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Abstract 

X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the 

need to deposit any radiation, and thereby alleviate the main concern in x-ray diagnostic imaging 

procedures today. Grating-based differential phase contrast imaging techniques are compatible with 

compact x-ray sources, which is a key requirement for the majority of clinical x-ray modalities. However, 

these methods are substantially limited by the need for mechanical phase stepping. We describe an 

electromagnetic phase stepping method that eliminates mechanical motion, and thus removing the 

constraints in speed, accuracy and flexibility. The method is broadly applicable to both projection and 

tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly 

facilitate the translation of x-ray phase contrast techniques into mainstream applications. 

  



Today x-ray imaging modalities accounts for the majority of the diagnostic imaging procedures in the 

United States (1). Conventional x-ray images depict variations in the attenuation of transmitted x-rays 

according to the density distribution in the body. The attenuation-based contrast is typically low in soft 

tissues at the photon energies commonly employed in medical imaging (25-100 keV). However, the phase 

shift for incident x-rays is many times the linear attenuation of the amplitude in weakly absorbing 

materials, which points to phase contrast imaging as a means for better resolving soft tissue structures 

without the need to deposit the harmful radiation (2). Among the first demonstrations of phase contrast in 

x-ray imaging were diffraction enhanced images using Bragg analyzer crystals (3, 4) and free space 

propagation of transversely coherent waves (5, 6). In the mid-1990s monolithic crystal interferometers (7) 

were used to obtain the first absolute phase shift images of soft tissue samples (2). A few years later, x-

ray differential phase contrast (DPC) imaging with a grating interferometer was proposed and then 

realized (8-10). The grating Talbot interferometer works with a broader energy band and is less affected 

by environmental changes than monolithic crystal interferometers, at the cost of lower phase sensitivity 

(11). A major improvement in grating-based imaging was quantitative phase retrieval by the phase 

stepping method (10, 12-14). The Talbot-Lau interferometer enabled the use of commercial x-ray tubes 

for grating DPC, by adding a source grating to give spatial coherence to an extended source (8, 15). A 

preclinical x-ray DPC computed tomography (CT) scanner incorporating the above advances has been 

recently demonstrated (16). 

Despite the rapid progress in grating-based phase contrast imaging, there are fundamental 

challenges when it comes to routine applications outside the laboratory environment. Its Achilles' heel is 

the mechanical phase stepping process, in which one grating is physically moved in multiple steps over a 

grating period in order to obtain a single differential phase image (10, 14). Accurate mechanical 

movement of centimeter-size objects at the sub-micron level is inherently slow and difficult to reproduce 

precisely without a static and stabilized platform. In common configurations including fluoroscopes and 

CT scanners, the precision motors must be mounted on moving gantries, which will lead to additional 

mechanical instability (16). Mechanical phase stepping may also be the ultimate limit of the imaging rate, 



which is critically important for fluoroscopy and clinical CT scans. Recognizing this, two methods for 

improving the imaging speed in phase contrast CT applications have been reported. One method 

combines a pair of projection images taken from opposing directions to retrieve phase information, but 

assumes weak phase objects, no scattering, and a constant, uniform background phase over the whole 

field of view (17).  The second method reduces the number of phase steps by sharing them among 

neighboring projection angles in a CT scan, but still relies on mechanical phase stepping (18). A more 

general alternative to phase stepping is the Fourier fringe analysis method, which extracts phase 

information from a single image containing interference fringes, but with reduced spatial resolution (19-

25).  

A basic solution to the limitations of mechanical phase stepping should remove the need for 

physical movement completely. In the fields of radar and ultrasonic imaging, the development of 

electronic beam steering, which replaced mechanical scanning of the antenna or probe, greatly improved 

the speed and capability of both technologies (26, 27). We report on an analogous solution for grating-

based x-ray phase contrast imaging called electromagnetic phase stepping (EPS). We created an adaptive 

processing algorithm (28) as part of the method, and demonstrate its effectiveness in imaging studies of  

rodents and other samples in a benchtop system.  

Results 

A generic grating-based phase contrast imaging system consists of an x-ray tube, a Talbot-Lau 

interferometer and an x-ray camera as schematically illustrated in Fig. 1A. The interferometer has two 

amplitude gratings (G0, G2) and one phase grating (G1). In our system the grating period is 4.8 μm. 

