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Abstract
We report improvements to our previous (Zhang et al 2011 Int. J. Thermophys. 32 1297)
determination of the Boltzmann constant kB using a single 80 mm long cylindrical cavity. In
this work, the shape of the gas-filled resonant cavity is closer to that of a perfect cylinder and
the thermometry has been improved. We used two different grades of argon, each with
measured relative isotopic abundances, and we used two different methods of supporting the
resonator. The measurements with each gas and with each configuration were repeated several
times for a total of 14 runs. We improved the analysis of the acoustic data by accounting for
certain second-order perturbations to the frequencies from the thermo-viscous boundary layer.
The weighted average of the data yielded kB = 1.380 6476 × 10−23 J K−1 with a relative
standard uncertainty ur(kB) = 3.7 × 10−6. This result differs, fractionally, by
(−0.9 ± 3.7) × 10−6 from the value recommended by CODATA in 2010. In this work, the
largest component of the relative uncertainty resulted from inconsistent values of kB

determined with the various acoustic modes; it is 2.9 × 10−6. In our previous work, this
component was 7.6 × 10−6.

(Some figures may appear in colour only in the online journal)

1. Introduction

In 2005, the Comité international des poids et mesures (CIPM)
recommended redefining the base units of the SI, including the
kelvin, in terms of a set of fundamental constants [1]. The
CIPM recommended that the kelvin be redefined in terms of
the Boltzmann constant kB. To provide continuity with the
existing definition of the kelvin, the thermometry community
is re-measuring kB using several different methods. CODATA
will weight all the measurements of kB by their uncertainties to
establish its most likely value. When the kelvin is redefined,
the value of kB will become the CODATA value with zero
uncertainty and the temperature of the triple point of water
TTPW will remain 273.16 K; however, TTPW will have the
fractional uncertainty of the CODATA-weighted average of
the measurements of kB.

The Boltzmann constant kB relates the thermodynamic
temperature to thermal energy. Since the 1970s, the acoustic
resonance method has been used to determine kB [2–8],
thermodynamic temperatures [9–15] and the thermophysical
properties of gases. Determinations of kB using acoustic
resonators rely on two relationships. The first relationship,
(1/2)mv2

RMS = (3/2)kBT , connects the root-mean-square
(RMS) velocity of an atom of mass m to its kinetic energy
(hence to the thermodynamic temperature). The second
relationship, v2

RMS = (3/γ0)c
2
0, connects the RMS velocity to

the zero-frequency speed of sound c0 of the same gas and to the
heat-capacity ratio C0

p/C0
v ≡ γ0 of the gas. For a monatomic

gas γ0 is exactly 5/3. Accordingly, the acoustic resonator
method infers c0 by combining measurements of the acoustic
resonance frequencies of an argon-filled or helium-filled cavity
at various pressures at TTPW with appropriate dimensions of the
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cavity. The measured frequencies are corrected for the thermal
and viscous boundary layers where the gas contacts the walls
of the cavity, imperfect accommodation of gas atoms with the
walls, the imperfect shape of the cavity, motions of the cavity’s
walls and the effects of electro-acoustic transducers. The
corrected frequencies for each mode are combined with that
mode’s eigenvalue and the cavity’s dimensions to determine
c(p,TTPW). Then, c2(p,TTPW) is fitted to the acoustic virial
equation to determine c0 for the gas. Finally, the Boltzmann
constant is obtained through the relation

kB = c2
0M/(T γ0NA), (1)

where M is the average molar mass of the gas, as determined
from chemical and isotopic analysis, and NA is the Avogadro
constant. The relative uncertainty of NA is 3 × 10−8, which
is two orders of magnitude smaller than the uncertainty of
kB [16, 19]. Therefore, we consider NA to be known.

For the highest possible accuracy, acoustic resonance
measurements in dilute gases use non-degenerate modes, such
as the radially symmetric modes of a spherical or quasi-
spherical cavity and the longitudinal and radial modes of a
cylindrical cavity. The radially symmetric modes of a spherical
cavity have higher quality factors than the longitudinal modes
of a cylindrical cavity of equal volume; therefore, spherical
cavities are preferred [3]. We acknowledge that the two most
important measurements of kB using quasi-spherical cavities
claim the low fractional standard uncertainties of 1.2 × 10−6

and 0.71 × 10−6 [4, 17].
In this work, we re-determine kB using the non-degenerate

longitudinal modes of a fixed-length cylindrical cavity. In
doing this, we follow the recommendation of the Consultative
Committee of Thermometry (CCT) that the redefinition of
the kelvin should be based on three different methods of
measuring kB. We mention four differences between our
method and previous work that used spherical or quasi-
spherical cavities. (1) The longitudinal acoustic modes of
fixed-length cylindrical cavities dissipate acoustic energy at
the wall of the cavity through viscosity. This dissipation
mechanism is not present for the radial acoustic modes in
quasi-spherical cavities. Therefore, we test the understanding
of acoustic resonances in a new regime. (2) The oscillations
of the walls (the shell) of cylindrical and spherical cavities
respond to the gas’s oscillations in different patterns. For
example, the non-degenerate longitudinal gas modes of the
cylindrical cavities have either even or odd symmetry about
the plane bisecting the cylinder’s axis. In contrast, the l = 1
modes of a spherical cavity, which have odd symmetry about a
bisecting plane, are degenerate; therefore, they are not used to
determine kB. (3) We used two-colour optical interferometry to
measure the lengths of our cylindrical cavities. In contrast, the
quasi-spherical-cavity method has used either pycnometry or
microwave resonances to measure the volume of the cavity. (4)
We used piezoelectric transducers located outside the cavity’s
wall to generate and detect acoustic signals. In contrast, small
capacitive microphones embedded in the cavity’s wall have
been widely used with spherical cavities. The PZT detector
has much larger capacitance than a capacitive microphone.
The larger capacitance allowed us to connect the PZT to a

Figure 1. Comparison of the determination of kB using acoustic
thermometry with the CODATA 2010 recommended value [19].

remote amplifier with a coaxial cable. (In contrast, a small,
capacitive microphone requires either a nearby preamplifier or
a tri-axial cable with a driven shield connecting the capacitor
to a remote preamplifier.)

In our previous, preliminary re-determination of kB, we
used a single, 130 mm long cylindrical cavity [8] and fitted the
apparent speed of sound c2(p) for each of the six modes to
zero pressure to get six values of c2

0. The inconsistency among
the six values of c2

0 was the largest contribution to uncertainty
of our preliminary value of kB. Since then, we have studied
five cylindrical, fixed-length cavities [18] and found that an
80 mm long cavity was the best of the five. In this paper, we
present a new determination of kB based on the average of the
fourteen measurement runs using four modes of an improved
80 mm long cavity. Our principal result is kB = (1.380 6476±
0.000 0051) × 10−23 J K−1. This new value of kB has a
relative standard uncertainty ur(kB) = 3.7 × 10−6; it differs,
fractionally, by −0.9×10−6 from the value recommended
by CODATA in 2010 [19]. (Unless otherwise stated, all
uncertainties in this paper are standard uncertainties with
coverage factor k = 1 corresponding to 68% confidence level.)
Figure 1 displays a comparison of the current values of kB

with those determined by the spherical and the quasi-spherical
cavities [3–8]. Our new determination of kB is consistent
with our previous determination of kB using the 130 mm long
cylindrical cavity; however, the uncertainty of the present
result is smaller by a factor of 2.1.

2. Fundamentals of the measurement

The unperturbed resonant frequencies f 0
l of the longitudinal

acoustic modes (l 0 0) of a gas-filled, geometrically perfect,
rigid, perfectly thermally insulating, cylindrical cavity are
determined by the speed of sound in the gas c and the length
L of the cavity by the formula

f 0
l = lc/(2L), (2)

where l = 1, 2, . . . is the longitudinal mode index (the
eigenvalue). (Because this work uses only purely longitudinal
modes, we identify these modes using only the longitudinal
index l in subscripts. Other modes are designated by the
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complete triplet of indices.) We combine equations (1)
and (2) to relate kB to the acoustic resonance frequencies of an
idealized, gas-filled cavity:

kB =
(

2f 0
l L

l

)2
M

T γ0NA
. (3)

Our cavity had a nominal radius a ≈ 40 mm and a nominal
length of 80 mm. We used the modes l = 2, 3, 4 and 5 which
have resonance frequencies spanning the range from 3.8 kHz
to 9.6 kHz. We did not include data for the l = 1 mode in the
analysis because excessive noise in the transducer signal and
line-shape distortion, due in part to the mode’s low Q, resulted
in poor quality fits that did not improve with more averaging.

