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The violation of a Bell inequality is an experimental observation
that forces the abandonment of a local realistic viewpoint—
namely, one in which physical properties are (probabilistically)
defined before and independently of measurement, and in which
no physical influence can propagate faster than the speed of light1,2.
All such experimental violations require additional assumptions
depending on their specific construction, making them vulnerable
to so-called loopholes. Here we use entangled photons to violate a
Bell inequality while closing the fair-sampling loophole, that is,
without assuming that the sample of measured photons accurately
represents the entire ensemble3. To do this, we use the Eberhard
form of Bell’s inequality, which is not vulnerable to the fair-
sampling assumption and which allows a lower collection effi-
ciency than other forms4. Technical improvements of the photon
source5,6 and high-efficiency transition-edge sensors7 were cru-
cial for achieving a sufficiently high collection efficiency. Our
experiment makes the photon the first physical system for which
each of the main loopholes has been closed, albeit in different
experiments.

In 1935, Einstein, Podolsky and Rosen1 argued that quantum
mechanics is incomplete when assuming that no physical influence
can be faster than the speed of light and that the properties of physical
systems are elements of reality. They considered measurements on
spatially separated pairs of entangled particles. Measurement on one
particle of an entangled pair instantly projects the other particle onto a
well-defined state, independently of their spatial separation. In 1964,
Bell2 showed that no local realistic theory can reproduce all quantum
mechanical predictions for entangled states. His renowned Bell inequa-
lity proved that there is an upper limit to the strength of the observed
correlations predicted by local realistic theories. Quantum theory’s pre-
dictions violate this limit.

In a Bell experiment, one prepares pairs of entangled particles and
sends them to two observers, Alice and Bob, for measurement and
detection. Alice and Bob observe correlations between their results
that, for specific choices of their measurement settings, violate the
Bell inequality and hence force abandonment of local realism.

It is common that in an experiment, some particles emitted by the
source will not be detected3,8. In such a case, the subset of detected
particles might display correlations that violate the Bell inequality
although the entire ensemble can be described by a local realistic
theory. To achieve a conclusive Bell violation without assuming that
the detected particles are a ‘fair’ sample, a highly efficient experimental
set-up is necessary. This efficiency need not be perfect3.

Experimental limitations have made it necessary to assume fair
sampling in nearly every Bell experiment performed to date, with a
few exceptions9–13. In particular, owing to the lack of efficient sources
and detectors, this assumption has always been unavoidable in Bell
experiments on entangled photon pairs.

Since the first experimental Bell test14, a satisfactory laboratory
realization of the motivating gedankenexperiment has remained a
challenge15,16. The two other main assumptions include ‘‘locality’’17,18

and ‘‘freedom of choice’’19. Invoking any of these three assumptions
renders an experiment vulnerable to explanation by a local realistic
theory. The realization of an experiment that is free of all three
assumptions—a loophole-free Bell test—remains an important goal
for the physics community20. An important step has been the realiza-
tion of quantum steering experiments that have also addressed the
issue of loopholes21–23. Our experiment makes photons the first phy-
sical system for which all three assumptions have been successfully
addressed in a Bell test, albeit in different experiments.

In our experiment, we employ Eberhard’s inequality, a Bell inequa-
lity that inherently does not rely on the fair-sampling assumption4.
Our scheme is characterized by a number of technical improvements
over previous experiments. Each such improvement contributed cru-
cially to reaching the high collection efficiency and visibility necessary
for violating the inequality. Our source of photon pairs uses sponta-
neous parametric down-conversion in a Sagnac configuration, which
has proved to be efficient5,6. For photon detection, we use super-
conducting transition-edge sensors (TESs), which not only have a high
detection efficiency but are also intrinsically free of dark counts7. These
two characteristics are essential for an experiment in which no correc-
tion of count rates can be tolerated.

Eberhard’s inequality, which was proposed almost two decades ago4,
is a Clauser–Horne-type Bell inequality24 that explicitly includes
undetected (inconclusive) events. Therefore, its mere violation directly
implies that the fair-sampling loophole is closed. Also, the derivation
of Eberhard’s inequality includes pairs not detected on either side (and
can be generalized for those not even produced), which means that no
post-selection on the created pairs is necessary to violate the inequality.