Grating G0 splits the x-ray cone beam into a number of thin line sources whose lateral coherent lengths 

are greater than the grating period at the plane of G1. Each line source creates an intensity fringe pattern, 

i.e. fractional Talbot image (10, 29) of G1, on the plane of G2. Because the fringe period is usually smaller 

than the detector resolution, G2 is used to produce a broader moiré pattern. When the distance between G0 

and G1 is the same as that between G1 and G2, the fringe pattern from each individual line source adds up 

constructively on the plane of G2.   



If G0 and G1 are parallel and G2 is rotated around the optical axis with respect to G1 by a small 

angle  , the differential phase information is encoded into the moiré fringes on the detector plane: 
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where   and   are coordinates in the detector plane,    is the un-modulated baseline,    is the fringe 

amplitude,   is the grating period,   is the distance between G1 and G2,    is the x-ray wavelength, and    

is the background instrumental phase, which depends on the positions of the gratings. The desired 

information is the derivative of the x-ray phase shift caused by the sample, expressed as       in the 

detector plane.  

 The phase stepping method calculates the differential phase image from several images with 

different background phases   . To date this has required physically moving one of the gratings in the   

direction over multiple steps that cover a grating period, while taking an image at each step. In this 

process the moiré pattern in the images visibly moves across the static projection of the object, giving rise 

to the intuitive term of “fringe scanning” as a synonym of phase stepping.  

Recognizing that the essential requirement of fringe scanning is a relative movement between the 

moiré fringes and the projection image of the object, electromagnetic phase stepping achieves the 

condition by electromagnetically shifting the focal spot of the x-ray tube in a transverse direction across 

the fringe pattern, e.g. with an externally applied magnetic field that deflects the electron beam in the x-

ray tube (Fig. 1A). Shifting the focal spot causes an opposite movement of the projection of the object on 

the detector plane, while the fringes can be made to remain stationary or move by a different amount. In 

our setup of the Talbot-Lau interferometer, the moiré fringes are produced by a slight rotation of the third 

(analyzer) grating. In this case the fringes remain stationary in spite of the shifting focal spot. In the 

inverted embodiment where the moiré fringes are produced by rotating the first (source) grating, the 

movement of the fringes will exceed that of the projection image. In all cases, the images can then be 



digitally shifted back to re-align the projections of the object. The result is that the fringes move over a 

stationary projection image, effectively synthesizing the phase stepping process (Fig. 1B).  

It is worth noting that shifting the focal spot of the cone beam also causes a slight change of the 

projection angle on the object. This change is negligible for objects that occupy a small fraction of the 

distance between the source and the camera. When the object thickness is a significant fraction of the 

source-camera distance, the reconstruction algorithm takes on the characteristics of stereoscopic imaging 

or tomosythesis. A more detailed discussion is provided in the Supporting Information. 

In our imaging device the gratings are rigidly mounted. A solenoid coil is attached to the front 

surface of the x-ray source (Fig. 1C) and is driven by a 25 volt power supply to produce the magnetic 

field with full digital control and a response time of 200 microseconds. The resulting focal spot shift 

causes an opposite movement of the object projection on the camera over a stationary fringe pattern (see 

Movie S1 in Supporting Information). A magnetic field of 2.4 mT was sufficient to shift the projected 

image over one period of the moiré fringes (300 μm). The details of the experimental setup are described 

in the Methods.    

 We created an adaptive image processing algorithm to extract the differential phase contrast, 

scatter (dark-field) (20, 30) and conventional attenuation images from the EPS data without prior 

knowledge of the movement of the object projection or of the moiré fringes (see Supporting Information). 

The algorithm first aligns the projections of the object, generating an image stack in which the object is 

stationary while the moiré fringe pattern moves over it. The aligned images are then processed as fringe-

scanned images by the second part of the algorithm, which measures the phase increments in the phase 

stepping process with a Fourier transform method(2, 19, 20, 31). The algorithm can cope with arbitrary 

and spatially varying phase increments without assuming a priori knowledge, and thus is robust against 

potential instabilities in the alignment of various components in the imaging system. 

