
Limitations to Threshold Random Walk Scan

Detection and Mitigating Enhancements

Peter Mell
National Institute of Standards and Technology

Gaithersburg, Maryland

peter.mell@nist.gov

Richard Harang
U.S. Army Research Laboratory

Adelphi, Maryland

richard.e.harang.ctr@mail.mil

Abstract—This paper discusses limitations in one of the most

widely cited single source scan detection algorithms: threshold

random walk (TRW). If an attacker knows that TRW is being

employed, these limitations enable full circumvention allowing

undetectable high speed full horizontal and vertical scanning of

target networks from a single Internet Protocol address. To

mitigate the discovered limitations, we provide 3 enhancements

to TRW and analyze the increased cost in computational

complexity and memory. Even with these mitigations in place,

circumvention is still possible but only through collaborative

scanning (something TRW was not designed to detect) with a

significant increase in the required level of effort and usage of

resources.

Keywords— Intrusion Detection, Scanning

I. INTRODUCTION
Network scans often originate from malicious actors to map

out a target network and identify candidate points of
penetration [1]. Single source scans originate from a single
Internet Protocol (IP) address while collaborative scans
originate from a reservoir of multiple cooperating IPs [2].
Horizontal scans probe a single port on many IP addresses.
Vertical scans probe many ports on a single IP address. In
practice, scans may be a combination of the two.

One of the most cited single source scan detection
algorithms is Threshold Random Walk (TRW) [3]. This highly
effective algorithm can often detect horizontal scanners after
only 4 or 5 connection attempts. It takes advantage of the fact
that scanners do not know the mapping of active servers and
services to IP addresses and are thus more likely to access
inactive services than legitimate users. For each source IP,
TRW computes a likelihood ratio (a function of the cumulative
sum of successful and failed connection attempts). This
likelihood ratio is compared against lower and upper thresholds
(set according to false negative and positive tolerances) to label
source IPs as either benign or malicious.

However, there are 4 limitations that restrict TRW’s
effectiveness and applicability in certain environments. The
first 3 limitations were acknowledged but not addressed in [3]:
1) attackers can bypass TRW by scanning over non-TCP
protocols, 2) attackers can initiate a vertical scan on all ports of
a target IP with little or no penalty towards being classified as a
scanner, 3) attackers can camouflage their activity by mixing in
successful connections with scan attempts. A fourth limitation,
and the most impactful, has not been mentioned in prior work:
attackers can completely bypass TRW by tricking a detector
into categorizing their source IP as benign prior to scanning.
This enables full circumvention allowing undetectable high

speed full horizontal and vertical scanning of target networks
from a single IP address.

These limitations in TRW can be mostly mitigated through
simple changes to the algorithm without augmentation with
alternate detection approaches. Stateless protocol monitoring
can be addressed through providing TRW access to network
topology and host/service status information. Vertical scan
circumvention can be mitigated through penalizing successive
unsuccessful port accesses. And horizontal scan circumvention
can be addressed through removing the lower threshold bound
and perpetually monitoring source IPs for their level of
maliciousness. Even with these mitigations, however,
circumvention is still possible through collaborative scanning
(something TRW was not designed to detect) but with a
significant increase in an attacker’s required level of effort and
usage of resources.

There is also an increased cost to the defender in terms of
time complexity and memory usage. The big-O computational
complexity is the same as for TRW, but the constants will
normally be much larger. The memory usage increases
dramatically as most IP sources are monitored in perpetuity.
However, strategies exist to manage the memory growth. Also,
we discover that in the original TRW attackers can alter TRW
memory usage while in our modified TRW memory
consumption is independent of attacker activity.

The remainder of this paper is structured as follows.
Section II discusses related work. Section III provides a
detailed overview of the TRW algorithm and section IV
provides example TRW calculations. Section V enumerates
TRW limitations, section VI discusses related mitigation
approaches, and section VII analyzed remaining limitations.
Section VIII provides a theoretical analysis of the computation
complexity and memory requirements of TRW vs. our
mitigated version. Section IX concludes.

II. RELATED WORK
There are many approaches to detecting both single source

and collaborative scans as discussed in [2]. The subject of our
paper, TRW, is one of the most influential prior works and has
been used as a fundamental building block in other work.

