actually executing the tests generated by the test 

sequence and data generator. The test evaluator is responsible for 

checking whether the actual outcome of each test execution is 

consistent with the expected outcome. 

This paper is organized as follows. Section 2 briefly introduces 

IEEE 11073 PHD. Section 3 presents the general conformance 

testing framework. Section 4 describes a prototype tool that 

implements the general framework on Antidote, which is an open-

source implementation of IEEE 11073-20601. Section 5 discusses 

related work. Section 6 provides some concluding remarks and 

several directions for future work.  

2. IEEE 11073 PHD STANDARDS 
IEEE 11073 PHD defines an efficient data exchange protocol as 

well as the necessary data models for communication between 

two types of devices, i.e., agent and manager devices. Section 2.1 

introduces two key notions of the protocol, i.e., agent and 

manager. Section 2.2 presents the architecture of IEEE 11073 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

PETRA'13, May 29 - 31, 2013, Island of Rhodes, Greece. 

Copyright © 2013 ACM 978-1-4503-1300-1/13/05... $15.00 



PHD. Section 2.3 present IEEE 11073-20601, which specifies the 

communicating behavior of agent and manager in terms of two 

state machines.  

2.1 Agent and Manager 

Agents are personal healthcare devices that are used to obtain 

measured health data from the user. They are normally portable, 

energy-efficient and have limited computing capacity. Examples 

of agent devices include blood pressure monitors, weighing scales 

and blood glucose monitors. Managers are designed to manage 

and process the data collected by agents. Examples of manager 

devices include personal computers, mobile phones and set top 

boxes. Manager devices are typically connected to an external 

power source. Data collected by agent devices can be used for 

further purposes such as fitness advising, health monitoring and 

aging services provided by remote professionals. A typical 

scenario of using IEEE 11073 PHD personal healthcare devices 

and remote healthcare services is shown in Fig.1. In the left area 

of Fig.1, there are various personal healthcare devices (agents) 

like blood pressure monitors, weighing scales and blood glucose 

monitors. Agents communicate with managers such as mobile 

phones, PCs, and set-top boxes. The collected data can be sent to 

professionals for various remote services. IEEE 11073 PHD 

focuses the communication between agents and managers, as 

shown in the red box in Fig 1. 

 

Figure 1. A Scenario of Using IEEE 11073 PHD Devices 

IEEE 11073 PHD emphasizes the interoperability between 

various devices. That is, different devices should be able to 

communicate with each other out-of-box. In addition to data 

exchange, an agent device typically provides certain interface that 

allows a manager device to configure the device. For example, the 

operating frequency of a pulse oximeter can be adjusted by a 

manager device. IEEE 11073 PHD takes into account the different 

characteristics of agent and manager devices and treats them 

differently. In particular, communication between an agent and a 

manager is typically initiated and terminated by the agent when 

the measured data is available. This helps to reduce power 

consumption of the agent device as otherwise the agent would 

have to keep listening to incoming requests. Also, since agent 

devices typically have limited processing capability, they perform 

minimal data processing. The data exchange between agent and 

manager devices is designed to be very concise. 

2.2 Architecture 

IEEE 11073 PHD consists of three major models, i.e., the domain 

information model (DIM), the service model, and the 

communication model, as shown in Fig 2. In the domain 

information model, a personal healthcare device is modeled as an 

object with multiple attributes. These attributes indicate 

configuration options, measured data and other particular 

functionalities. The service model defines data access procedures 

such as GET, SET, ACTION and Event-Report between agent 

and manager. On the one hand, an agent is able to measure data 

and report it to the manager. On the other hand, the manager can 

configure certain agent attributes such as the operating frequency. 

The communication model describes a general point-to-point 

connection protocol between an agent and a manager in terms of 

the agent state machines and the manager state machine.   

 

Figure 2. Three Major Models in IEEE 11073 PHD  

 

2.3 IEEE 11073-20601  

In this paper, we focus on IEEE 11073-20601, which is a core 

component of IEEE 11073 PHD. Multiple agents are allowed to 

establish connections to a single manager. The point-to-point 

connection between an agent and a manager is independent with 

the underlying transport layers such as Bluetooth, USB or ZigBee. 

The behavior of an agent or manager is described in the agent or 

manager state machine, respectively. 

  

 Figure 3. Agent State Machine  



Figure 3 is an overview of the agent state machine diagram [1]. 