Using the benchtop system with electromagnetic phase stepping, we first imaged a reference 

sample containing borosilicate spheres of 5 mm diameter. The full series of images is included in Movie 

S1 in the Supporting Information. Figure 2 shows the processed DPC, absolute phase shift (via direct 



integration of the DPC), and linear intensity attenuation images. The stripe artifacts in the phase shift 

image result from the lack of low spatial frequency information in the DPC signal. The linear attenuation 

at the sphere centers is 0.61±0.02, corresponding to an effective mean x-ray energy of 35.5±0.5 keV. The 

total phase shift at the sphere centers is estimated to be (3.2±0.2)x10
2
 rad, from which the real part of the 

refractive index decrement of the borosilicate material is estimated to be δ = (3.6±0.3)x10
-7

, in good 

agreement with the reference value of 3.7x10
-7

 for 35.5 keV x-rays  (The refractive index is calculated 

from the X-ray form factor, attenuation and scattering tables available at 

http://physics.nist.gov/PhysRefData/FFast/html/form.html).  

 As an example of a biological specimen, Fig. 3 shows the DPC and linear attenuation images of a 

cricket obtained by electromagnetic phase stepping. The DPC image reveals more detailed structures 

throughout the head, the body and the legs of the cricket, owing to its sensitive nature to small changes in 

the density of the constituents.  

Biomedical research routinely involves the imaging of rodents, and the photon energy of the 

benchtop system was sufficient to penetrate the body of adult mice. As examples, we imaged the head 

region of a euthanized mouse in air and the torso region of another euthanized mouse fixed in 10% 

buffered formalin.  

Figures 4A-D are the processed images of the head region, including the DPC, phase-contrast 

enhanced, linear intensity attenuation, and scatter (dark-field) linear extinction images. The DPC signal 

degrades into random phase noise in the areas of the metallic ear tag due to the strong attenuation of the 

fringes. Phase retrieval by direct integration of the DPC image can lead to substantial errors for reasons. 

The first relates to the inherent lack of low frequency information in the DPC data, and the second factor 

is the random phase values in areas where the interference fringes are strongly suppressed, either due to 

attenuation (as around the metallic ear tag) or scattering. The first can be addressed by the method of 

Roessl and co-authors (32), which merges the low spatial frequency content of the intensity attenuation 

with the high spatial frequency content of the DPC data according to the scaling between the real and 

imaginary parts of the refractive index of the material (here,  soft tissue). The second problem is 



circumvented by substituting the derivative of the intensity attenuation into the DPC image in areas where 

the DPC information is missing, again using an appropriate scaling factor. These calculations are 

described in some detail in Methods. The end result is a phase-contrast enhanced image (Fig. 4B). As 

indicated by the white arrows, numerous details emerge in the phase-contrast enhanced image which 

cannot be clearly seen in the intensity attenuation image.  

 Figure 5 is a compilation of reconstructed images of the torso region of the mouse. The DPC 

image highlights weakly absorbing phase objects such as air bubbles (Fig. 5A). The phase-contrast 

enhanced image (Fig. 5B) contains both the phase and attenuation information. The lungs are most visible 

in the dark-field (scatter) image (Fig. 5C), owing to their porous microstructures. The high-density bones 

and the metallic ear tag are clearly visible in the intensity attenuation image (Fig. 5D).    

 Movies of the mouse head and torso images are provided in the Supporting Materials for 

comparison between phase-contrast enhanced and linear intensity attenuation images. 

Discussion   

Grating interferometers used with phase stepping enable high-resolution x-ray phase contrast imaging 

with compact x-ray tubes. However, the stringent requirements for mechanical phase stepping have been 

a major challenge in bringing phase contrast into common imaging systems. The electromagnetic phase 

stepping method and the adaptive processing algorithms presented here effectively replace the precision 

mechanical scanning system and its associated engineering challenges with a simple solenoid coil 

attached to the x-ray source, providing substantial advantages in speed, accuracy and flexibility. The near 

instantaneous control of the focal spot could also enable real-time compensation for instrumental 

instabilities, including thermal drift and vibrations. The transition from mechanical to electromagnetic 

scanning also reduces the cost of parts and maintenance and should improve reliability, all of which may 

contribute to the translation of phase contrast techniques into mainstream applications. For biomedical 

imaging, grating periods of a few hundred nanometers are being developed for greater phase sensitivity 

(33, 34). Here, electromagnetic phase stepping may become a necessity, as precise mechanical movement 

at the nanometric level may be difficult to achieve outside the most favorable settings.  