Practical cavities have an imperfect geometry. The duct
that admits gas into the cavity is an opening in the wall
of the cylindrical shell. The cylindrical shell and the end-
plates are not rigid; therefore, they deform when they are
bolted together and they deform elastically in response to
the acoustic pressure oscillations in the gas. The oscillating
gas forms a thermal and a viscous boundary layer on the
walls of the shell. The end-plates have thin, machined
diaphragms that separate the PZT transducers from the gas;
these diaphragms present a lower impedance to the gas
than the surrounding surfaces of the shell. The transducers
generate heat when operating. All these complications perturb
acoustic resonance frequencies from their ideal values f 0

l . By
design, we minimized these perturbations; however, we must
still correct the measured frequencies for these perturbations
before using equation (3). In our previous papers [8, 20–22]
we modelled these perturbations; here, we list them in
sections 4.5.3 and 4.5.4.

3. Experimental setup and cylindrical cavity

Figure 2 is an overview of the apparatus. The experimental
setup retained the main features that we described in detail
in [8]. Here, we describe only a few key features and the
changes that we made.

As in our previous work [8], the cylindrical cavity was
formed by clamping two fused-silica end-plates to the ends
of a thick-walled, steel ‘tube’ (see figure 3). The nominal
length and the nominal diameter of the cylindrical cavity were
80 mm and the outer diameter of the cylindrical tube was
160 mm. The tube was made of bearing steel that had a Young’s
modulus of 210 GPa, a Poisson’s ratio of 0.29 and a density of
7800 kg m−3.

Because one of the 20 mm thick end-plates used in our
previous work had cracked, we used new end-plates that were
15 mm thick and had a diameter of 108 mm. To reduce
the stress on the new end-plates, they were clamped to the
cylindrical shell with fewer M8 bolts (16 instead of 20) and
with smaller torques (3.5 N m instead of 4.5 N m). The end-
plates were fabricated from optical-quality, fused silica with
a Young’s modulus of 73 GPa, a Poisson’s ratio of 0.17 and a
density of 2210 kg m−3. The inner surface of each end-plate
was coated with a partially reflecting metallic film [8, 18].

As in our previous work, a blind hole was ground out of
the outside-facing surface of each end-plate, leaving a silica

diaphragm 0.25 mm to 0.30 mm thick, which was flush with
the inside surface, thereby preserving the cylindrical shape of
the cavity. The PZT transducers used in this work were the
same type and size used in [8]. Epoxy was used to cement a
PZT transducer to the outside surface of each diaphragm.

We used a single, small tube (fill duct) to measure and
change the pressure of argon gas in the resonator, as in our
previous work. The acoustic measurements were performed
with a static charge of argon gas. This design minimized the
perturbations to the shape of the cavity and the accompanying
shifts in the resonance frequencies for which corrections must
be made.

The fill duct of the present resonator was made of three
sections of cylindrical, electro-polished, stainless-steel tubing.
The section that opened into the cavity had a length of 802 mm
and an inside diameter (ID) of 1.03 mm. (In our previous work,
this section had an ID of 2.13 mm.) The second section had
a 2.13 mm ID and was 100 mm long. It connected to a larger
duct (4.57 mm ID and 2000 mm long) which terminated in a
tee. One arm of the tee led to a valve that connected the duct
to the gas manifold. The other arm of the tee led to a similar
three-section duct that terminated at another cavity resonator
with an ID of 80 mm and a length of 160 mm. (We do not
discuss the second cavity in this work.) We calculated the
acoustic admittance of the duct using a waveguide model [22].
The model showed that the admittance of the valve and the
duct leading to the second cavity had a negligible effect on the
calculated perturbations.

The new fill duct was shrunk-fit inside a mating hole in
the steel tube near one end-plate (see figure 3). In our previous
work (figure 1 of [8]), the fill duct entered the cavity midway
between the end-plates. After the fill duct was installed, it
extended into the cavity. This extension and the inner surface
of the cavity were simultaneously ground until the open end
of the duct was flush with the inner surface of the tube. The
assembly by shrink-fitting followed by grinding avoided the
annular slit between the duct and the wall of the cavity that
was present in our previous work. Therefore, the new duct
generates smaller, more accurately modelled perturbations to
the resonance frequencies than the previous one.

We made only minor changes to the manifold that supplied
gas to the cavity. The manifold had been assembled using all-
metal connectors and valves with bellows stem seals. All of
the junctions and the valves were checked for leaks at 1 MPa.
We discovered that the getter that was located immediately
upstream from the fill duct did not remove all the nitrogen
from the argon. Therefore, we replaced the Entegris4 model
CE2500KFI4R getter with an SAES4 Model GC50 getter.

The manifold was wrapped with heating tapes so that
it could be baked out to remove adsorbed gases. Prior to
baking, the SAES getter was preheated for 2 h to reach its
operating temperature of 400 ◦C and it was maintained at
400 ◦C throughout the bake-out. The bake-out lasted more

4 In order to describe materials and procedures adequately, it is occasionally
necessary to identify commercial products by manufacturer’s name or label.
In no instance does such identification imply endorsement by the National
Metrology Institute or the National Institute of Standards and Technology or
Tsinghua University, nor does it imply that the particular product or equipment
is necessarily the best available for the purpose.
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Figure 2. Sketch of the gas handling system. DPT denotes the differential pressure gauge and MFC1 denotes the mass flow controller.

Figure 3. Schematic (not to scale) sketch of the cylindrical shell and
the duct (all dimensions are in millimetres).

than 24 h. During the bake-out, the manifold was maintained at
100 ◦C while it was alternately evacuated and purged with pure
argon. (The resonator was maintained at room temperature
inside its thermostat.) The bake-out was repeated before
starting each test run.

The temperature of the resonator was measured using
two capsule-type standard platinum resistance thermometers
(Hart 5686), each with a diameter of 5.5 mm and a sensing
length of 30 mm. The thermometers were enclosed in metal
sleeves that we describe in section 4.3. Figure 4 shows the
locations of the thermometer wells in the assembled cylindrical
resonator. We used an ASL F900 bridge and a 100 � standard
resistor (Tinsley 5685A) to measure the resistance ratios of
the thermometers. The thermostat maintained the resonator’s
temperature constant to within ±0.1 mK for 24 h.

The PZT sound generator was driven by a sinusoidal
voltage generated by an Agilent 33220A waveform generator
that was locked to a 10 MHz standard signal derived from a

Spring

Thermometers
Flange

Support plate

Cylinder

Quartz end-plate

Figure 4. Cylindrical cavity assembly.

GPS clock. A frequency counter (Agilent 53131A) monitored
the signal frequency from the waveform generator. The counter
verified that the frequency stability was better than 0.05×10−6

during the measurement of a single mode. The signal from the
PZT detector was measured with a two-phase lock-in amplifier
(Stanford Research SR830) locked to the driving voltage.

An absolute pressure gauge (Ruska 7250 xi, 0 kPa to
600 kPa) controlled the argon gas pressure inside the pressure
vessel at 200 Pa to 300 Pa below the pressure inside the
cylindrical cavity. The mating surfaces of the end-plates
and the cylinder were sufficiently flat that leakage of pure
argon gas from the cavity into the pressure vessel was
negligible. The overpressure in the cavity ensured that
the argon inside the cavity would not be contaminated by
outgassing from the transducers, epoxy, wire insulation, etc
in the pressure vessel. A differential pressure gauge (MKS

420 Metrologia, 50 (2013) 417–432
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Table 1. Properties of the three measurement cases.

Number of
Number Number Number of averaged

Case Gas of modes of runs measurements measurements Support End-plates

I BIP+ 4 4 755 51 Free Set 1
II BIP+ 4 6 1018 45 Clamped Set 2
III BIP 3 4 998 36 Clamped Set 2

Baratron 616A, 100 Torr) (1 Torr ≡ 133.32 Pa) measured
the pressure difference between the cavity and the pressure
vessel. The metal diaphragm of the differential pressure gauge
isolated the cavity from the rest of the gas manifold. The
absolute pressure gauge and the differential pressure gauge
were calibrated by the National Institute of Metrology (NIM),
China. The pressure uncertainty was estimated to be less
than 20 Pa. The pressure uncertainty contributes no more than
0.05 × 10−6 to the uncertainty in kB.

