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Hardware 
• Dual Intel® Xeon® E-5620 CPUs 

Quad-core, 2.4 GHz,  hyper-threading 
• 48 GB RAM 
• Dual NVIDIA® Tesla® C2070 cards  

Software 
• Ubuntu 12.04/x64, kernel 3.2.0 
• Libc6 2.15, libstd++6 4.6 
• BOOST 1.48, FFTW 3.3, libTIFF4 
• NVIDIA CUDA & CUFFT 5.0 

Reference Implementation 
• ImageJ/Fiji™ Stitching plugin, >3.6 hours 
• Goal: < 1 minutes 

Data Set: 
• Grid of 59x42 images (2478) 
• 1040x1392 16-bit grayscale images 

(2.8 MB per image) 
• Total: ~ 6.7 GB 

CPU 
• All computation in double precision; complex to complex  2-D Fourier transforms 
• Explicitly manages memory for image transforms to avoid memory limits 
• Functions hardcoded with SSE intrinsics: 

 Normalized Cross Correlation factors (step 3) 
 Max reduction (step 5) 

• > 80% of computation in forward and backward Fourier transforms 

GPU 
• Direct port to GPU of sequential CPU implementation 
• Offloads most computational tasks to GPU 

 CUFFT function calls for forward & backward transforms 
 Custom CUDA kernels for NCC & Max Reduction computations 

 NCC uses shared memory, one thread per data element 
 Max reduction extracts the max’s index 

 Modified version of NVIDIA’s SDK reduction sum example 
• Copies image data to GPU memory, copies one scalar per image pair back to CPU memory 
• CCF computed on CPU 

 Enables minimal data transfer back to CPU memory; computation not very expensive 

Goal: Use computing to enable and accelerate biological measurements 

Objectives: 
• Image stitching of optical microscopy images at interactive rates 
• General purpose library 

Motivation: 
• Scientists are now frequently acquiring tiled images 
• Stitched images essential for measurements based on acquired images 

A Hybrid CPU-GPU Approach to Fourier-Based Image Stitching of Optical Microscopy Images 

Abstract: We present a hybrid CPU-GPU approach for the Fourier-based stitching of optical microscopy images. This system achieves sub-minute stitching rates with large grids; it stitches a grid of 59x42 tiles in 26 seconds on a two-CPU (8 physical cores) & 
two-GPU machine.  This is a speedup factor of more than 24x; the optimized sequential implementation takes more than 10 minutes to perform the same task.  The system scales to take advantage of additional CPU cores or GPU cards.  For the sake of 
comparison, ImageJ/Fiji, which uses a similar algorithm, exceeds 3.6 hours on the same workload. 
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Reference: Sequential  Implementation 
Simple Multi-Threaded Simple GPU 

Pipelined Multi-Threaded Pipelined GPU 

Sequential Implementations: CPU & GPU 

Pipelined GPU Implementation 

Results 
Time Speedup Threads GPUs 

Sequential* 10 min 37 s - 1 - 

Simple Multi-Threaded* 1 min 35 s 6.7x 16 - 

Pipelined Multi-Threaded* 1 min 22 s 7.7x 19 - 

Simple GPU 9 min 47 s 1.08x 1 1 

Pipelined GPU Single GPU 43.6 s 14.6x 11 1 

Pipelined GPU Dual GPU 26 s 24.5x 15 2 

Remarks 

    

Three phases of image stitching: 
1. Compute the X & Y translations for all image tiles 
2. Eliminate over-constraint through global optimization 
3. Apply the computed translations & compose into one image 

 
• Main focus is on first phase. 

Loop over all images: 
1. Read  an image 
2. Compute its  Forward 2D Fourier 

Transform (FFT-2D) 
3. Compute correlation coefficients with 

west and north neighbors 
 Depends on FFT-2D 
 NCC-1 & index of max give (x,y) disp. 

Quantities computed on GPU appear in gray. 
Red arrows (→): CPU↔GPU copy operation.   

