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Abstract—Because of their importance to infrastructure, a
number of studies have examined the structural properties of
power grids and have proposed random topological models of
them. We examine the ability to create generalized models of
power grid structure by comparing real data sets to see where
inherent modeling limitations occur. We then propose a possible
mechanism for why these networks differ in their structure, and
the implications these differences have in creating power grid
models. Finally, we introduce a new model for power grids with
a radial-style architecture.

Index Terms—power system modeling

I. INTRODUCTION

Observations over the past two decades have shown that
there are a number of systems that contain embedded networks
having a number of common features. The importance of these
similar networks, commonly called complex networks, lies in
the areas in which they are found. They have been shown
to arise naturally in systems of both biological [1]–[3] and
social [4] interactions. In addition, there also have been claims
that similar complex networks appear in many engineered
systems such as the Internet [5], software components [6], and
an area in which we are particularly interested, power grids.

Being able to measure and model engineered systems is an
essential step towards being able to maintain and understand
the reliability, safety, and in some cases the security of these
systems. This is especially true for electric power grid systems,
where reliability questions, such as how blackouts propagate,
are still open. These questions highlight the need for a formal
measurement and simulation program for understanding power
grids. Towards this goal, we examine a claim that is often
made in the literature that power grid networks have similar
properties and can be treated homogeneously. Specifically,
there have been several publications implying that power grids
can be treated as scale-free complex networks (such as [7]–
[9]).

This idea that power grids in various parts of the world
would have similar properties is a surprising one. Power grids
are fundamentally different than the other engineered systems
mentioned above, such as the autonomous system topology
of the Internet. It is expensive and sometimes impossible to
arbitrarily add or modify the substations and power lines of a
power grid, i.e., the nodes and edges of the network. Because
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of these constraints, power grids are highly engineered and
tend to have extremely static topologies.

This claim poses several questions about how we should
analyze power grid networks. Should we model and simulate
power grids as complex networks? Why would a highly
engineered system show characteristics of complex networks?
How did they acquire any shared structure that we see in them?
What are the limits to creating realistic random models of
power grids? We examine these questions. Since the issues
associated with power grid reliability are complicated, we
will only focus on the topological characteristics of networks.
We start by examining where topological differences show up
between the different power grids, and what implications this
has for the modeling of these networks.

II. EXAMINATION OF POWER GRIDS

The idea that power grids, and particularly their topology,
are complex networks can be traced back to a paper by Watts
and Strogatz [1]. In their seminal paper, they showed that the
power transmission grid covering much of the western states
in the United States shows characteristics that are far from the
expected behavior of random graphs with an identical degree
distribution. Specifically, they showed that the western power
grid has a much larger average shortest path and clustering
coefficient than expected from random models. This fits their
definition of a small-world network, and so their conclusion
was that this power grid is an example of this type of network.
At about the same time, several research groups showed that
that degree distributions of various power grids are predictable
[4], [10], [11].

To determine what static characteristics hold between power
grids, we examined three data sets: Strogatz and Watts’
original data set of the western United States power grid, the
power grid of Poland [12], and a test power grid produced
by the IEEE [13]. The basic characteristics of these sets are
shown in Table I.

In determining if power grids are small-world networks, in
general, we see that the average path length L of one of these
power grids all appears to be proportional to the logarithm of
number of nodes N in the network, in other words

L ∼ logN (1)

From the data the diameter does not disqualify any of these
power grids from being small-world, although we would note
though that graphs with relatively small diameters are very



Data Set # Nodes # Edges Avg. Deg. Diam. Avg. Path Len. Avg. Clustering Coeff.
Western States 4941 6594 2.67 46 18.99 0.080

Poland 2383 2886 2.42 30 12.76 0.009
IEEE 300 300 409 2.73 24 9.94 0.086

TABLE I
WE EXAMINED THREE DATA SETS. THESE DATA SETS INCLUDE THE POWER GRID TOPOLOGIES OF THE WESTERN UNITED STATES [1], [14] AND OF