4. Measurements

4.1. Acoustic measurements: three cases

The procedures for the acoustic measurements were similar
to those used during our preliminary determination of kB [8].
However, to search for problems related to the mounting of the
resonator, the mounting of the end-plates and the analysis of
argon, we divided the measurement runs into three cases that
are summarized in table 1.

During case I, the lower end of the resonator rested on a
support plate. As shown in figure 4, the support plate hung
from thin rods supported by springs. This compliant support
allowed the resonator to respond as a nearly free body to the
gas oscillations within it. (In our previous work, the resonator
was tightly clamped to a rotational stage, which itself was
clamped to the pressure vessel.) After completing the case I
runs, the top and bottom end-plates were interchanged, and
the resonator was replaced on the support plate and nuts were
tightened on the threaded rods above the top of the resonator.
Thus, the rods clamped the ends of the resonator together. This
‘clamped’ configuration was used for both cases II and III. As
indicated in table 1, ‘BIP Plus’ argon supplied by Air Products
was used during both cases I and II. As shown in figure 5, the
values of kB deduced from cases I and II were mode-dependent;
however, they were mutually consistent. The five mode-by-
mode differences yield (kB)case II−(kB)case I = (0.54±0.41)×
10−6kB where the uncertainty is the standard deviation of the
differences between the circles and the squares in figure 5.
(At the end of this section, we discuss the distinction between
(4 0 0)a and (4 0 0)b.). We conclude that changing the method
of support and interchanging end-plates did not change the
value of kB, within the small uncertainty of the comparison.

Between cases II and III, we changed the test gas from ‘BIP
Plus’ argon to ‘BIP’ argon. The three values of kB from cases
II and III yield the average difference (kB)case III − (kB)case II =
(−2.85 ± 0.50) × 10−6kB. This difference is 2.1 times
the fractional standard uncertainty for determining the mole
fraction average atomic mass ur(M) of each test gas (table 8)

Figure 5. Top: values of the Boltzmann constant kB determined
using each of modes (2 0 0), (3 0 0), (4 0 0) and (5 0 0). Bottom:
values of the acoustic slopes A1 determined with the same modes.
The grey band denotes reference values and their uncertainties. For
reference values, we took kB from CODATA 2010 [19] and A1

from [3]. The type-A uncertainties from fitting the frequency data
are comparable to the sizes of the plotted points. The distinction
between (4 0 0)a and (4 0 0)b is discussed in section 4.1.

and 1.5 times 21/2ur(M), which is the fractional standard
uncertainty of the difference between two values of M . We
conclude that the acoustic measurements are in reasonable
agreement with the values of M and ur(M) that were estimated
from independent gas analyses.

The ‘BIP’ argon for case III came from the same container
that we used during our previous measurements with a 130 mm
long cavity [8]. A sample drawn from this container had been
analysed by the Center for Gas Metrology, Korea Institute of
Standards and Science (KRISS), for chemical impurities and
for relative abundances of the isotopes 36Ar, 38Ar and 40Ar [8].

Case I was composed of four runs; that is, a quasi-isotherm
near TTPW was measured four times in succession. During each
run, the resonance frequencies and half-widths were measured
at six pressures. For half the runs, the pressures decreased
from 550 kPa to 50 kPa in steps of 100 kPa. For the other half,
the pressures decreased from 500 kPa to 100 kPa in steps of
100 kPa and additional measurements were made at 70 kPa. At
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each pressure, the frequency and half-width of the longitudinal
modes (2 0 0), (3 0 0), (4 0 0) and (5 0 0) were determined 8
to 12 times. The effects on resonance frequencies and half-
widths due to known perturbations (sections 4.5.3 and 4.5.4)
were calculated and used to correct the measurements. An
inspection of the corrected frequency data showed that some
unknown event occurred between 21 January 2012 and 24
January 2012 that separated the case I data for the (4 0 0)
mode into two repeatable groups. For our analysis, we divided
the (4 0 0) data into two groups before averaging: group a

comprised the data acquired through 21 January 2012; group b

comprised the data acquired after 24 January 2012. Averaging
the corrected data at the same pressure for each mode reduced
the number of data points for all the modes from 755 to 51.

Case II was composed of six runs. As in case I, the data
for the (4 0 0) mode were separated into two groups: group
b comprised the data acquired before 11 March 2012; group
a comprised the data acquired after 11 March 2012. (This
labelling suggests that the second unknown event restored the
resonator to its initial condition. Our results are consistent with
this assumption; however, our result for kB is independent of
the assumption.) Averaging the corrected case II data reduced
the number of data points from 1018 to 45.

Case III was composed of four runs. For all these runs,
the excess half-widths for the (4 0 0) mode were scattered with
values 3 to 5 times larger than the half-widths for the other
modes and some half-widths were negative. The excess half-
widths did not have an obvious run dependence. Also, the
scatter of the frequency measurements for the (4 0 0) mode
was much larger than for the other modes. For these reasons,
we did not use the (4 0 0) data for case III. Averaging the data
for the (2 0 0), (3 0 0) and (5 0 0) modes reduced the number of
data points to 36.

After completing the measurements for cases I, II and III,
we disassembled the resonator. We discovered a crack in one
of the quartz diaphragms that separated the cavity from a PZT
transducer. We do not know whether this crack is connected
with the anomalous behaviour of the (4 0 0) mode.

4.2. Measuring the length of the cavity

As in our previous work [8], the cylindrical cavity was defined
by bolting two end-plates of optical-quality fused silica glass
to a steel ‘tube’ to form the resonator. As in our previous
paper [8], we measured the length of the cylindrical cavity
using two-colour interferometry. Again, we used two lasers
with nominal wavelengths 633 nm and 543 nm. Both lasers
had beam diameters of approximately 1 mm and a fractional
wavelength stability better than 2 × 10−8.

The inner surface of each end-plate was coated with
a semi-transparent, metallic film that increased its optical
reflectivity while allowing the laser beams to penetrate the end-
plates into the cavity. Because the end-plates were not exactly
parallel, the laser beams formed two sets of equal-inclination
interference patterns between the partially reflecting films.
From measurements of the fractional fringes, we determined
the optical length between the windows modulo 0.96 µm. In
our previous study [8], we determined the required multiple

Figure 6. Grid of locations of length measurements.

of 0.96 µm by measuring the cavity’s length with a coordinate
measuring machine at ambient temperature and monitoring
the thermal contraction of the cavity as it cooled to TTPW. For
this work, this time-consuming procedure was not necessary.
Instead, we estimated the length of the cavity at TTPW from the
resonance frequencies of the longitudinal acoustic modes when
the cavity was filled with pure argon. This estimate must have a
fractional uncertainty less than 0.96 µm/(80 mm) = 12×10−6

to determine the correct multiple of 0.96 µm. In this work,
the values of the length of the cavity deduced from various
acoustic modes spanned the fractional interval ±1.74 × 10−6

which is accurate enough to select the correct multiple of
0.96 µm. Then, the two-colour interferometry refined the
length estimate to achieve a length uncertainty of the order
of 20 nm.

We conducted a two-colour interferometric measurement
after completing the acoustic measurements at each pressure.
It took several seconds to record the interference patterns.
During and immediately following this short interval, the
thermometers embedded in the metal wall of the cavity
indicated a temperature increase of approximately 0.1 mK,
which contributed a negligible uncertainty to the length
measurement.

Because the two-colour length measurements were made
at TTPW, they accounted for any temperature-dependent
deformation of the end-plates. In the current study, the shape of
the end-plates was determined from the variation of the 633 nm
interference patterns on a grid of ‘spots’ on the end-plates. As
shown in figure 6, the grid was defined by the intersections of
16 radial lines with 15 equally spaced circles. We assumed
that the shape of each end-plate was a quadratic function of
the radius L(r). Then, we computed the average length of
the cavity 〈L〉 using equation (4), where the parameters ai , bi

and ci for the length Li(r) were fitted to the measurements on
the grid.

〈L〉 = 1

8a2

16∑
i=1

∫ a

0
rLi(r) dr, (4)

Li(r) = air
2 + bir + ci . (5)
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Table 2. Dimensions of the resonator.