There are 7 states in this diagram, and we briefly introduce these 

states. When the personal healthcare device (agent) is turned on, it 

enters the Disconnected state and is ready to connect. When the 

transport-layer connection between agent and manager is 

established, both agent and manager enter the Unassociated state. 

The agent then requires association with the manager by sending a 

request, entering the Associating state. The manager will check 

the configuration of the agent, and then either accept this 

association request, or ask the agent for more information, or deny 

this request, e.g., due to an unsupported protocol version. If the 

manager accepts association request, then both agent and manager 

enter the Operating states, and proceed to exchange data. 

Otherwise, they enter the Sending Config state and the agent 

needs to send the complete configuration profile to the manager, 

so that the manager can interoperate with the agent.   

State transitions are triggered by specific events. For example, the 

transition from the Unassociated state to the Associating state is 

triggered by the assocReq event, which represents that the agent 

sends an association request to the manager. Similarly, the 

transition from the Associating state to the Associated state is 

triggered by the RxAssocRsp (accepted) event, which represents 

that the agent receives from the manager a positive response to its 

association request. For more details about each event, one may 

refer to the protocol specification [1].  

The manager state machine, as shown in Fig. 4, is very similar to 

the agent state machine. One major difference is that, the roles of 

sender and receiver are reversed. For example, the event of 

association request (assocReq) in the agent state machine 

corresponds to the event of receiving association request 

(RxAssocReq) in the manager state machine.  

 

 Figure 4. Manager State Machine  

We use an example scenario to illustrate how the agent and 

manager exchange data. In Figure 5, the agent device is a 

weighting scale. It sends an association request to the manager. 

The association request contains the weighting scale’s system ID, 

protocol version number and other device configuration 

information. The manager may be configured to support certain 

devices. If the manager recognizes the system ID, it sends to the 

agent a response of association acceptance. Then both devices 

enter the Operating states. The agent sends a measurement data 

(weight) to the manager using a service type called “Conformed 

Event Report” defined in the service model. It requires the 

recipient to send an acknowledgement. The manager successfully 

receives the weight value and sends back the acknowledgement. 

Finally the agent requests association release and the manager 

responds to this request. Both devices now enter the Unassociated 

state.  

 

Figure 5. An Example Scenario of Data Exchange 

 

3. THE GENERAL CONFORMANCE 

TESTING FRAMEWORK 
Fig. 6 shows an overview of the proposed testing framework. The 

test sequence generator first generates test sequences from the 

state machine model as specified by IEEE 11073-20601. Next the 

test data generator generates test data for each test sequence, 

based on the domain information model. Then, the generated test 

sequences and data are executed by the test executor. The test 

evaluator checks the outcome of each test execution and reports 

the evaluation results.  

As discussed earlier, there are two state machines in the 

communication model as specified by IEEE 11073-20601. The 

agent state machine is maintained by the agent application, and 

the manager state machine is maintained by the manager 

application. These two state machines are tested separately in our 

general testing framework. A test driver is employed to interact 

with the agent or manager state machine that is currently being 

tested. When we test the agent state machine, the test driver acts 

like the manager state machine. When we test the manager state 

machine, the test driver acts like the agent state machine. 

3.1 Test Sequence Generator  
The test sequence generator adopts an effective software testing 

strategy called t-way testing for test sequence generation [5]. The 

key idea of t-way testing is the following. While a system as a 

whole could be affected by many factors, individual faults are 

typically affected by only a few factors. A widely cited NIST 

study of several practical applications reports that all the faults in 

these applications are caused by no more than 6 factors [3]. If test 

factors are modeled properly, t-way testing is guaranteed to reveal 

all the faults that are caused by no more than t factors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. An Overview of the Proposed Framework  

The notion of t-way sequence testing, i.e., the notion of applying 

t-way testing for test sequence generation, appeared in [6]. 

Several efficient algorithms for general t-way sequence generation 

are also reported in [5]. In the following, we first introduce the 

basic idea of t-way sequence testing. We then discuss how to 

apply t-way sequence testing to IEEE 11073. 

A system under test can be modeled as a labeled transition system 

(LTS). An LTS is represented by a directed graph, in which each 

vertex represents a state, and each directed edge labeled with an 

event represents a transition between two states. A path from one 

node to another is also called a transition sequence. A complete 

transition sequence is a transition sequence that is exercised by a 

complete system execution and that must begin with an initial 

state and end with a final state. An example LTS graph is shown 

in Figure 7. 