Methods 

Technical Specifications of the Imaging System 

We used a tungsten-target x-ray tube (SB-80-1k, Source Ray Inc.) operating at a peak voltage of 55 kV and a current 

of 1mA as the source. The focal spot of the tube was approximately 50 μm. The Talbot-Lau interferometer consisted 

of three gratings of 4.8 µm period (Fig. 1A). Gratings G0 and G2 were intensity modulating (amplitude) gratings, G1 

was a phase grating. The grating lines were oriented horizontally. The amplitude gratings (Microworks GmbH) had 

gold-filled trenches of 60 μm nominal depth in a polymer substrate (35, 36). They were rotated around the vertical 

axis by 45° to increase the effective gold height(37). The phase grating had un-filled trenches etched into a silicon 

substrate using the Bosch process (38), with an etch depth of 27 μm. It was also rotated by 45° to be parallel with the 

other gratings. The gratings were positioned at equal spacing over a total distance of 76 cm. The third grating (G2) 

was slight rotated around the optical axis to create vertical moiré intensity fringes of approximately 300 μm period 

on the detector plane. With this arrangement the moiré fringes are largely independent of the position of the x-ray 

source (see Movie S1 for a demonstration). The x-ray camera (PI-SCX-4096, Princeton Instruments) had a pixel size 

of 30 µm and a pixel matrix of 2048x2048.   

 For electromagnetic phase stepping, a home-made solenoid coil of copper wire (60 mm inner diameter, 200 

turns) was attached to the front surface of the x-ray tube housing (Fig.1B). The coil was driven by a digital power 

supply which provided up to 2.0 A of current at up to 8 W of power.  The corresponding peak magnetic field was 

calculated to be 3.1 mT at the location of the electron beam inside the x-ray tube. The field strength was verified 

experimentally with a magnetometer. The electron beam is oriented vertically. The magnetic field shifted the focal 

spot by up to 380 µm (with 1.5 A current applied) in the horizontal direction, perpendicular to the moiré fringes. The 

deflections of the focal spot at various levels of input current into the coil were measured experimentally as shown 

in Fig. S1 in the Supporting Information.  

Image Acquisition and Processing in Electromagnetic Phase Stepping 

The method of electromagnetic phase stepping obtains three types of information from a single set of raw images: 

the differential phase, the conventional linear attenuation, and the dark-field (scatter) images. For the method to be 

broadly applicable, the image reconstruction algorithm needs to be able to cope with a number of instabilities that 

may be present in a compact imaging device. These include drift of the focal spot of the x-ray tube, drift in the 

alignment of the gratings and other components, and variable positioning of the imaged object.   



 Each phase stepping cycle includes 6 progressive levels of input current into the field coil from 0 to 1.5 A, 

resulting in six different positions of the cone beam focal spot (Fig. 1A). At each position an image is taken. The 

image contains a moiré fringe pattern, which is modulated in amplitude and in phase by the projection of the object. 

A shift of the focal spot results in a displacement of the projection in the opposite direction, as well as a change of 

the projection angle. The moiré fringes remain stationary with the specific arrangement of the gratings in our device 

described above. If we make the assumption that the thickness of the object takes up a small fraction of the distance 

between the source and the camera, the movement of the projection is approximately uniform throughout the 

sample, and the change in projection angle can be neglected. More generally, the movement of the projection of a 

given transverse plane across the beam axis (focal plane) is determined by its position between the source and the 

detector. Therefore, the image reconstruction effectively focuses on a transverse slice through the object. This is 

similar to tomosynthesis.   

 The reconstruction algorithm is adaptive in two ways: first, owing to variable sample positioning, the 

movement of the projection of the object is not assumed in advance but determined retrospectively from the images 

themselves; and second, once the projections are aligned, the algorithm needs to retrieve phase and amplitude 

images from a set of arbitrary fringe positions, i.e. non-uniform and spatially varying phase increments between 

successive images in a phase stepping set.  

 The displacement of the sample projection on the detector plane is measured through a Fourier space 

analysis that demodulates the moiré fringes while retaining the projection image at a reduced resolution (2, 19, 20). 