Quantity Symbol Value/cm

Cavity radius a 3.995 880
Cavity length

Case I L 7.996 166(4)
Cases II and III L 7.996 086(4)

Shell thickness h 4.0
End-plate radius ap 5.4
End-plate thickness tp 1.5
Diaphragm radius ad 0.5
Diaphragm thickness td 0.025

The standard deviation of the values of Li(r) from the fitted
curves was 43 nm; this is a contribution to the uncertainty of
the average optical length of the cylinder. The curved end-
plates perturb the frequencies of the (l 0 0) modes; however,
the first-order frequency shifts vanish for volume-preserving
shape perturbations [23]. Thus, 〈L〉 using equation (4) is the
appropriate average length for computing the frequencies of
the (l 0 0) modes.

As in our previous study, the resonator was installed in
a pressure vessel filled with argon. The pressure inside the
cavity was always 200 Pa to 300 Pa higher than the pressure
outside the resonator, while the argon pressure within the cavity
ranged 50 kPa to 550 kPa during the acoustic measurements.
Thus, the resonator was subjected to significant hydrostatic
pressures. The hydrostatic pressure at 50 kPa decreased the
cavity’s length by a fraction 1 × 10−7; at 550 kPa the decrease
was, fractionally, 9 × 10−7. At zero pressure, the length of
the cavity was 79.961 68 mm for case I with an uncertainty
of 20 nm from two-colour interferometry. For cases II
and III, the length was 79.960 88 mm with an uncertainty
of 23 nm from interferometry. The larger length uncertainty
contributed a fraction 0.58×10−6 to the uncertainty budget
for the determination of kB. For calculating the two-laser
interference patterns, we relied on the accurate values of the
refractivity of pure argon at 633 nm and 543 nm published
in [24–28].

The inside surface of each end-plate had a partially
reflective metallic coating protected by a dielectric overlayer.
The manufacturer of the end-plates estimated that the thickness
of each coating plus overlayer was between 5 nm and 20 nm.
We do not know exactly how far the laser beams penetrated
into the metallic coatings [29]; we estimated that the optical
length of the cavity was 40 nm longer than the acoustic length.
When calculating the speed of sound, we reduced the optical
length by a fraction of 0.50×10−6 and added 1/2 of this value
to the uncertainty of the acoustic length. From equation (3), kB

is proportional to the square of the cavity’s length; therefore,
the optical–acoustic length difference contributes 0.50 × 10−6

to the relative uncertainty ur(kB).
As in [8], we used dimensional metrology to determine

the radius a of the cavity and we confirmed it by measuring
the ratios of the frequency of the (0 1 0) radial acoustic mode to
those of the (l 0 0) longitudinal modes. The uncertainty ur(a)

makes a negligible contribution to ur(kB).
Table 2 lists the dimensions of the cavity for the three

cases. The largest contributor to the uncertainty of the

Copper shield
Sealed electrical connector

Flexible sealed tubing

Figure 7. Sketch of the thermometer assembly.

average length of the cavity was 43 nm, which resulted from
fitting the shape of the curved end-plates. This uncertainty
contributed 1.08 × 10−6 to ur(kB). In the future, we will
reduce this contribution by using a denser grid of optical length
measurements.

4.3. Temperature measurement

We measured the temperature of the cavity with two 25 �

standard capsule-type platinum resistance thermometers (Hart
5686-001-B), HS182 and HS192. Each thermometer had an
outer diameter of 5.5 mm and a length of 35 mm. Following
[5, 6], we enclosed each thermometer within a copper sleeve,
as shown in figure 7. These sleeves allowed us to move
the thermometers between a triple-point-of-water (TPW) cell
and the wells in the resonator’s wall without disturbing the
thermometers or changing their thermal resistance. The
sleeves also protected the thermometers from the hydrostatic
pressure during the acoustic measurements. Each sleeve had
one sealed end and a length of 100 mm, an outer diameter
of 10 mm, an inner diameter of 5.6 mm, and a sensing
head 40 mm long. Each thermometer was covered with
thermally conducting grease and inserted into the open end
of a sleeve. Then, a cap was screwed onto the sleeve to hold
the thermometer against the inner wall and the blind end of the
sleeve. The four leads from each thermometer passed through
a thin stainless-steel tube (inner diameter 2.13 mm and length
500 mm) to welds at a sealed feed-through. After connecting
the leads, assembling the sleeve, the tube and the feed-through,
the assembly was evacuated and purged with pure argon gas
five times. Finally, the assembly was filled with pure argon
gas to 110 kPa and sealed with a valve.

The TPW cell used for the calibration of the two
thermometers was compared with NIM’s national reference
cell. The difference was no larger than 0.03 mK and it
contributed 0.11 × 10−6 to ur(kB). The TTPW of the reference
cell was corrected for the effect of isotopes. A bilateral
comparison conducted in 2011 demonstrated that the TTPW

of the reference cell differed from the average value of two of
INRIM’s transport cells by 0.01 mK. A bilateral comparison
conducted in 2010 demonstrated that the TTPW of the reference
cell differed from PTB’s reference cell by 0.03 mK. After
considering the CCT-K7 and the EURAMET.T-K7 Key
Comparison of Water Triple Point Cells, we conservatively
estimate a type-B uncertainty of 0.05 mK for NIM’s TPW
reference cell. This uncertainty contributed a type-B relative
uncertainty of 0.18 × 10−6 to ur(kB).

The two thermometers were calibrated in the TPW cell
before being installed in the wells in the resonator. Table 3
lists the initial calibration data for HS182 and HS192. We
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Table 3. Calibration of thermometers. All resistances are in ohms.

No 1 mA
√

2 mA 1 mA 0 mA

HS 182
Initial calibration

1 25.069 796 25.069 827 25.069 795 25.069 764
2 25.069 792 25.069 824 25.069 792 25.069 760
3 25.069 790 25.069 822 25.069 790 25.069 758
4 25.069 792 25.069 823 25.069 791 25.069 760
5 25.069 792 25.069 824 25.069 792 25.069 760
6 25.069 792 25.069 824 25.069 791 25.069 760
7 25.069 792 25.069 824 25.069 792 25.069 760

Final calibration
1 25.069 794 25.069 826 25.069 794 25.069 762
2 25.069 790 25.069 821 25.069 789 25.069 758
3 25.069 790 25.069 822 25.069 790 25.069 758
4 25.069 792 25.069 824 25.069 791 25.069 760
5 25.069 790 25.069 823 25.069 790 25.069 758

HS 192
Initial calibration

1 25.428 991 92 25.429 031 96 25.428 991 67 25.428 9516
2 25.429 000 04 25.429 040 34 25.428 999 17 25.428 9589
3 25.428 999 97 25.429 040 39 25.428 999 91 25.428 9595
4 25.428 994 41 25.429 033 99 25.428 993 41 25.428 9538
5 25.428 993 56 25.429 033 54 25.428 993 08 25.428 9531
6 25.428 9941 25.429 033 28 25.428 993 77 25.428 9546

checked for effects from the connection of the cable leading
from the feed-through for each thermometer to the resistance
bridge by plugging in and unplugging each connector during
each calibration. After each calibration, the thermometer was
removed from the TPW cell and stored at room temperature.
The initial calibration for HS182 at 0 mA had a repeatability
of 0.019 mK. HS182 was re-calibrated after finishing all
the acoustic measurements. We call this re-calibration the
‘post-calibration’. Table 3 lists the post-calibration data
for HS182. The post-calibration had a repeatability of
0.018 mK. The pre- and post-calibration were separated by
10 months. The difference between the two averages of the
pre- and post-calibrations was 0.011 mK; it is a measure of
the long-term stability of the thermometers and it contributed
0.04 × 10−6 to ur(kB).

The initial calibration of HS192 had a repeatability
of 0.03 mK (the standard deviation of repeated calibration
measurements) and a maximum temperature difference
(among those repeated measurements) of 0.08 mK. The long-
term stability of HS192 was comparable to the long-term
stability of HS182, which we discuss below.