 

Figure 7. An Example LTS  

An LTS is typically built from behavioral specifications, high-

/low-level designs, or implementations at a certain level of 

abstraction. The size of an LTS can be controlled by choosing an 

appropriate level of abstraction and by modeling components that 

are of interest, i.e., instead of the whole system.  

A t-way target sequence is a sequence of t events that could be 

exercised in the given order, consecutively or inconsecutively, by 

a single system execution. The same event can be exercised for 

multiple times in a t-way target sequence. Note that not every 

sequence of t arbitrary events is a t-way target sequence. A test 

sequence is a complete transition sequence, i.e., it starts from an 

initial state and ends with a final state in the LTS graph. 

Intuitively, a test sequence is a transition sequence that can be 

exercised by a test execution.   

The notion of t-way sequence coverage is defined based on the 

notions of t-way target sequences and test sequences. T-way target 

sequences are test requirements, i.e., sequences that must be 

covered; test sequences are test cases that are generated to cover 

all the t-way target sequences. Coverage of t-way sequences 

requires that every t-way target sequence be covered by at least 

one test sequence, where t is typically a small integer. For 

example, if t is 2, then t-way coverage requires all pair of events 

(not transitions) must be tested, consecutively or inconsecutively. 

Note that a target sequence is a sequence of events, while a test 

sequence is a sequence of transitions. 

To apply t-way sequence testing to IEEE 11073-20601, we first 

build two system models, one for the agent state machine and the 

other for the manager state machine. This requires the hierarchical 

structures of the state machines shown in Fig. 3 and Fig. 4 to be 

flattened. The key observation is that if a transition starts from a 

group of states, it can essentially start from any state in this group. 

For example, in Fig. 3, the transition labeled as Transport 

disconnect indication can start from every state in the Connected 

group, which contains 6 sub-states. Similarly, if a transition ends 

with a group of states, it can essentially end with any state in this 

group. Fig. 8 shows the flattened manager state machine, which 

consists of 7 states, 32 transitions and 15 unique events.  

 

Figure 8. Flattened Manager State Machine 

Our test sequence generator generates test sequence uses an 

algorithm proposed in our earlier work [5]. This algorithm builds 

a test sequence from each target sequence that needs to be covered, 

and then selects a minimal set of these test sequences that covers 

all the target sequences using a greedy algorithm. A test sequence 

set that covers all the target sequences is minimal if no proper 

subset also covers all the target sequences. Take the system in 

Figure 7 as an example. There are 16 possible 2-way sequences 

for 4 events a, b, c, and d. But only 5 of them are 2-way target 

sequences, which are {ab, bb, bc, bd, cb}. Other sequences such 

as cd cannot be exercised according to the transition structure. 

Thus, these sequences are not 2-way target sequences.  

Next we generate a test sequence to cover each target sequence. 

For target sequence ab, test sequence r1r4 is generated. For 

target sequence bb, test sequence, r2r3r4 is generated. For bc 

and cb, they are already covered by r2r3r4. Thus no new test 

sequences are generated for these two target sequences. For bd, 

test sequence r2r5 is generated. The three test sequences r1r4, 

r2r3r4, and r2r5 cover all the 2-way target sequences. Note 
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that these three test sequences form a minimal set, i.e., all of them 

are needed to cover all the 2-way target sequences. 

For the flattened agent state machine, we generated 60 test 

sequences for 2-way testing. The same number of test sequences 

is generated for the manager state machine. The length of each 

test sequence ranges from 6 to 12, with an average of 10.6.  

3.2 Test Data Generator 
A test sequence only specifies the types of events that need to be 

exercised. To execute a test sequence, test data must be generated 

for each event in the sequence. There are four types of events in 

the state machines, including application requests, condition 

indications, receive events and send events. Application requests 

like association request and association release request are 

triggered by higher level end-user application. Condition 

indications like transport connect indication and transport 

disconnect indication are triggered by lower level transports like 

TCP/IP connection. These events can be exercised by invoking 

certain API functions, and no data are needed. However, test data 

are needed for executing the other two kinds of events, send and 

receive events.  