The following work extends TRW without mention of the
limitations addressed in this paper. The work of [4] describes
the enhancement of TRW with a severity metric to distinguish
reconnaissance scanning from peer-to-peer scanning. The work
of [5] examines an extension of the TRW method in which
target thresholds for the likelihood ratio are sequentially
adapted according to user-defined acceptable risk for a
bounded sequence, allowing TRW to converge to a decision in
finite time. In [6], TRW is combined with honeypots to reduce

false negatives by increasing the weight of connections to
honeypot hosts.

However, a couple of papers do mention and, in one case,
partially address our stated TRW limitations. [7] cites TRW’s
dependence on stateful traffic analysis and thus TCP, however,
their solution is still TCP centric. It allows monitoring of TCP
in backbone environments where state is difficult to determine
(e.g., with asymmetric routing). [8] presents a variant of TRW
that enables detection of vertical scans but doesn’t explicitly
discuss or analyze this limitation in the original TRW
algorithm. Their approach computes a modified TRW
likelihood ratio exclusively for vertical scan detection and a
separate one for horizontal scan detection.

III. OVERVIEW OF THRESHOLD RANDOM WALK
TRW is based on the mathematical approach Sequential

Hypothesis Testing [9], developed during World War II to
reduce sample sizes when testing anti-aircraft gunnery [10].

Conceptually, TRW computes a likelihood ratio, L, for
each source IP, s, from the set of all source IPs S. Ls is updated
whenever an s attempts to connect to a new distinct target IP
address, d. The argument to the likelihood calculation, Ls, is
the Boolean set, Y, of the success or failure of connections first
initiated by s to each of the IPs in the set of distinct target IPs,
Ds. If Ls exceeds a certain threshold, η1, then s is labeled as a
scanner. If Ls falls below a different threshold, η0, then s is
labeled as benign. In either case, the algorithm ceases to
monitor s once categorized.

More specifically, TRW records the likelihood ratio ˄(Y)
for each s in S where Y is a list of Boolean values
(0=success,1=failure) representing the success or failure of
connections to distinct target IPs, Ds. Once calculated, ˄(Y) is
referred to as Ls to specify an application of the ratio to a
specific s. H0 represents the hypothesis that a source IP is
benign and H1 represents the hypothesis that a source IP is a
scanner. n represents the number of distinct IP addresses to
which s has initiated a connection attempt. With this
nomenclature, the likelihood ratio is computed as follows:

 ()

 [|]

 [|]
 ∏

 [|]

 [|]

 (1)

To calculate the conditional probabilities, TRW uses the

following equations.

 [|] [|]
 [|] [|]

(2)

θ0 is the probability that a source is benign given a

successful connection while θ1 is the probability that a source
is a scanner given a successful connection. θ0 and θ1 must be
provided by the user with the constraint that θ0 > θ1. [3] uses θ0
=.8 and θ1 =.2 for their experiments.

Lastly, the user must provide the maximum false positive
probability, α, and the minimum detection probability, β. [3]
uses α=0.01 and β=0.99. Two thresholds η0 and η1 are then
computed based on α and β.

 (3)

 While monitoring the connections of a source IP, s, if at
any point ˄(Y)≤η0 then s is labeled benign whereas if ˄(Y)≥η1
then s is labeled a scanner. This comparison routine is shown
in Figure 1 (copied from [3]).

Figure 1. Flow Diagram for Ratio Comparison

The full algorithm that describes how to process lines in a
connection log dataset is shown below. We now review the
nomenclature: s represents a source IP, d represents a
destination IP, Ds represents the distinct target IPs contacted by
s, Ss represents the label for s (PENDING, H0, or H1), and Ls
represents the likelihood ratio for s.

1) Skip the line if Ss is not PENDING (a decision has

already made for the remote host s).

2) Determine whether the connection is successful or not.

A connection is considered successful if it elicited a

SYN ACK.

3) Check whether d already belongs to Ds. If so, skip the

next two steps and proceed to the next line.