• Adapts pipelined multi-threaded implementation to GPU 
 1 execution pipeline per GPU  
 Distribute image grid evenly between GPUs 

• Seven stage pipeline 
 1 queue and CPU thread per stage per GPU for read, copy, FFT, and Disp. 

 Overlaps copies and compute on GPUs 
 BK1 gathers FFTs and distributes pairs of FFTs to GPUs using tile grid 
 BK2 frees GPU memory using tile grid 

 BK1 & BK2 use a spinlock on tile grid to prevent race conditions 
 CCFs computed with pool of CPU threads 

• No benefit from direct port of sequential version to GPU 
• Simple multi-threaded suffers from load imbalance 

 Load imbalance handled by pipelined implementation 
• FFTW & CUFFT sensitive to vector sizes (should be powers of 2, 3, or 5) 
Future Work 
• Explore padding & single precision complex FFTs 
• Use different data sets & compare with other benchmarks 
• Experiment with alternative GPU architectures & accelerator cards 

Major compute portion: 
• FFT-2D of each tile (FFT) 
• Normalize phase correlation (NCC) 
• Inverse FFT-2D (NCC-1) 
• Max Reduction (max) 
• 4 Correlation Coefficients (CCF1-4) 

 

Simple Multi-Threaded Implementation 
• Spatial domain decomposition, one thread per partition 
• Explicit handling of inter-partition dependencies (red arrows in figure below) 

8-way spatial domain 
decomposition of grid. 
Shaded areas and 
arrows indicate 
dependencies 

Three phases for all threads separated by barriers: 

1. Compute FFT of own images 
Compute relative displacements of tiles with no inter-partition dependencies 
Release memory of transforms w/o dependents 
         Barrier 

2. Compute relative displacements for remaining tiles (on partition boundaries) 
         Barrier 

3. Release memory of remaining transforms 

Pipelined Multi-Threaded Implementation 
5-stage pipeline 
• Stages communicate via queues with synchronization using mutexes 
• # threads ≥ 1 for stages 1, 2, & 4; 1 book-keeping thread for each of stages 3 & 5 

• 3-stage pipeline version merges stages 2 & 4; 3 & 5. Had minimal performance change 

Grid traversals 
• Diagonal, diagonal chained, etc. 
• Enables disp. computation as soon as possible 

Quantities computed on GPU appear in gray. 
Red arrows (→): CPU↔GPU copy operation. 

Contributions 
Separate execution pipeline per GPU  
• Scalable across multiple GPUs 

Host-side pipelined threading organization 
• Overlaps compute and data transfers 
• Uses all available system resources 

Memory Management  
• Avoids virtual and physical memory 

limitations (CPU & GPU) 
• Copy data to the GPU only once 

FFTW Planning 
Mode 

Planning 
Time 

Execution 
Time 

Estimate 0.02 s 137.7 ms 

Measure  4 min 23 s 66.1 ms 

Patient 4 min 23 s 66.1 ms 

Exhaustive 7 min 1 s 66.1 ms 

Fourier Transforms 
FFTW  (fftw.org) 
Auto-tuning FFT-2D plan 
• First creates plan to compute FFT based on 

CPU properties and FFT dimensions 
• Planning mode specifies effort to find 

“best” FFT algorithm 

Amortized planning cost 
• Save plan to use later 
• Run prior to stitching computation 

Operation w/o Intrinsics SSE Intrinsics GPU 
Avg. Time Avg. Time Speedup Avg. Time Speedup 

NCC 55.8 ms 21.2 ms 2.63x 9 ms 6.2x 
Max Reduction 27 ms 5.9 ms 4.57x 4.9 ms 5.51x 

Disclaimer: No approval or endorsement of any commercial product by the National Institute of Standards and 
Technology (NIST) is intended or implied.  Certain commercial software, products, and systems are identified in this 
report to facilitate better understanding.  Such identification does not imply recommendations or endorsement by NIST 
nor does it imply that the software and products identified are necessarily the best available for the purpose. 

* FFT computations on the CPU use FFTW exhaustive planning 


