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Photon-number-resolved detection of
photon-subtracted thermal light
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We examine the photon statistics of photon-subtracted thermal light using photon-number-resolved detection. We
demonstrate experimentally that the photon number distribution transforms from a Bose—Einstein distribution to a
Poisson distribution as the number of subtracted photons increases. We also show that second- and higher-order
photon correlation functions can be directly determined from the photon-number-resolved detection measurements

of a single optical beam.
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Tools to characterize the photon statistics of an optical
radiation field are becoming increasingly important for
applications ranging from fundamental quantum optics
[1] to quantum information science and quantum metrol-
ogy. For example, the inherent quantum noise of light
determines the ultimate sensitivity in light-based
gravitational-wave measurements [2]. Information of the
photon statistics of a radiation field is contained in cor-
relations of the field [3]. Measuring these correlations is
typically done by splitting the light into multiple beams,
sending them to multiple detectors, and implementing
coincidence counting [4], and it has never been a trivial
task to experimentally access the third- or higher-order
correlation functions of a light field [5,6]. Taking advan-
tage of the recently developed high-efficiency, photon-
number-resolving detectors [7-9], we show that the
high-order correlations of an optical radiation field can
be determined in a straightforward manner with photon-
number-resolved detection of a single optical beam. We
use this method to examine the photon statistics of
photon-subtracted thermal light and show that our exper-
imental measurements match well with theoretical
predictions, thus validating the method.

A thermal light with mean photon number yx and
variance A = ((a*a)?) - (ata)? = u + #2 is diagonal in
the Fock representation,p = ) % T |n)(n|, and is
super-Poissonian as defined by A > /4 Conditioning on
k-photon subtraction, the photon-subtracted thermal
state is also diagonal in the Fock representation,
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creation and annihilation operators. The Mandel @
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Equation (2) shows that the mean photon number of
a thermal light increases after photon subtraction. This
counterintuitive result demonstrates the quantum nature
of the photon-subtraction operation [10-12]. The statis-
tics of the photon-subtracted thermal light remain super-
Poissonian, albeit less so as the number of subtracted
photons increases.

As the number of subtracted photons becomes larger,
the intensity noise of the photon-subtracted thermal light
is substantially reduced, with the state a; (p}orommately ex-
pressed as P ~ Y 2, (41/i)|i)(i| and g, (0) > 1, where
A=ku/(1+ p). Thus the photon-subtracted thermal
state approaches a mixture of phase-randomized coher-
ent states, which is described by
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In the following, we analyze how to access photon
statistics directly by using photon-number-resolved de-
tection in an experiment. The photon-subtraction meas-
urement (Fig. 1) is implemented by distributing the
optical power (u4p) between a transmitting port (arm 1)
and a reflecting port (arm 2) of a polarizing beam splitter
(PBS). By attributing all loss to photon detection, the
state of the light after passing through the PBS is
written as
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Fig. 1. Schematic of experiment with photon-subtracted
thermal light and photon-number-resolved detection. SMF,
single-mode fiber; att., optical attenuators; HWP, half-wave
plate; PBS, polarizing beam splitter; TES1(2), transition-edge-
sensors. Inset: measured photon number distribution P(n) of
pseudo-thermal light (blue bars), calculated Poisson distribu-
tion (red curve), and Bose-Einstein distribution with ug =
1.31 (green curve).

with 7 being the transmittance of PBS for the horizontally
polarized light.

A k-photon detection is represented by the positive-
operator-valued measure,
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where #1; (#72) is the photon-detection efficiency of arm

1.
The probability of coincident detection of a k-photon in
arm 1 and a j-photon in arm 2 is given by

G +k)! Wty
JE (L4 g+ ugy L

P(.k) = Tr((L;pl1) = ©)

where u, = pyuptn; and up = pyup(l — 1)y are the mea-
sured mean photon numbers of arm 1 and arm 2. They
can be directly obtained from the photon-number-
resolved measurements, for example, with puy =
P(1,0)/[P(0,0)]> and ug = P(0,1)/[P(0,0)]*. Condition-
ing on the detection of k-photons in arm 1, the measured
mean photon number of arm 2 is
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where pz0 = pp/(1 + py) is the mean photon number
conditioned on zero-photon subtraction.