POLAND [12]. IN ADDITION, WE INCLUDED THE IEEE 300 TEST DATA SET [13]. BASIC INFORMATION ABOUT THESE SETS IS RECORDED IN THE ABOVE
TABLE, INCLUDING THE DIAMETER, AVERAGE SHORTEST PATH LENGTH, AND CLUSTERING COEFFICIENT.

common. One striking feature of these data sets is that the
Polish power grid has a much smaller average clustering
coefficient than the other data sets. In fact, the Polish set does
not show an average clustering coefficient that is significantly
above the expected value for a random network of its size. This
calls into question whether Watts and Strogatz would have
considered the Polish power grid as a small-world network at
all. Thus it seems that we cannot make the generalization that
all power grids show small-world characteristics.

We next look at the degree distributions of these networks.
The specific degree distribution of power grid networks has
been a source of conflicting conclusions. A claim that is often
made in the literature when examining specific power grids
is that they are scale-free networks (such as [7]–[9]). The
source of this statement stems from Barabási and Albert [10]
who stated that the distribution of power-grid networks can be
approximated by a power-law distribution with an exponent of
4.

Although the larger degree nodes in many power grids
can be approximated with a power-law distribution, this dis-
tribution does not fit the lower degree nodes well. As first
noted by Amaral, Scala, Barthélémy, and Stanley [4], a closer
examination of these networks shows that their degrees are
better fitted by an exponential distribution. Later, Albert,
Albert and Nakarado [11] stated that the cumulative degree
probability distribution is approximately

P (k ≤ K) ∼ 1− e−0.5K (2)

An exponential distribution can be shown graphically as a
linear distribution on a linear-logarithm scale. We can see the
results of fitting to a semi-log distribution in Figure 1. As
shown in the figure, the various power grids do appear to fit
exponential distributions1.

This raises the question on why we see this type of
distribution in such a highly engineered system at all. It has
been suggested that cost constraints can distort an underlying
power-law distribution into an exponential distribution [4], but
that raises the question of how can a power-law distribution
be associated with a power grid in the first place?

As an engineered system, the power grid does not organ-
ically evolve, but instead is a reflection of design choices.
Thus for the power grid to be influenced towards some
power-law-like distribution requires that there must exist an

1It should be noted that Holmgren [9] points out that the distributions of
the Western States and the Nordic power grids do not pass the chi-square and
Kolmogorov-Smirnov tests for an exponential distribution.

underlying mechanism that influences the designers towards
these structures. Accounting for a precise mechanism remains
an open question, but we can speculate as to the source
behind this observed structure. From an engineer’s perspective,
the placement of substations and power lines, is principally
a function of servicing population areas while adhering to
constraints imposed by the capacity and cost for construction.

Using this viewpoint, we postulate a guess as to why the
larger degrees in the network seem to follow a power-law
distribution. Recent research has shown that the populations
of various communities tend to follow a consistent power-law
distribution. In particular, it was shown that the size of natural
population centers in the United States follow a power-law
distribution with exponents of 1.74 in general to 1.91 for the
largest communities [15]. If power substations are laid out
such that their number of connections are roughly proportional
to the population of the surrounding community they service,
then their degree distribution should, to some extent, reflect
the surrounding population distribution.

For an exponential distribution for power grids to arise from
the surrounding population distributions, the importance of
redundant paths into a substation should be dependent on the
number of people served by that substation. In other words,
the number of transmission lines into a substation takes into
consideration the cost of adding the additional transmission
lines versus the number of people that would benefit from the
increased reliability. If the number of power lines going into
the power substations are roughly proportional to the logarithm
of population of the surrounding community they service, then
the resulting degree distribution will be exponential. To see
this, consider a population whose probability density function
is the Zipf distribution

Ppop(k) = c · k−(ρ+1) (3)

where the constant c = 1
γ(ρ+1) and γ(z) is the Riemann zeta

function. If we take the logarithm of the value produced by
such a distribution to create a new distribution Pgrid then the
resulting cumulative distribution is

Pgrid(k ≤ K) = Ppop(k ≤ eK) = c ·
∫ eK

0

k−(ρ+1) dk (4)

=
c

ρ

(
1− e−ρK

)
(5)

Since this is proportional to the cumulative density function of
an exponential distribution, it implies that the resulting power
grid would have an exponential distribution.