Eberhard’s inequality requires the lowest known symmetric arm
efficiency for non-maximally entangled qubit states, namely g 5 2/3 <
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Figure 1 | Principle of the experiment. Violation of an Eberhard inequality
involves a source of polarization-entangled pairs as well as polarization
measurements. Each measurement device can rotate the photon’s polarization
according to one of two settings (a1, a2 and b1, b2) before projecting the photon
into the ‘ordinary’ (o) or ‘extraordinary’ (e) output of a polarizing beam splitter
and detecting it. All lost photons are also included in the derivation of the
inequality as ‘undetected’ (u) events. The different terms of the inequality
are photon counts recorded in the different settings.
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66.7%. This arm efficiency (that is, the collection efficiency in one arm
of the experiment) incorporates all losses, not least those in the source
and the measurement set-up (including the detector). Thresholds
lower than 2/3 have been reported for asymmetric efficiencies or
higher-dimensionally entangled states25,26. For the most widely used
Bell inequality, proposed by Clauser, Horne, Shimony and Holt27, at
least g 5 2!2 2 2 < 82.8% is necessary in the symmetric case. For
polarization-entangled photon pairs, Eberhard’s inequality considers
three possible outcomes: o (‘ordinary’) and e (‘extraordinary’) for the
two recorded outcomes of a polarization measurement, and u
(‘undetected’) if no photon is detected (see Fig. 1). Two different
measurement settings are used, (a1, a2) on Alice’s side and (b1, b2)
on Bob’s side. Let nkl(ai, bj) denote the number of pairs with the out-
come k for Alice’s photon and l for Bob’s photon, where k, l g {o, e, u},
when measured in settings ai and bj with i, j g {1, 2}. Eberhard’s
inequality can then be written as:

J~ {noo(a1,b1)znoe(a1,b2)znou(a1,b2)z

neo(a2,b1)znuo(a2,b1)znoo(a2,b2)§0
ð1Þ

Local realism allows J to take only non-negative values. Quantum
mechanically, the maximal violation is given by J/N 5 (1 2 !2)/2 <
–0.207 (ref. 15), where N denotes the number of entangled particle
pairs produced per applied setting combination. This bound is attainable
for a symmetric arm efficiency of g 5 1 and maximally entangled states.
For the largest possible violation of Eberhard’s inequality with g , 1,
non-maximally entangled states must be used. These have the form:

yrj i~
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 z r2
p HVj iz r VHj ið Þ ð2Þ

where 0 , r , 1 and H and V denote horizontal and vertical polarization
of Alice’s and Bob’s photons. Depending on the background count rate,

efficiencies higher than g 5 2/3 may be needed4. Interestingly, for
g , 82.8%, non-maximally entangled states are not only optimal but
even necessary for a violation of Eberhard’s inequality.

In an experiment, one records measurements of ‘singles counts’ S
(number of detection events on one side) and ‘coincidence counts’ C
(number of detected pairs) for the four combinations of settings
(a1, b1), (a1, b2), (a2, b1) and (a2, b2). The number of events for which
one of the outcomes is undetected follows directly from the measured
rates. For a given measurement length, we denote the measured coin-
cidence counts by Ckl(ai, bj) and the single counts by Sk

A(ai) for Alice
and Sl

B(bj) for Bob (k,l g {o, e}). All the terms in Eberhard’s inequality
are then given by the following measured quantities:

noo(a1, b1) 5 Coo(a1, b1)

noe(a1, b2) 5 Coe(a1, b2)

nou(a1, b2) 5 So
A(a1) 2 Coo(a1, b2) 2 Coe(a1, b2)

neo(a2, b1) 5 Ceo(a2, b1)

nuo(a2, b1) 5 So
B(b1) 2 Coo(a2, b1) 2 Ceo(a2, b1)

noo(a2, b2) 5 Coo(a2, b2) (3)

Inserting these expressions into Eberhard’s inequality yields:

J~ {Coo(a1, b1)zSA
o (a1){Coo(a1, b2)z

SB
o (b1){Coo(a2, b1)zCoo(a2, b2)§0

ð4Þ

where the coincidence counts Coe(a1, b2) and Ceo(a2, b1) have dropped
out. The resulting inequality, which is used in our experiment, now
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Figure 2 | Measurement set-up. The source, based on spontaneous parametric
down-conversion in ppKTP (periodically poled potassium titanyl phosphate) in
a Sagnac configuration, produces polarization-entangled photons with a
wavelength of 810 nm. A measurement setting is implemented in each arm by
rotating a half-wave plate to the desired angle in front of a calcite polarizer.

Photons transmitted through the calcite polarizer (ordinary output beam) are
spectrally filtered and coupled into an optical fibre (SMF-28), which leads them
to TESs for detection. The output signals from the detectors are amplified by
SQUIDs and further electronics before being digitized and processed by an
algorithm that identifies photons and time-correlated photon pairs.

RESEARCH LETTER

2 2 8 | N A T U R E | V O L 4 9 7 | 9 M A Y 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013



contains only directly available detection events related to the ordinary
beams of Alice and Bob. Remarkably, this implies that Alice and Bob
each need only one detector to test Eberhard’s inequality, whereas they
each require two detectors for testing a Clauser–Horne–Shimony–
Holt inequality. This characteristic can be intuitively understood:
consider detectors that monitor ‘e’ outcomes and whose detection
efficiencies decrease gradually to zero. This will just move events from
‘e’ to ‘u’: that is, from noe(a1, b2) to nou(a1, b2) and from neo(a2, b1) to
nuo(a2, b1). Only their sum appears in Eberhard’s inequality, so the
value of J does not change.