The TPW cell was made at the NIM. For this cell, the
calculated hydrostatic pressure effect was 0.182 mK; both
thermometer calibrations were corrected for this. During the
calibrations, the axial temperature gradient was measured by
pulling each thermometer along the well of the TPW cell.
The measured axial gradients were −1.12 mK m−1 or less.
(A gradient of −0.73 mK m−1 is expected [30].) The larger-
than-expected gradient biased the temperature calibration by
up to 0.097 mK, which contributes a fractional uncertainty of
0.36 × 10−6 to ur(kB).

As shown in figure 4, the thermometers were inserted into
wells drilled part-way through the wall of the resonator. HS192
was inserted into the well at the top of the resonator. The

insertion depth was more than the sensing length (40 mm) of
the thermometers. HS182 and HS192 were read alternately
during the scanning of every acoustic resonance. Each
thermometer was read at 1 mA and

√
2 mA and the result

was extrapolated to 0 mA. A complete acoustic measurement
lasted for around 5 h. The two thermometers were alternately
read parallel to the acoustic measurement. Therefore, the
temperature drift of the cylinder shell was monitored. This
drift slightly varied with individual test run. We observed
that the drifts were bounded within the minimum of ∼0.2 mK
and the maximum of ∼1.2 mK. Usually, the differences
between the average readings of two thermometers were
within ±0.1 mK. (At only one point they differed by 0.2 mK
and at two points by slightly more than 0.1 mK.) These
small temperature differences are consistent with a negligible
temperature gradient along the resonator and with stable
performance of both thermometers. We concluded that the
long-term stability of HS192 was as good as the long-term
stability of HS182. The standard deviation of the temperature
differences was 0.047 mK and it contributed a fractional
uncertainty of 0.17 × 10−6 to ur(kB).

4.4. Chemical and isotopic composition

For the measurements reported in this paper, we used two
grades of pure argon supplied by Air Products Inc.: ‘BIP
Plus’ argon and ‘BIP’ argon. The ‘BIP Plus’ argon from one
container was used for the measurements of cases I and II.
For case III, we used the ‘BIP’ argon from the same container
that we used in our previous measurements [8]. The ‘BIP’
argon in its original container links the present measurements
to the isotopic and the impurity references of the Center for
Gas Metrology of the KRISS, one of the world’s leading gas
analysis laboratories.

According to the manufacturer, ‘BIP Plus’ and ‘BIP’
are manufactured using identical processes. The only
difference between the two grades is their specification for the
concentration of volatile organic compounds (VOCs). Each
production ‘lot’ is analysed and if, by chance, the concentration
of VOCs is low, the gas is sold as ‘BIP Plus’ grade. If
the VOC analysis is normal, the gas is sold as ‘BIP’ grade.
This distinction implies that the two grades have, at most,
only small differences in their relative isotopic abundances
for argon and only small differences in their concentrations
of the noble gas impurities: He, Ne, Xe and Kr. During
the present measurements, we sent samples of ‘BIP Plus’
and ‘BIP’ drawn from their original containers to the state
Key Laboratory of Petroleum Resource Research, Chinese
Academy of Sciences (KLPRR CAS), for new analyses of
the relative isotopic abundances. We drew these samples
from the manifold downstream of the getter. Two samples
of ‘BIP Plus’ from the same container were labelled samples
A and B, and the sample of ‘BIP’ was labelled sample C. The
sampling and naming were blind to the analysing laboratory.
Sample C was taken from the original container used for
our previous determination of kB [8], which had also been
analysed by the Center for Gas Metrology, KRISS. Samples
A, B and C were analysed with the gas chromatography–mass
spectrometry (GC–MS) system (MAT271) in KLPRR CAS.
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Table 4. Argon isotopic analysis.

Molar massa

of argon/
40Ar/36Ar 38Ar/36Ar g mol−1

Sample C, BIP 299.52±0.16 0.1894±0.0005 39.947 839
Sample B, BIP Plus 298.70±0.43 0.1884±0.0007 39.947 806
Sample A, BIP Plus 298.68±0.33 0.1895±0.0006 39.947 798
Sample C, BIP, 299.60±0.27 0.1890±0.0003 39.947 846
re-measured

Sample A, BIP Plus, 299.05±0.28 0.1886±0.0008 39.947 822
re-measured

Sample B, BIP Plus, 298.87±0.36 0.1882±0.0009 39.947 815
re-measured

a Molar masses of 36Ar, 38Ar and 40Ar are from CODATA 2010 [19].

Both KRISS and KLPRR CAS analysed sample C.
Therefore, sample C links the isotopic abundance reference
standards of both laboratories, assuming that the relative
abundances of the argon isotopes did not change during
storage. At KLPRR CAS, the samples were analysed in the
order ‘C–B–A–C–A–B’ to minimize bias. Each measurement
was repeated more than five times. In table 4, we list the results
of the KLPRR CAS analyses based on the KRISS’s reference
standards.

The two analyses of sample C resulted in a relative
difference of 0.16 × 10−6 in the molecular mass of argon,
M . This difference was included in the uncertainty budget
for the molar mass of the sample of the ‘BIP Plus’ gas; it
is a measure of the imperfection of the linkage to KRISS’s
reference standards. Table 4 shows that the repeatability of
M for samples A and B was 0.30 × 10−6 and 0.12 × 10−6,
respectively. The relative difference of M between A and
B was (0.02 ± 0.65) × 10−6, where the uncertainty here is
the root of the sum of the squares of the repeatability. These
differences were also included in the uncertainty budget for M

of ‘BIP Plus’.
The isotopic abundance ratios 40Ar/36Ar for samples A and

B are slightly smaller than that for sample C. The 38Ar/36Ar
ratios for samples A, B and C are identical, within the
uncertainty of the measurements. The value of M of sample
C is larger than the average M of samples A and B by a
fraction of 0.81 × 10−6. For re-determining kB, we averaged
the values of M of samples A and B in table 4. The relative
standard uncertainty of the average of samples A and B is
ur(M) = 0.77 × 10−6. This uncertainty is entered into table 8
and it includes the uncertainty of the analysis by KRISS for
‘BIP’ and the repeatability of the analysis by KLPRR CAS for
samples A, B and C.

Our results for kB are independent of previously published
values of M . However, the isotopic composition of
commercially prepared argon has been widely discussed by
others, who deduced values of kB from measurements of the
speed of sound in argon. See figure 8 and [3–6, 8, 31–34]. In
this context, we note that our results for M and ur(M) are in
good agreement with most of the previously published values.

For this work (section 3), we used an SAES Model GC50
getter to purify argon. (Other groups have used the same
model [3, 5, 6].) According to the manufacturer, this getter

Figure 8. Comparison of argon molar masses. The data sources are
Nier [34]; NIST-M and NIST-A [3]; Lee [32]; NPL #1 through
IRMM [31]; NPL #1 2011 through SUERC #3 [33]. Note: [33] did
not calibrate their spectrometer with argon samples of well-known
isotopic abundances; therefore, their results are relative.

Table 5. KRISS analysis of BIP argon.

Gas Upper bound u (upper bound)

He <1.6 × 10−6 0.9×10−6

Ne <1.1 × 10−6 0.6×10−6

Kr <0.3 × 10−6 0.2×10−6

Xe <0.5 × 10−6 0.3×10−6

reduces the concentrations of H2O, CO, CO2, O2, H2, N2,
CH4 and other hydrocarbons in argon gas to less than 0.01
parts per million by volume. Therefore, these impurities made
negligible contributions to MAr and its uncertainty.

The upper concentration bounds of noble gas impurities
(table 5) contributed a relative uncertainty of 1.12 × 10−6

to ur(kB). To summarize, we used the value M =
39.947 810(10) g mol−1 for cases I and II and the value M =
39.947 843(5) g mol−1 for case III.

4.5. Frequency measurements

4.5.1. Spectrum of the evacuated resonator. Figure 9
compares the spectrum of the voltage amplitude at the detector
when the cavity was evacuated to the spectrum when the cavity
was filled with argon at 150 kPa and 273.16 K. (These spectra
were taken before we exchanged the end-plates following the
case I measurements.) The vacuum spectrum shows many
narrow features, particularly above 7 kHz; however, we did
not detect problems connected with these features. Perhaps
these features were damped when the cavity was filled with
gas. Even if they were not damped, the gas resonances in the
cavity generated signals that were a factor of 50 larger than the
features in the vacuum spectrum.