Fig. 1. A least squares fitting of the three data sets on a semi-log domain. This fitting gives support to the idea that power grid degree distribution are
actually exponential distributions and not power-law.

III. POWER GRID TOPOLOGICAL MODELS IN THE dK
HIERARCHY

The results from the previous section imply that there
are certain characteristics of power grid networks, such as
degree distribution, that are independent of any underlying
engineering choices. At the same time, the observed clustering
coefficient values show that there are demonstrable differences
in some topological characteristics between the various power
grids. To understand how engineering choices affect the mod-
eling of power grids, we examine where differences show up
in the dK-hierarchy of random models.

The dK-series of models was introduced by Mahadevan,
Krioukov, Fall, and Vahdat [16] as a hierarchy for random
models of networks. In creating a random model for a network
G, they defined three properties that they were trying to
capture with their hierarchy. The first is constructibility, the
ability to construct models having the properties in the dK-
series. The second is inclusion or the idea that for any property
Pd defined in the dth level of hierarchy, this property will
subsume all the properties Pi for 0 ≤ i ≤ d − 1. The final
property is convergence, which states that as d increases, the
set of graphs having the property Pd converges to G.

For the dK-series, the properties Pd are all local con-
nectivity properties of the nodes. Thus a 0K-model is a
model with the same average number of links per node. In
other words it has the same number of edges as the original
network. A 1K-model has the same node degree distribution
as the original graph. As mentioned in the last section, for
electric power grids we can construct 1K-models since there
is empirical evidence that these grids share a common degree
distribution. To create a random model with n vertices, we
would simply select a n length integer sequence from an
exponential distribution with ρ = 0.5, and any realization of
this sequence would be a 1K-model of the power grid.

The 2K set of models are defined by the graph’s joint degree
distribution (JDD). The joint degree distribution gives the
degree correlations for pairs of connected nodes. In practice,
this information is typically stored as a symmetric integer
matrix D where the entry Di,j contains the number of nodes
of degree i connected to a node of degree j.

In Figure 2, the joint degree distributions are shown for the
three data sets. One glaring difference between the sets is the
number of degree two nodes that connect to other degree two
nodes, i.e., the values of D2,2. From the IEEE test set, there
are almost no connections of this type, while for the Polish set
these connections predominate. The value of Western States
data set falls in between the other two sets. This is a prime
example that there are significant differences between power
grids that cannot be captured by any generic 2K-model.

While the precise mechanism behind why we see such
radical differences is not known, we would speculate that
these differences in the joint degree distribution appear to be
the direct result of engineering choices. More specifically, this
seems to be a reflection of the differences between the radial
architectures, used more in the United States, versus the ring-
main architectures favored more in Europe ( [17], pg. 48).

The fact that we cannot create a generic 2K-model for
power grids is further reinforced when we examine the 3K-
characteristics between the sets. For a graph to be a 3K-model,
the local clustering coefficient for each node must also be
matched. The local clustering coefficient for a node n is the
ratio of number of edges between its neighboring nodes to
the number needed to form a complete subgraph [1]. In other
words, for the node n its local clustering coefficient Cn is

Cn =
|{eij : vi, vj ∈ Nn, eij ∈ E}|(|Nn|

2

) (6)

where Nn is the set of nodes adjacent to n.
From the definition of the dK-series of models, if power

grids had a general 3K-model, that would imply that it would
also have a 2K-model. Obviously, that does not hold in
this case. In addition, we have already seen large differences
in the average clustering coefficient between the Polish and
Western States data sets, but if they had similar local clustering
coefficients then we would see almost no difference in the
averages.