The relative movement of the projections are measured from the demodulated images. The full-resolution images 

are then shifted by the opposite amounts to align all the projections. In the aligned images, the projection of the 

object remains static while the moiré fringes move across it. The intensity at each pixel oscillates with the moving 

fringes. In effect, the aligned images are equivalent to images acquired in mechanical phase stepping by moving one 

of the gratings. The details of the reconstruction procedure after the alignment step are described in the Supporting 

Information. 

Reconstruction of Phase Contrast Enhanced Images 

The algorithm is as follows: if we define    and   as the linear attenuation and the phase shift of the x-ray wave 

front after propagation through the object,    is simply the absolute value of the natural logarithm of the 

transmission, and 
  

  
 corresponds to the DPC signal. The first step is to incorporate the derivative of the linear 



attenuation 
   

  
 into the DPC signal in a weighted sum of 

   

  
    

   

  
   

  

  
, where C is the scaling factor 

between the real and imaginary parts of the refractive index (32), and the weights    and    are determined locally 

according to the amplitude of the interference fringes    and the noise level    in the fringe amplitudes. 

Specifically,                           , and              , Once the combined differential image 

   

  
 is determined, it is merged with the intensity attenuation data into a phase contrast enhanced image according to 

the algorithm described in Ref 31: the direct integral of  
   

  
  is high-pass filtered in the Fourier space, and merged 

with the low spatial frequency part of the linear intensity attenuation, then inverse Fourier transformed into the final 

image. 
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Figure Legends 

Fig. 1. Schematic illustration of the electromagnetic phase stepping apparatus and principles.  (A) The 

imaging system (not to scale) is a standard grating interferometer, but with a solenoid coil attached to the 

x-ray tube housing. The energized coil produces a magnetic field and an associated Lorenz force on the 

electron beam in the x-ray tube, shifting the impact spot on the anode target from which x-rays are 

emitted. Correspondingly, the projection image of the sample is displaced in the opposite direction on the 

camera (displacement exaggerated for better viewing). (B) Schematic representation of electromagnetic 

phase stepping. The top red curve represents the moiré fringe pattern, and the bottom red curve represents 

the projection of the object. The red triangle and circle represent a specific location in the projection and 

its position in the fringe pattern, respectively. In conventional phase stepping (PS), moving one grating 

shifts the fringe pattern to a new position represented by the dashed blue line. Consequently, the same 

location in the object projection has a different phase, represented by the blue circle on the dashed blue 

line. In electromagnetic phase stepping (EPS), the object projection is shifted (dashed green line) due to 

the displacement of the focal spot of the cone beam, moving the same location in the projection from the 

red triangle to the green triangle, with a corresponding shift on the fringe pattern (red curve) from the red 

circle to the green circle. Effectively, the same physical location in the object projection is given a phase 

shift. (C) Photographs of the home-made solenoid coil and its placement around the cone-beam window 

of the x-ray tube housing.  

Fig. 2. Images of a reference sample containing borosilicate spheres.  (A) Differential phase contrast, (B) 

phase shift, obtained by direct integration of the DPC information and baseline corrected through linear 

fitting, (C) linear intensity attenuation and (D) a cross section profile of the phase shift through the center 

of a sphere, the location of which is marked by the green line in (B). The blue and red curves are 

experimental and modeled data for a sphere, respectively. 

Fig. 3. Reconstructed images of a cricket. (A) Linear intensity attenuation, (B) differential phase contrast. 

A tungsten bead of 0.8 mm diameter (bright dot in A) was placed near the head of the cricket as a marker. 



Such markers are used to accurately determine the displacement of the projection images during 

electromagnetic phase stepping. 

Fig. 4. Reconstructed images of the head region of a mouse. (A) Differential phase contrast, (B) phase-

contrast enhanced, (C) dark-field (scatter), and (D) linear intensity attenuation. Arrows in (B) indicate 

examples of features more visible in the phase-contrast enhanced image than in the classic intensity 

attenuation image (D). The bright U-shaped object is a metallic ear tag. 

Fig. 5. Reconstructed images of the torso region of a mouse. (A) Differential phase contrast, (B) phase-

contrast enhanced, (C) dark-field (scatter), and (D) linear intensity attenuation. The lungs are most clearly 

seen in the scattering image (C). 
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