4.5.2. Determining measured resonance frequencies fN and
half-widths gN . We used the method described in [8] to
determine the measured values of the resonance frequencies
fN and the half-widths gN . We stepped the drive transducer
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Figure 9. Spectrum (amplitude) of the detected signal when the
resonator was evacuated (grey band) and when the resonator was
filled with argon at 150 kPa and 273.16 K.

through 13 synthesized, discrete frequencies in increments of
gN /3 starting at fN − 2gN and ending at fN + 2gN . Then we
changed the step size to −gN/3 and stepped back to fN −2gN .
After finishing the up and down frequency sweeps for each
mode, we waited 1200 s for the heat generated by the drive
PZT to dissipate before making additional measurements. At
each frequency, the complex voltage V ≡ u + iv generated
by the detector transducer was measured by a Stanford SR830
lock-in amplifier. The 26 frequencies and complex voltages
were fitted by the resonance function

V = if A

f 2 − (fN + igN)2
+ B + C(f − f̃ ) + D(f − f̃ )2, (6)

where A, B, C and D are complex constants; FN = fN + igN

is the complex resonance frequency of mode N under study.
The parameter f̃ has no physical significance; it is needed only
for numerical stability; therefore, we usually set it equal to the
average frequency. The parameters B and C account for the
effects of possible cross-talk and the ‘tails’ of the modes other
than N . In all the fits, the term D(f − f̃ )2 in equation (4)
was not significant. The changes in the fitted value of FN

were insignificant when we reduced the span of the data to
fN ± 1.7gN by deleting the measurements at the highest and
lowest frequencies. For the reduced data span, fN ± 1.7gN ,
the term C(f − f̃ ) was not significant.

The contributions to gN in equation (4) from the thermal
and viscous boundary layers vary as f −1/2. This phenomenon
generates a small asymmetry in the shape of the resonance. To
account for this, we used the correction

�fN = fmeas − fN ≈ −fN/(8Q2
N) (7)

to obtain the measured resonance frequency fmeas. In this
work, the smallest value of Q was 350 for the mode (2 0 0)
at 50 kPa, where �fN = 1.0 × 10−6 in equation (7) and the
fractional correction to kB is twice as large.

4.5.3. Excess half-widths. The calculated values of the half-
widths account for five effects:

(1) the first-order contribution g
(1)
v /f due to the viscous

boundary layer using equation (7) from [8],

(2) the first-order contribution g
(1)

th /f due to the thermal
boundary layer including penetration of the thermal wave
into the steel side-wall and the quartz end-plates of the
cavity using equation (11) from [8],

(3) thermal and viscous contributions gbulk/f due to the
volume losses using equation (12) from [8],

(4) the fill duct using a modified version of the waveguide
model presented in [22] (in this model, the values of
gduct/f range from 27 × 10−6 for the (2 0 0) mode to
7 × 10−6 for the (5 0 0) mode and have a weak pressure
dependence),

(5) the second-order correction to the half-widths from the
thermal and viscous boundary layers using

g
(2)

l,surf

f
(0)
l

= −
(

δT

R

)2 [
1

4
(2

√
Pr + 3γ − 2)(γ − 1)

+ (2
√

Pr + 3γ − 3)(
√

Pr + γ − 1)
R

L

+ 2(γ − 1)2 R2

L2

]2

(8)

from [35].

Equation (8) always decreases the calculated half-widths
and does not affect the resonance frequencies, as in the case
of the spherical cavity [36]. In this work, the values of
g(2)/f range from −6.6 × 10−6 to −0.25 × 10−6; the most
negative value occurs for the (2 0 0) mode at 50 kPa and the
least negative value occurs for the (5 0 0) mode at 550 kPa.
(Because the values of g(2)/f are so small, equation (8)
ignores the penetration of the thermal wave into walls of the
cavity.)

For calculating g(1)/f and g(2)/f , we used the zero-density
values ηAr = (20.9448±0.0050) µPa s and λAr = (16.3673±
0.0039) × 10−3 W m−1 K−1 for the viscosity and thermal
conductivity of argon at TTPW. We obtained this value of ηAr

by combining the value ηHe = (18.677 47 ± 0.000 18) µPa s
calculated by [37] with the ratio ηAr/ηHe = (1.121 39 ±
0.000 27) measured in [38]. We obtained the value of λAr

using the relation λAr = CpηAr/(P rM), with the value Pr =
(0.665 851 ± 0.000 027) for the Prandtl number calculated
by [37]. In this work, we used the same expressions for
the pressure dependence of the thermal conductivity and the
viscosity as we did in [8]. The uncertainties u(ηAr) and u(λAr)

contribute less than 0.5 × 10−6 to u(kB).
The upper panel of figure 10 displays the excess half-

widths �g ≡ gmeas − gcalc of the acoustic resonances
multiplied by 2 × 10−6/fmeas, where fmeas are the measured
frequencies and where gcalc is calculated without adjustable
parameters. (The factor of 2 × 10−6 is convenient for
comparing �g/fmeas with the components of the uncertainty
budget for the determination of kB.) At the higher pressures,
the present values of �g/fmeas approach straight lines with
mode-dependent slopes and intercepts near zero. This trend
has been reported by us [8] and by many others and is usually
attributed to dissipation in the resonator’s elastic response to
the oscillating acoustic pressure within it. At low pressures,
the present values of �g/fmeas increase approximately as
(pressure)−1 with only a weak mode dependence. Both of these
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Figure 10. Top: pressure dependence of the excess half-widths
multiplied by 2 × 106/fexp for case I. The solid curve is the function
0.5683(p/550 kPa) + 0.8496(p/550 kPa)−1. The lower three panels
show the deviations of the measured half-widths from the function
in the top panel.

trends are represented by the function 0.5683× (p/550 kPa)+
0.8496(p/550 kPa)−1 which is plotted as a solid curve in the
upper panel of figure 10.

To the best of our knowledge, the increase in �g/fmeas

at low pressures has not been reported before and we have
no explanation for it; however, we are actively studying it.
(We are considering dissipation within the transducers and
in the sound-absorbing material behind them.) As discussed
below, any p−1 dependence of the measured frequencies fmeas

would be absorbed in the term A−1p
−1 used when fitting

fmeas(p). Our values of A−1 (section 4.6.3) are consistent
with accommodation coefficients near unity. Therefore, the
low-pressure anomaly in �g/fmeas does not appear to affect
our values of kB.

4.5.4. Corrections to the resonance frequency measurements.
The measured resonance frequencies fmeas(Ti, pi) were
corrected for four effects:

(1) the viscous boundary layer including the viscous
accommodation length lv using equation (4) from [8],

(2) the thermal boundary layer accounting for penetration of
the thermal wave into the metal wall and quartz end-plates
and including the thermal accommodation length lth (for
this effect, we used equation (8) from [8]),

(3) the fill duct, using a modified version of the waveguide
model presented in [22] (the waveguide model predicts
the fractional correction to fmeas is less than 0.6 × 10−6),

(4) the motion of the shell generated by the oscillating
acoustic pressure in the argon. The shell’s response was
calculated using equations (13) and (20) from [8] with
the compliance parameters G∗

i,n ≡ 1012 J m−3 Gi,n for
(i) radial motion G∗

1,2 = 0.614, G∗
1,3 = 0.144, G∗

1,4 =
0.0602 and G∗

1,5 = 0.0211 with fsh,1 = 25 308 Hz for l =
2, 4 and fsh,1 = 64 562 Hz for l = 3, 5; (ii) axial motion
G∗

2 = 3.22 with fsh,2 = 166 61 Hz; (iii) end-plate bending
(clamped boundary) G∗

3 = 52.4 with fsh,3 = 140 70 Hz;
(iv) PZT transducer + diaphragm bending G∗

dm = 13.02
with fdm = 156 14 Hz; equation (14) in [8] was used
to estimate the frequency shift due to recoil assuming the
resonator is a free rigid body with mass MRes = 10.442 kg.

Corrections (2) and (3) in the preceding paragraph require
values for the accommodation lengths lv and lth; we calculated
these corrections assuming hv = 1 and hth = 1. These
accommodation corrections increase the measured frequencies
by a fraction [2(γ −1)lth + lv]/a = 11×10−6(50 kPa/p) where
the simple functional form and numerical value apply to the
(l 0 0) modes used in this work. To account for the possibility
that hv 	= 1 and hth 	= 1, we included the term A−1p

−1 in
equation (10), the function that we used to fit c2 as a function
of pressure. For cases I and II, the best-fit values of A−1 were
indistinguishable from zero (table 6) and for case III the term
A−1p

−1 contributed the fraction (2.2 ± 1.3) × 10−6 to c2 at
our lowest pressure 50 kPa.