Equation (7) is identical to Eq. (2) when the light
directed to arm 1 () is very small. For k > j, the condi-
tional photon number distribution of arm 2 can be
approximated by a Poisson distribution:
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Measuring correlations, particularly high-order corre-
lations, is essential to the study of photon statistics
of optical radiation. With photon-number-resolving de-
tectors, the correlation functions of an optical field can
be accessed with photon-number-resolved detection of a
single optical beam, which are given as
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For the photon-subtracted thermal light studied here,
the correlation functions are determined from the exper-
imentally measured photon counting statistics by using
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We generated pseudo-thermal light by passing laser
pulses (850 nm, 50 kHz, with a pulse duration of 4 ps)
through a rotating ground glass. A single-spatial optical
mode is selected from the scattered light by using a
single-mode optical fiber. Its polarization is prepared
by a Glan-Taylor polarizer. We used a half-wave plate
and a PBS to distribute the optical power between the
transmitting and the reflecting ports of the PBS, which
are sent to photon-number-resolving transition-edge
sensors [7-9], TES1 and TES2. The measured photon
number distribution of the light in arm 2 is seen (Fig. 1)
to be Bose-Einstein rather than Poissonian, with yg =
1.31 and ¢g®(0) = 1.94 obtained from the measured
photon-counting statistics using Eq. (10). This direct
measurement in Fock space confirms that the pseudo-
thermal light source created by passing the coherent la-
ser light through a rotating ground glass with a selected
single-spatial mode exhibits Bose—Einstein statistics.

Figure 2 shows that the measured photon number
distributions of the photon-subtracted thermal light
with subtracted photon numbers m =0, 2, 4, 6 or 8
are consistent with the predicted conditional probability
distribution using Eq. (8). The envelopes of the Bose-
Einstein and Poisson distributions are also shown.
[The mean photon numbers used in calculations were ex-
perimentally measured yp and/or u4, and values obtained
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Fig. 2. Photon number distribution P(n) of photon-subtracted
thermal light (arm 2 with up = 0.43 conditioned on arm 1
with u, = 0.96). Experimental data (blue bars), calculations
(red bar) using Eq. (8). Poisson (red dashed curve) and Bose—
Einstein (green curve) distributions are shown as lines as a
guide to the eye. Inset: calculated trace distances Dryp) =

Tr|p - PrHP) /2.
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Fig. 3. Mean photon numbers of photon-subtracted thermal
light (arm 2) versus subtracted-photon number (arm 1). Exper-
imental data (points); predictions (lines) using Eq. (8) with
experimentally determined values of (u4, ug), which are, from
top to bottom, (0.96, 0.43), (0.51, 0.23), and (0.59, 0.11).

through Eq. (7).] The observed transformation of the
photon-subtracted thermal light from a Bose-Einstein
to a Poisson distribution is apparent as the number of
subtracted photons increases. This transformation is
quantified with a trace distance defined as Dryp) =
Tr|p - pruee)| /2, where pry (Pp) is the state of ideal ther-
mal (coherent) light having mean photon numbers equal
to that of the photon-subtracted thermal light p. Dy p)
varies from zero (for two identical density matrices) to
one (for density matrices with maximal difference). As
shown in Fig. 2 (inset), Dyyp) ~ 0 for m = 0; and as m
increases, Dp stays near 0, while Dy increases mono-
tonically to ~0.25, indicating that the photon number
distribution of the photon-subtracted thermal light devi-
ates from the Bose-Einstein distribution and is better
described by a Poisson distribution.

Figure 3 shows that the measured mean photon num-
ber of photon-subtracted thermal light increases linearly
with the number of subtracted photons. The experimen-
tal data are consistent with the theoretical predictions
using Eq. (7), which has the experimentally measured
mean photon numbers of the photon-subtracted thermal
light as the only input.

Figure 4 shows experimentally measured correlations
of the photon-subtracted thermal light with mean photon
numbers ranging from 0.22 to ~2, which are consistent
with the theoretical predictions using Eq. (3). We note
that, in both Figs. 3 and 4, the experimental data, particu-
larly the measurement results of g® (0), start to deviate
from theoretical predictions as the number of detected
photons increases beyond seven. This is likely because
the TESs used in this experiment were able to detect
photon number states with photons up to nine, but with
significant overlap between signals of adjacent high-
photon-number states. The possible misidentification of
high-photon-number states can lead to the deviation of
those experimental measurements, where high-photon-
number states are important, from theoretical predic-
tions. Improving the photon number resolution of TES
for high-photon-number states is under investigation [13].
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Fig. 4. Correlations of photon-subtracted thermal light (arm 2
with up = 0.43) versus subtracted-photon numbers (arm 1 with
s = 0.96), with alower bound of 1 (dashed line). Experimental
data (dots); predictions (lines) using Eq. (3) (see Media 1).

In conclusion, we have shown how correlation func-
tions of photon-subtracted thermal light can be deter-
mined by using photon-number-resolved detection of a
single optical beam. We demonstrated that the photon
statistics transform from a Bose-Einstein distribution
to a Poisson distribution as the number of subtracted
photons increases. We expect the method demonstrated
in this study to be broadly useful to the field of quantum
optics and quantum information science.
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