For a send event, data is sent from the test driver. The test driver 

is responsible for constructing the concrete message, and sending 

it to the system under test. These messages are constructed 

according to information like message type, current state, and the 

domain information model, which is provided by the user through 

an XML file. For example, assume we are testing the manager 

state machine, and we need a send event RxAssocReq. This event 

means the agent sends a request of association. The test driver 

builds a message using user-provided information like device 

config-ID, and then sends it to the manager under test to execute 

this event.   

For a receive event, data is sent from the system under test itself. 

The message is constructed by the underlying protocol stack, thus 

only some system configuration like system ID are needed. For 

example, assume we are testing the agent, and it just sends an 

association request to the test driver (manager). The current state 

of agent is Associating. The next state could be either 

Unassociated, if the manager rejects the association request; or be 

Associated, if the manager accepts this request. The decision is 

based on the configuration of agent. Thus in order to exercise the 

particular event, we have to generate correct configurations for the 

system under test.  

3.3 Test Executor 
The test executor deals with how to actually execute a specific test 

sequence, i.e., how to make sure that the events in the test 

sequence be exercised in order. As discussed earlier, there are four 

major types of events in state machines. In the following, we 

discuss how each type of event is executed:  

 Application requests are sent by the end-user applications, 

which are built on top of the protocol state machines. These 

events are executed by invoking the appropriate access points. 

The specific syntax of these access points may vary in 

different protocol implementations. 

 Condition indications come from low level software layer 

like transport plug-in. The indications can also be executed 

by invoking the appropriate access points as defined in the 

service model. Similar to application requests, the specific 

syntax of these access points may vary in different protocol 

implementations 

 Send events are determined by the current state and certain 

conditions. These conditions are defined by the IEEE 11073 

specification. As discussed earlier, we generate test data for 

send events. If these data are correctly generated, these 

events will be exercised as expected.  

 Receive events are triggered by incoming messages sent 

from the test driver. If we are testing an agent device, the test 

driver acts like a manager application to communicate with 

the device. The test executor will read the generated data and 

then encode them properly, and then communicate with the 

system under test.  

There are two methods to execute send/receive events, i.e., 

through the transport layer or through the APIs exposed by the 

protocol implementation. The former method is more general, 

since a standalone program can be used to communicate with the 

protocol implementation under test through a transport protocol 

such as Bluetooth. Our framework adopts the latter method, which 

is more efficient since we invoke certain APIs to directly supply 

messages to the system under test, without network transmission. 

Since different IEEE 11073 applications may provide different 

APIs, we provide a set of common interfaces to exercise a well-

defined set of protocol events. For different protocol 

implementations, different adapters can be used to trigger these 

events.  

3.4 Test Evaluator 
After a test sequence is executed, we need to evaluate the outcome 

of the test execution in order to determine whether the device 

under test works as expected. The evaluation consists of two parts. 

The first part is to ensure that individual messages are correct, 

both in terms of the message format and the actual data values in 

the message. Existing tools like Validate PDU [7] developed by 

NIST can be used for this purpose. The second part of the 

evaluation is to ensure that messages are exchanged in a sequence 

that is expected. The type of each message received by the test 

driver is checked to ensure that it is the expected message type. In 

addition, check certain data fields are checked based on user-

defined evaluation rules, if provided.  

The evaluation results for each test sequence are aggregated and 

analyzed to generate a test report that summarizes the results. The 

test report displays the statistics of test execution, including the 

number of successful test executions, the number of failed events, 

and the results of user-defined evaluation rules.   

4. A PROTOTYPE TOOL 
A prototype research tool is being built by applying the proposed 

testing framework to Antidote, an open source implementation of 

IEEE 11073-20601.  

4.1 Antidote 
Antidote [1] is an open source implementation of IEEE 11073-

20601. Antidote provides a library of APIs that can be used to 

develop IEEE 11073 applications. The main design goal of 

Antidote is to provide a set of convenient APIs that can handle 

communications for IEEE 11073 PHD Agent and Manager. The 

architecture of Antidote [8] is illustrated in Fig.9. 

In Fig. 9, green components, i.e., manager application, 

communication plug-in and transcoding plug-in do not belong to 

Antidote implementation. They are implemented by the user for 

developing an executable application. Components in the dark 

blue area are IEEE 11073 PHD stack, including domain 

information model, service model and communication model, 

which are defined in the 11073 specification. Other components 

are Antidote specific components that are designed to facilitate 

the development for IEEE 11073 PHD applications.  