This section shows an important limit of our ability to
perform analysis using random power grid models. To capture
most topological characteristics, we require at least a 2K-
model and often a 3K-model. For a generic power grid model,
this is impossible; at best, we can only guarantee 1K-models.



(a) IEEE 300 (b) Polish Power Grid (c) Western States Power Grid

Fig. 2. This figure shows the joint degree distributions of the three test data sets. These figures show the large differences between the joint degree distributions
of the three data sets. In particular, the entries D2,2 show radically different values between all three sets.

IV. A TOPOLOGY MODEL FOR RADIAL-STYLE GRIDS

Our contention is that non-trivial topological characteristics
of power grids can be captured by random models only if
we take into account the engineering principles behind the
creation of the grids. Extending this idea means that there is
no one model that accurately reflects all power grids. Thus
any realistic model would have to reflect the design principles
behind the power grid that they were simulating.

We applied some simple assumptions to how radial style
power grids are formed to see if we could create topologically
better fitting models. Based on these assumptions, this leads to
a straightforward algorithm to creating models. We simulate
a population over a geographic area using random uniform
distribution to distribute a set of points on the unit square. Each
point is weighted with a random value taken from some power-
law distribution. If we were trying to accurately replicate the
population distribution for the United States, our distribution
would use one of the exponents given by Jiang and Jia [15], but
for our purposes of creating a model that tries to match known
results [11], we used a Zipf distribution with the parameter
ρ = 0.5.

For our models of power grids, we required two topological
characteristics of our random model. The first is that the
resulting network is connected. If we were to have separate
components in a model, then we would have to consider
each of these components as a separate power grid. We
ensure connectivity by first computing a minimal spanning
tree connecting all of the points in the network. The weight
of an edge is computed by some function that accounts for
construction cost of the transmission line.

The second characteristic we require is that they must be
planar. We assume that the layout of the transmission lines
is such that they do not cross each other, but rather converge
at substations. In our algorithm, we guarantee this by only
adding edges that do not cross existing edges in the network.

In order to construct our models, we made some additional

simplifying assumptions. In real power grids, cost constraints
for connecting communities come not only from the distance
between substations, but also come from having to navigate
geographical barriers such mountain ranges or bodies of water.
For our purposes, we assume that distance is the only cost
constraint for connecting substations.

A second simplification is that for a real power substation,
there is a maximum capacity on the amount of power it can
handle. Exceeding that capacity requires building additional
substations to service the neighboring areas. As a simplifica-
tion, we assumed that each natural population center is ser-
viced by one substation. We can justify this simplification by
thinking of all the substations needed to service a community
as a type of supernode.

Since we are trying to capture a radial style development,
our method seeks to connect to nodes with the lowest cost.
We added a second restriction in choosing node connections
in that we only looked at the nearest articulation points in
the network. An articulation point is a node that if removed
would cause the network to become disconnected. By making
the arbitrary choice to connect only to articulation points in
the network, we are trying to reduce the overall number of
articulation points in the model and thus make the resulting
grid more robust to node outages.

Similar ideas of connecting to nearest nodes to simulate a
radial style of development has been previously proposed [18],
[19]. Our improvements to these methods have been to ensure
that the grid is planar, has some level of node robustness, and
approximately matches measured degree distributions.

The complete method is outlined below.

1) On a unit square, randomly (using a uniform distribu-
tion) place n nodes

2) Assign each node n a weight ωn drawn from a power-
law distribution (in our case, a Zipf distribution with
parameter ρ = 0.5)

3) Using the Euclidean distance as the edge weight between



Fig. 3. This figure shows a typical model created by the algorithm. The
blue edges represent those selected for the spanning while the red edges are
the ones added afterwards. The size of the model was chosen to match size
of the IEEE 300 data set. This model had 300 nodes, 395 edges, an average
degree of 2.63, a maximum degree of 13, an average clustering coefficient of
0.16, an average path length of 13.58, and a diameter of 41.

two nodes, compute the minimal spanning tree for the
edges between the nodes

4) For each node n, while |Nn| < blogωnc
a) Find the set of all nodes P that can be connected

to n by a straight line that does not cross any other
edge

b) From the set P , connect to the non-neighboring
articulation point with the smallest edge weight
(distance)

Figure 3 shows a typical model that is produced by this
algorithm. In this figure, the edges added while creating the
minimal spanning tree are shown as blue, while the remaining
edges are shown in red. For this example, we created a model
with the same number of nodes as the IEEE 300 data set.