The corrections do not account for dissipation due to the
transducers or the sound-absorbing material placed behind the
transducers.

The multiple corrected frequencies, fcorrected(Ti, pi), for
each mode near each target pressure were adjusted to
fcorrected(TTPW, 〈p〉) where 〈p〉 is the average target pressure.
These adjustments used the relation

fcorrected(TTPW,〈p〉)
fcorrected(Ti, pi)

= 1 +

(
1

c2

dc2

dp

)
p

(〈p〉 − pi)

+

(
1

c2

dc2

dT

)
T

(TTPW − Ti). (9)

Finally, we averaged the adjusted corrected frequencies for
the same case, mode and target pressure to obtain a single
frequency fexp,l(p) and standard deviation, which we used in
the subsequent analysis. We drop the angular brackets with
the understanding that p refers to the average pressure 〈p〉.
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Table 6. Fitted parameters and derived quantities. (�kB ≡ 106(kB/kB,CODATA − 1) with kB,CODATA = 1.380 6488(13) × 10−23 J K−1

from [19].)

Parameter Unit Case I Case II Case III

A0,2 m2 s−2 94 755.85(13) 94 755.77(13) 94 755.38(13)
A0,3 m2 s−2 94 755.96(10) 94 755.89(14) 94 755.55(10)
A0,4a m2 s−2 94 756.43(10) 94 756.39(13) —
A0,4b m2 s−2 94 756.28(10) 94 756.29(13) —
A0,5 m2 s−2 94 756.33(10) 94 756.24(14) 94 755.94(10)
104 A1,2 m2 s−2 Pa−1 2.2268(40) 2.2490(53) 2.2540(44)
104 A1,3 m2 s−2 Pa−1 2.3670(39) 2.4114(52) 2.4138(43)
104 A1,4a m2 s−2 Pa−1 2.2078(38) 2.2154(53) —
104 A1,4b m2 s−2 Pa−1 2.2044(39) 2.2266(53) —
104 A1,5 m2 s−2 Pa−1 2.3182(39) 2.3703(52) 2.3727(42)
1011 A2 m2 s−2 Pa−2 5.407(43) 5.300(63) 5.272(51)
10−2 A−1 m2 s−2 Pa −34 −15 102(59)
χ 2/ν 0.7 0.3 0.3

Derived quantities
104〈A1〉 m2 s−2 Pa−1 2.265(74) 2.295(90) 2.347(83)
〈A0〉 m2 s−2 94 756.17(25) 94 756.12(27) 94 755.62(29)
1023 〈kB〉 J K−1 1.380 6502(37) 1.380 6495(39) 1.380 6434(41)
�kB,2 −2.33 −3.11 −6.48
�kB,3 −1.19 −1.87 −4.69
�kB,4a 3.81 3.35 —
�kB,4b 2.22 2.34 —
�kB,5 2.74 1.82 −0.55
〈�kB〉 1.0 0.50 −3.9

4.5.5. Fitting acoustic isotherms. The values of fexp,l

were multiplied by the cavity’s length L and divided by the
eigenvalue l to convert them to experimental speeds of sound
cexp,l . The upper panel in figure 11 displays the differences
between the values of (cexp,l)

2 and those reported in [3]. The
differences are nearly linear functions of the pressure with
mode-dependent slopes. We attribute these differences to
imperfections of our model for the shell’s response to the
acoustic oscillations. To account for these linear dependences,
we fitted the values of (cexp,l)

2 −A3p
3 for cases I and II by the

eight-parameter function of pressure p and mode l:

(fexp,lL/l)2 − A3p3 = A0 + A1,lp + A2p
2 + A−1p

−1. (10)

In equation (10), A0 ≡ c2
0 = γ0kBTTPW/m, A2 and A−1 were

mode-independent adjustable parameters; A3 was fixed at the
value 1.45×10−18 m2 s−2 Pa−3 taken from [39], and A1,l took
on the five values A1,2, A1,3, A1,4a , A1,4b and A1,5 for modes
(2 0 0), (3 0 0), (4 0 0)a, (4 0 0)b and (5 0 0), respectively. For
case III, we did not use data from modes (4 0 0)a and (4 0 0)b,
and parameters A1,4a and A1,4b were not determined.

The deviations from the eight-parameter fitting function
are plotted in the lower three panels of figure 11. As
suggested by the dashed lines in figure 11, the deviations from
equation (10) are approximately mode-dependent constants
(independent of pressure). This implies that the eigenvalues
for the modes studied are not exact integers, or equivalently,
there are perturbations from a cylindrical shape that are missing
from our model for the cavity resonator. To quantify this mode
dependence, we fit the same data by the 12-parameter function
of the pressure p and mode l:

(fexp,lL/l)2 − A3p
3 = A0,l + A1,lp + A2p

2 + A−1p
−1,

(11)

where the single parameter A0 has been replaced by the five
parameters A0,2, A0,3, A0,4a , A0,4b and A0,5. The results of
this final fit of the data by equation (11) are listed in table 6.
The deviations of the data from this fit are the deviations of the
points in figure 11 from the corresponding dashed lines.

When fitting equations (10) and (11), we weighted each
value of (fexp,lL/l)2 by 1/σ 2(f 2) where σ(f ) is the standard
deviation of the multiple frequencies measured for each mode
after being corrected to TTPW and to each target pressure. The
values of σ(f 2) were represented by the function

σ(f 2) = f 2

(
s1 +

s2

f̃ p̃
+

s3

f̃ p̃2
+ s4f̃ p̃2 + s5f̃ p̃

)
, (12)

where the coefficients are listed in table 7 and the scaled
frequency and pressure are defined by f̃ ≡ f/(9600 Hz) and
p̃ ≡ p/(550 kPa). With these weights, the values of χ2

divided by the number of degrees of freedom ν were 0.7, 0.3
and 0.3 for cases I, II and III, respectively. This implies that
we overestimated σ 2(f 2) by less than a factor of 2.

4.6. Results

Table 6 lists results from fitting all three cases. Figure 5 com-
pares the present values of A1,l and kB,l = 3mA0,l/(5TTWP)

to reference values. As reference values, we used
A1 = 2.5202(35) × 10−4 m2 s−2 Pa−1 from [3] and kB =
1.380 6488(13)× 10−23 J mol−1 K−1 from the CODATA 2010
review [19].

4.6.1. Results for kB. The upper panel of figure 5 shows the
13 values of kB determined in this work. They are scattered in
a non-random manner about the CODATA 2010 value. First,
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Figure 11. Top: deviations of measured squared speed of sound
from the results reported in [3]. The lower three panels display the
deviations for each case from weighted fitting of the values of
(cexp,l )

2 − A3p
3 to the surface A0 + A1,lp + A2p

2 + A−1p
−1, where

the subscript ‘l’ identifies the mode-dependent parameter.

we identify the correlations in the data. Then, we compute a
particular average value 〈kB〉.

We quantify the consistent mode dependence of kB by
comparing the standard deviation of the five mode-by-mode
differences between cases I and II with the standard deviation
of the same ten values of kB. The average of the five differences
is 〈kB,case II−kB,case I〉 = (−0.54±0.41)×10−6kB. In contrast,
the average of the same ten values is 〈kB,cases I and II〉−kB,Ref =
(0.78 ± 2.60) × 10−6kB with a standard deviation that is
six times larger. We recall that, between cases I and II,
the end-plates were interchanged, the length of the cavity
decreased by a fraction of 10.0 × 10−6, and the support of
the cavity was changed from nearly free to clamped. Thus,
the small standard deviation of mode-by-mode differences
is consistent with (1) part-per-million reproducibility of the

Table 7. Coefficients for equation (12) for the uncertainty σ(f 2).

Case I Case II Case III

s1 0.0990 0.5322 0
s2 0.1165 0 0.1305
s3 0 0.0166 0
s4 0 0.4093 0
s5 0 0 0.4651

Table 8. Uncertainty budget for the re-determination of kB.