 

Figure 9. The Architecture of Antidote [8] 

We briefly introduce some major components as follows. 

 Manager and agent APIs provides useful functions to the 

user for dealing with communication for IEEE 11073 PHD 

applications. 

 Data encoders are used to encode data such as measurements 

and configuration in an independent format like XML and 

JSON, so that the developer does not need to deal with the 

data format used in IEEE 11073 PHD.  

 The communication plug-ins offer different choices for the 

transport layer. Antidote provides an interface for 

communication plug-ins, and allows the user to provide 

customized implementations for the interface. 

 The transcoding plug-in allows devices that do not support 

IEEE 11073 PHD to communicate with Antidote.  

4.2 Implementation  
As shown in Fig. 6, the general framework has four major 

components, test sequence generator, test data generator, test 

executor, and test evaluator. Only the test executor component 

needs to be implemented in a way that is specific to Antidote, 

while the other components can be implemented in a way that is 

independent from Antidote. In the following, we focus on the 

implementation of the test executor for Antidote. 

From Fig. 6, test data are needed for executing test sequences. In 

order to execute each event in a test sequence, we have to invoke 

corresponding APIs provided by Antidote, or communicate with 

the system under test through message passing. Since in Antidote, 

the API for receiving messages is provided by the communication 

plug-in, we can construct messages and feed them directly to the 

system under test, without actually sending and receiving 

messages across a network.  

We use an example to illustrate how to execute a test sequence for 

the manager state machine. The example test sequence consists of 

5 events. The transition sequence is shown in Fig. 10. These 5 

events are also listed in Table 1. Columns 2, 3, and 4 shows the 

current state, the event name and the event type, respectively, 

according to the protocol. Column 5 shows the corresponding 

event name defined in Antidote. The last column shows the 

Antidote API used to execute each event.  

 

 Figure 10. An Example Transition Path (Manager) 

The first event “Transport connect indication” is triggered by a 

manager API function called “manager_start”. By executing this 

function, the transport (TCP/IP in this example) is established. 

Then the agent requests association (RxAssocReq). For the manager 

state machine, this event is an incoming message sent from the 

agent. The test driver builds a correct message msg, and then 

sends it to the manager using function 

“communication_process_apdu” provided by the TCP/IP 

communication plug-in. Then the manager should accept this 

request automatically based on the agent configuration, assuming 

that the agent state machine is configured properly. A correct 

message containing “known configuration” will lead the manager 

to the Operating state, while an incorrect message containing 

“unknown configuration” will lead the manager to the Waiting for 

configure states. Then in the next event, the manager requests 

association release (assocRelReq) and this can be done by calling 

an API “manager_request_association_release” provided by 

Antidote. In the last step, the transport layer is disconnected by 

invoking another API “manager_stop”.  

4.3 Preliminary Results 
In this section we report some preliminary results of testing 

Antidote using the prototype research tool. We only tested the 

manager state machine. The flattened manager state machine 

shown in Fig. 8 contains 7 states, 32 transitions and 15 unique 

events. Using the t-way sequence generation algorithm in [5], we 

generated 60 2-way test sequences with length ranging from 6 to 

12. Each test sequence starts from the disconnected state, and ends 

with the same state. We executed these sequences and collected 

code coverage using a tool LCOV [9].  

Table 1. An Example of Manager Test Sequence Execution  

 State Protocol Event Event Type Antidote Event Antidote API 

1 Disconnected 
Transport connect 

indication 
condition indication fsm_evt_ind_transport_connection manager_start() 

2 Unassociated RxAssocReq send event fsm_evt_rx_aarq communication_process_apdu(msg) 

3 Associating TxAssocRsp(accepted) receive event fsm_evt_rx_aare_accepted_known - 

4 Operating assocRelReq application request fsm_evt_req_assoc_rel manager_request_association_release() 

5 Disassociated 
Transport disconnect 

indication 
condition indication fsm_evt_ind_transport_disconnect manager_stop() 



 

Fig. 11 shows the structure of the Antidote source code [8] . 

 

Figure 11. Antidote Code Structure [8] 

Since we focus on the communication model, we only present 

code coverage data for the source files in the communication 

folder. This folder contains files that implement the 

communication model, in terms of state machines, transition rules, 

event handling, etc. The files in the sub-directories like parser 

and plugin are not counted, since they are not at the core of the 

communication model and thus are not the target of our 

experiment.  