To examine the structure of these models, we examined the
average joint degree distribution produced by the algorithm.
For Figure 4, we created 200 models with the same number
of nodes as the Polish power grid data set. We then computed
the average and standard deviation of each entry of the joint
degree distribution of these models. The structure of the matrix
is representative of the behavior of the algorithm across all size
data sets, and gives us an idea of the topological characteristics
of the resultant models. We notice that the models tend to
produce a high value in the D2,3 entires, while producing a
much lower number of D2,2 connections.

To understand how closely the algorithm approximates a
2K-model, we computed the average of each entry of the
joint degree distribution for 200 model instances for each size
of data set. We then subtracted these average values from
the original data set and normalized by the magnitude of the
largest value in the data set. The results of this comparison
are shown in Figure 5.

As we would expect, we see large differences in D2,2 entries

(a) Average of Joint Degree Distribution

(b) Standard Deviation of Joint Degree Distribution

Fig. 4. The average joint degree distribution of 200 models of the Polish
power grid topology using Algorithm 1. This distribution is typical of the
joint degree distribution from the model created by the algorithm.

for the IEEE 300 and Polish Power Grid data sets. The model
severely overestimates this value for the IEEE 300 data set and
underestimates it for the Polish power grid. In both cases, such
a model would have limited usefulness in capturing important
topological characteristics. In the case of the Western State
data set, however, the model average shows a lower relative
error across all its entries, and is a much closer approximation
of this data set.

In addition, we see from the table in Figure 5 that the
average clustering coefficient from the model is about twice



(a) IEEE 300 (b) Polish Power Grid (c) Western States Power Grid
Avg. Deg. Avg. Clustering Coeff.

Data Set Mean Std. Dev. Mean Std. Dev.
IEEE 300 2.794 0.106 0.195 0.025

Poland 2.795 0.040 0.170 0.008
Western States 2.797 0.027 0.167 0.006

Fig. 5. This figure shows the relative difference between the joint degree distribution of the three test data sets and the average joint degree distribution of
200 model created with our modeling algorithm. The difference between the two data sets is normalized by the magnitude of largest value in the original data
set. In addition, we show a table containing the average degree and clustering coefficient in order to establish where these models fall in the dK-hierarchy.

as large as the Western states network. This highlights that
while the algorithm approximates a 2K-model of radial archi-
tectures, there are further refinements needed for it to become
a 3K-model.

V. CONCLUDING THOUGHTS

Although it is common in the literature to treat power
grids as homogeneous networks, beyond the basic degree
distributions, the various power grids show little commonality
in their structure. They seem to be poor candidates to treat,
both by modeling and analysis, as general complex networks.
Whatever common structure they have that is reminiscent
of complex networks, seems likely to be a reflection of the
underlying population distributions. We could go so far as
to speculate that if populations were distributed according to
some non-fat-tailed distribution (such as a normal or Poisson
distribution), we would probably see the degree distributions
in power grids more closely resembling meshes and sharing
none of characteristics we typically associate with complex
networks.

Further, we specifically showed that there are large differ-
ences between power grids in their joint degree distributions.
This implies that there does not exist a general purpose model
of the topology of power grids that is better than being
a 1K-model. It seems that an accurate understanding of a
power grid’s topology must take into account the engineering
principles used in the design of each specific grid.

We then extended this idea to propose a new algorithm for
generating radial-style power grid topologies. Further research
will involve making the algorithm more closely match the
reference data set, and investigate how other grid architectures

can be successfully modeled. In addition, we are interested in
seeing whether application of these ideas can lead to new and
useful analysis techniques and metrics in dealing with power
grid networks.
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