Uncertainty source Reference 106 × ur(kB)

1. Gas temperature measurement section 4.3
Thermometer calibration 0.36
Temperature gradient 0.17
TPW realized by the reference cell 0.18

2. Avogadro constant [19] 0.05

3. Molar mass section 4.4
Abundance of noble gas impurities 1.12
Isotopic abundance ratios 0.77

4. Length measurement section 4.2
Average cavity length 1.08
Optical–acoustic difference 0.50
Two-colour interferometry 0.58

5. Zero-pressure limit of section 4.5
corrected frequencies

Boundary layer corrections 0.40
Random error in A0 table 6 1.2

6. Inconsistency among four modes section 4.6.1 2.9
Combined uncertainty 3.7

measurements of temperature and length, (2) reproducible
handling of argon during ten runs and (3) apparent values of
kB that are independent of the method of supporting the cavity.

Between cases II and III, we replaced BIP+ argon with BIP
argon. The average of the three mode-by-mode differences
is 〈kB,case III − kB,case II〉 = (−2.85 ± 0.50) × 10−6kB. We
attribute this difference to a real difference between the mole
fraction average mass M of the two argon samples. The
fractional difference, 2.85 × 10−6, is 2.1 times the uncertainty
ur(M) of each test gas (section 4.4 and table 8) and it is 1.5
times 21/2ur(M), the fractional standard uncertainty of the
difference between two values of M . This estimate of ur(M)

does not separate out the random and correlated parts of the
mass uncertainty; therefore, it may be very large.

Because the values of kB from cases I and II are correlated,
both by mode and by argon sample, we treat cases I and II as a
single measurement with the result 〈kB,cases I and II〉 − kB,Ref =
0.78 × 10−6kB. We treated case III as a second measurement;
however, the data for the (4 0 0) mode were not usable for
case III. Therefore, we used the (2 0 0), (3 0 0) and (5 0 0)
modes to calculate the difference between cases {I and II}
and case III to obtain the result 〈kB,case III〉− 〈kB,cases I and II〉 =
(3.25±0.47)×10−6kB. The unweighted average of these ‘two’
measurements is 〈kB〉two − kB,Ref = −0.85 × 10−6kB, which
corresponds to kB,this work = 1.380 6476 × 10−23 J K−1. This
average is our best estimate of kB because it gives equal weight
to the data from the BIP+ argon and the BIP argon, and because
it recognizes that we used only four independent modes. If we
had simply computed the average of all 13 values of kB, we
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would have weighted the BIP+ argon data (cases I and II) a
factor of 10/3 more heavily than the BIP argon (case III) and
obtained the result 〈kB〉13 −kB,Ref = −(0.30±3.29)×10−6kB,
where the uncertainty is only the standard deviation of the 13
values of kB.

We quantify the mode-dependent inconsistency among
the values of kB by the standard deviations of the differences
between the values of kB for each case and their mean; they
are 2.7 × 10−6, 2.8 × 10−6 and 3.0 × 10−6, for cases I, II
and III, respectively. (If the values of A0,4a and A0,4b are
averaged before computing the standard deviation, the values
are 2.7×10−6 for case I and 2.9×10−6 for case II.) These results
are summarized by the entry ‘inconsistency among modes’
with the value 2.9 × 10−6 in our uncertainty budget in table 8.

4.6.2. Results for the acoustic virial coefficients A1 and
A2. The lower panel of figure 5 show the 13 values of A1

determined in this work. (The values of A1,n are listed in
table 6.) They are scattered about the reference value A1 =
2.5202(35) × 10−4 m2 s−2 Pa−1 from [3]. The mode-by-mode
differences have the averages 〈A1,case II −A1,case I〉 = (0.030±
0.018) × 10−4 m2 s−2 Pa−1 and 〈A1,case III − A1,case II〉 =
(0.0033 ± 0.0015). Because A1 has contributions from both
the second acoustic virial coefficient of argon and from the
response of the resonator to the gas oscillations, it is not
surprising that exchanging the end-plates and changing the
support of the resonator changed 〈A1〉. Furthermore, the values
of A1 for the odd modes (3 0 0) and (5 0 0) changed more
than the values for the even modes, perhaps because the odd
modes tend to move the centre of mass of the resonator while
the even modes do not. We did not expect 〈A1〉 to change
when we changed argon from BIP+ to BIP. Consistent with
this expectation, the gas change was associated with a change
in 〈A1〉 that was only 1/10th of the change associated with the
support and was barely significant.

Fitting equation (11) yielded the result 〈A2〉 =
(5.326 ± 0.071) × 10−11 m2 s−2 Pa−2 which agrees, within
combined uncertainties, with the value (5.321 ± 0.062) ×
10−11 m2 s−2 Pa−2 reported in [3].

4.6.3. Results for A−1 and the accommodation coefficients h.
For cases I and II, the best-fit values of A−1 in table 6 are zero
within the uncertainty of the fit. The value zero is equivalent
to a combined accommodation coefficient h = 1, assuming
that the thermal and the viscous accommodation lengths lv
and lth are both multiplied by the factor (2−h)/h. Determining
separate values for hv and hth would require studying both
longitudinal and non-longitudinal acoustic modes; this is not
necessary to determine kB with the present uncertainties.
For case III, the value of A−1 is equivalent to a combined
accommodation coefficient h = 0.68 ± 0.17. Values of hth

close to 1 have been reported by other groups that measured
kB using acoustic resonators [40].

4.7. Uncertainty budget

Our determination of kB is connected to the quantities that we
measured (frequencies f , length L, temperature T , pressure

p), the calculated eigenvalues l and frequency perturbations
�f , the fundamental constant NA, and to quantities measured
by others (A3, M). Therefore, the uncertainty ur(kB) of
the value means kB has contributions from the uncertainties,
ur(fl), ur(M), ur(T ), ur(L

2), as well a contribution from fitting
the frequencies in each run to determine A0. Table 8 lists
these contributions to ur(kB) and refers to the sources of the
uncertainty estimates.

By far the largest contribution to ur(kB) is the
inconsistency among the modes. This suggests that our
cavity differs from a perfect cylinder in ways that we have
not modelled. Although we do not know the origin of
this inconsistency, we have treated it as a random effect for
estimating uncertainties.

The second largest contribution to ur(kB) results from the
random uncertainty of the values of A0 generated by fitting
the data on each isotherm. The third largest contribution to
ur(kB) resulted from the uncertainty of the molar mass of
the argon samples. This uncertainty contribution had two
parts. The larger of the two resulted from the upper bounds
to the concentrations of noble gas impurities provided by the
manufacturer. The smaller of these two contributions resulted
from the analysis of the relative isotopic abundances.

The root sum of the squares of all the contributions to
ur(kB) is 3.7×10−6 and this is our estimate of ur(kB).

5. Discussion

We have re-determined kB using very different techniques from
those that led to the CODATA 2010 value of kB. Our result
differs from this reference by a fraction (−0.9 ± 3.7) × 10−6.
Our result is probably the most accurate value of the speed of
sound ever measured with a cylindrical resonator.

The present frequency measurements had a higher signal-
to-noise ratio than our previous work and this enabled us to
detect a low-pressure anomaly in half-width results. We are
actively investigating possible sources of this anomaly. In this
work, we reduced the dispersion among the modes; however,
this is still a major source of uncertainty. The dispersion
indicates that our model for the geometry of the cavity (i.e.
its dimensions, including the fill duct and the joints between
the end-plates and the sides of the cavity) can be improved.

In [21] we proposed transferring end-plates from one
fixed-length cavity resonator to a second, twice-as-long, cavity
resonator and to determine kB by comparing modes of the
two cavities at nearly the same frequency. The feasibility
of measuring kB in this way is supported by our observation
that values of kB from cases I and II are nearly identical. If
the inconsistency among the modes results from some stable
property of the end-plates or some repeatable property of the
joint between the end-plates and the cylinder, the two-cavity
scheme will reduce the uncertainty of kB.

In this work we measured the difference between the speed
of sound in two different samples of argon using four acoustic
modes. The relative standard deviation of the differences in c2

0
was 0.47 × 10−6. This demonstrates the feasibility of using
a sample of isotopically enriched 40Ar as a mass standard to
determine the mass of working gases such as those in particular
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cylinders of ‘BIP’ and ‘BIP+’. As shown in [3], this will reduce
the uncertainty of M , particularly if tighter upper bounds can
be placed on the concentrations of the noble gas impurities
in argon.
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