 

Figure 12. Code Coverage Results 

Fig. 12 shows the code coverage results. For three files, i.e., 

context_manager.c, fsm.c, and stdconfigurations.c, we achieved 

more than 80% coverage. For two files, i.e., association.c and 

communication.c, we achieved close to 50% coverage. Whereas 

the coverage results for other files are low, these results are 

consistent with or even better than our expectation because of the 

limited scope of our preliminary study. In particular, we only 

tested the implementation of the manager state machine, and we 

did not consider all the events like error handling or operations 

defined in the service model. We note that four files, i.e., 

agent_ops.c, disassociating.c, operating.c, and service.c, were not 

executed because they are out of scope. Specifically, file 

agent_ops.c and disassociating.c are only used when we testing 

the agent state machine. Files operating.c and service.c are used 

to implement the service model which was not tested in our 

experiments. We emphasize that this is only a preliminary 

experiment and it is our plan to test the entire implementation, 

including the agent state machine, the service mode, and the error 

handling mechanism.  

5. RELATED WORK 
In recent years, much research has been conducted on 

conformance and interoperability testing for medical/healthcare 

devices. These works can be divided into two categories, i.e., 

testing health information systems and testing medical or 

healthcare devices.  

Snelick et. al. [10] compared conformance testing strategies for 

HL-7, a widely used standard for healthcare clinical data 

exchange. They analyzed two techniques for conducting 

conformance testing, i.e., using Upper Tester and Lower Tester, 

and using an actor based strategy. Namli [11] proposed a 

complete test execution framework for HL7-based systems. The 

framework is built on top of an extensible test execution model. 

This model is represented by an interpretable test description 

language, which allows dynamic test setup. Berube and Pambrun 

[12] presented a web application for testing interoperability in 

healthcare for sharing images between different institutions. 

These works have mainly focused on developing a general test 

execution framework. This is in contrast with our work, which 

focuses on the communication model of IEEE 11073 PHD, and 

proposed a general conformance testing framework that 

streamlines the entire testing process, i.e., from test generation to 

test execution to test evaluation..  

Garguilo et. al. [7] developed conformance testing tools based on 

an XML schema derived directly from IEEE 11073 standard and 

corresponding electronic representations. This approach allows 

users to define abstract devices using device profiles and 

implementation conformance statements. They are subsequently 

used to provide syntactic and semantic validation of individual 

medical device messages, according to IEEE 11073. This is 

complementary to our work. We focus on testing event sequences 

and their tool can be used to check correctness of individual 

messages. Lim et. al. [13] proposed a toolkit that can generate 

standard PHD messages using user-defined device information. 

This facilitates users who are not familiar with the standards 

details. This is similar to our test data generator, which generates 

individual messages from the domain information model.  

6. CONCLUSION AND FUTURE WORK 
In this paper, we propose a general conformance testing 

framework for IEEE 11073 PHD’s communication model. This 

framework aims to streamline the entire testing process, including 

test generation, test execution and test evaluation. A novel aspect 

of this framework is that we adopt a technique called t-way 

testing to generate test sequences. The notion of t-way testing has 

been shown very effective for software testing. We also report a 

prototype research tool that implements this framework for an 

open-source implementation of IEEE 11073 PHD’s 

communication model, i.e., Antidote. This prototype research tool 

demonstrates how to implement the proposed framework for a 

given implementation.  

We note that in practice, the communication model is typically an 

embedded component inside a medical device. As a result, the 

communication model may not be fully implemented. In 

particular, some message exchange sequences that are allowed by 

the communication model may not be allowed by a particular 

implementation. In this case, the test sequences need to be 

generated from a reduced state machine. 

In our future work, we will complete our study of testing Antidote 

using the proposed framework. In particular, we will generate test 

sequences from the complete state machine, and also measure the 

effectiveness of the framework using real and/or seeded faults in 

addition to code coverage. Furthermore, we will apply our 

framework to test some real devices to check their compliance 



with the IEEE 11073 PHD standards. The goal of our project is to 

develop a set of tools that can automate, as much as possible, the 

conformance testing process of medical devices designed to be 

IEEE 11073 PHD compliant.  
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