The entangled photon pairs at 810 nm are produced in a Sagnac
source5,28 pumped by a 405-nm-wavelength laser. The source is based
on type-II spontaneous parametric down-conversion using a non-
linear crystal (periodically poled potassium titanyl phosphate). In each
arm, a cut-off filter and a 3-nm interference filter with near 99%
transmission are used to suppress counts from the pump laser and
reduce the background counts. The source can be tuned to produce
non-maximally entangled states with the form expressed by equation
(2) for any r by setting the polarization of the pump light with half- and
quarter-wave plates.

The measurement set-up (see Fig. 2), containing a rotatable half-
wave plate in a high-precision rotation mount and a calcite polarizer, is
positioned in front of the fibre coupler on both Alice’s and Bob’s sides
to facilitate measurement of the desired polarization (a and b). The
measurements require only one output of the polarizer, so only the
transmitted ordinary beam of the polarizer is coupled into the fibre;
the extraordinary beam is blocked after transmission. We couple the
810-nm photons into an optical fibre (SMF-28), which guides the
photons to the sensitive areas of the detectors. To achieve a high
coupling efficiency in both arms, we optimized the focusing of the
pump laser and the fibre couplers.

To achieve highly efficient photon detection, we used TES calori-
metric detectors that owe their sensitivity to operation at the super-
conducting transition, a regime characterized by a steep dependence
of resistance on temperature7. By exploiting a wavelength-optimized
optical structure, these detectors have been reported to demonstrate
detection efficiencies of up to 98% (including losses from packaging
and fibre coupling)6,7. Superconducting quantum interference devices

(SQUIDs)29 amplify the nanoampere-level TES current signal, which is
subsequently digitized and stored for later analysis. Without requiring
any additional information about the data, algorithms identify photon
signatures in the analogue output signal, determine an arrival time for
each event, and count two-photon coincidences.

As a guide for the experimental settings needed to observe a viola-
tion of local realism, we used numerical simulations and optimization
to determine an optimal non-maximally entangled state. For input, the
model used the estimated background rate, the observed visibility, and
the overall efficiencies gA and gB on Alice’s and Bob’s sides. The model
estimated a value for r but also appropriate measurement settings a1, a2

on Alice’s side and b1, b2 on Bob’s side.
We set the state with a value of ,0.3 for r and measured for a total of

300 s per setting at each of the four settings a1b1, a1b2, a2b1 and a2b2,
where a1 5 85.6u, a2 5 118.0u, b1 5 25.4u and b2 5 25.9u. The rele-
vant single and coincidence counts obtained appear in Table 1 and
yield J 5 2126,715.

After recording for a total of 300 s per setting we divided our data
into 10-s blocks and calculated the standard deviation of the resulting
30 different J values. This yielded s 5 1,837 for our aggregate J value of
J 5 2126,715, a 69-s violation (see Fig. 3). Note that this calculation
does not assume Poisson counting statistics or any error propagation
rules. We estimate the number of produced pairs to N 5 24.2 3 106 per
applied setting, yielding a normalized violation of J/N 5 –0.00524
(60.00008).

Under the assumptions of locality and freedom of choice, a negative
J value refutes local realism without the fair-sampling assumption or
post-selection on created pairs, regardless of the states and angles used
for the measurement or any error in their implementation. Nonetheless,
additional measurements can provide further insight into the obtained
value. The directly measured arm efficiencies (each a ratio of observed
coincidence and singles counts without any correction) measured in the
HV-basis were gA 5 73.77% (60.07%) in Alice’s arm and gB 5 78.59%
(60.08%) in Bob’s arm. We attribute these imperfect coupling effi-
ciencies to various possibly arm-dependent effects including optical
losses in the source, coupling, fibre splices, and detectors. We estimate
our r value and visibility to be about 0.297 and 97.5%, respectively.
Using these values, our numerical model (used for the abovementioned
optimization) agrees very well with our measured J value.

Using photons, we have demonstrated an experimental Bell in-
equality violation that closes the fair-sampling loophole. Without
relying on any assumed error distribution, we statistically verify a
violation of Eberhard’s inequality by nearly 70 standard deviations
and thus clearly demonstrate the necessity of abandoning all local
realistic theories that take advantage of unfair sampling to explain
the observed values. Moreover, because the derivation of Eberhard’s
Bell inequality even includes events not detected on either side, no post-
selection is necessary to violate the inequality. To achieve a loophole-
free Bell test as described above, it will be necessary to introduce
space-like separation sufficient to prohibit unwanted communication
between Alice, Bob, the measurement decisions, and the photon emis-
sion event. This will require fast random-number generators, precise
timing, and efficiency gains to offset the propagation losses introduced
by the increased distance. We do not find this unreasonable.
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recorded data. Any negative J value violates the inequality and refutes all local
realistic models that exploit the fair-sampling loophole. Error bars represent
61 standard deviation calculated from the binned raw data.
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