4) Update Ds with d, and update the likelihood ratio, Ls

5) If Ls equals or exceeds η1, set Ss to H1. If Ls is lower

than or equal to η0, set Ss to H0.
Algorithm 1. TRW Algorithm from [3]

IV. EXAMPLE TRW CALCULATIONS
To calculate some examples, take the parameters used in

[3] where α=0.01, β=0.99, θ0 =.8, and θ1 =.2. The lower and

upper thresholds are calculated as follows:

and

 . Now consider 3 source IPs. Source 1

initiates a mix of successful and failed connections with a Y for
source 1 equal to [1,1,0,1,1,0,1]. Source 2 initiates only failed
connections resulting in a Y for source 2 equal to [1,1,1,1].
Source 3 initiates only successful connections resulting in a Y
for source 3 equal to [0,0,0,0]. Table 1 provides the likelihood
ratios after each connection attempt. Figure 2 displays the
results graphically.

Table 1. Example Likelihood Ratio Calculations

Figure 2. Example Likelihood Ratio Calculations

V. ALGORITHM LIMITATIONS
The TRW algorithm as provided in [3] has several

limitations: applicability only to TCP, blindness to vertical
scanning, susceptibility to camouflage attacks, and permanent
benign classifications.

The first, second, and third limitation were mentioned but
not analyzed in [3]. One could argue that the first 2 limitations
are merely the expressed scope of [3] and thus it is unnecessary
to restate them. However, one point of this paper is that these
limitations can be addressed through simple modifications
resulting in a greatly enhanced scope for TRW. The fourth
limitation, permanent benign classification, enables full
circumvention of TRW detection and has not yet been
presented in the literature.

A. Applicability only to TCP

The TRW algorithm was design to work exclusively with
TCP due to [3] having availability only to TCP logs. From [3],
“since the data we have available… consists almost solely of
TCP connections, we confine our analysis to detecting TCP
scanners.” From a technical perspective, TRW is limited to
TCP because it monitors for SYN ACK packets, leveraging the
stateful nature of TCP to identify established connections.

One obvious way to expand TRW to stateless protocols
(e.g., ICMP and UDP) is to monitor for bi-directional
communication between IP-port pairs. However, for stateless
protocols bidirectional communication is not guaranteed within
any particular time frame. Thus, this naïve application of TRW
to such protocols may classify valid benign communication as
scanning attempts.

B. Blindness to Vertical Scanning
The TRW algorithm was not designed to consider detecting

vertical scans (we “do not consider detecting ‘vertical’ scans of
a single host” [3]). The TRW algorithm does not update Ls for

each connection attempt from a source IP, s, to a target host, d.
Instead, it adjusts Ls based only on the outcome of the initial
connection to d. This means that s can scan all ports on d and
only be penalized for one unsuccessful connection. If s is lucky
on the first probe and accesses an active service, there is no
penalty for the vertical scan. Building on this idea, for a
destination IP where an active service is known a priori, the
attacker can first connect to the known service prior to
initiating the vertical scan. In this case, s will be able to scan
all 65,536 ports while, non-intuitively, having its Ls score
moved closer to its being classified as benign. This is true even
if all of other ports are inactive. Furthermore, this vertical scan
can be repeated periodically and indefinitely without any
additional penalty or risk of detection.

An additional impact, not mentioned in previous work, is
that this blindness to vertical scanning can decrease the
effectiveness of TRW’s horizontal scan detection. This
happens when the blindness to vertical scanning is combined
with evasion approaches using permanent benign classification
or camouflage attacks (discussed below).

C. Suceptibility to Camouflage Attacks
An attacker can indefinitely maintain a state of

‘PENDING’ for an s by mixing connections to known services
with scanning probes while keeping Ls below η1. This section
describes how to apply this concept to a reservoir of
cooperating scanning IPs in order to implement an effective
TRW circumvention.

We first provide an equation for the maximum number of
unsuccessful connections given a number of successful
connections. Next, we derive an equation for the expected
number of IP addresses identified given a scanning reservoir of
a particular size. Lastly, we simulate the camouflage attack
using the network information and parameters provided by [3].

1) Equation for the maximum number of unsuccessful

connections given a number of successful connections

Every successful connection decreases () by

 and

every failure increases it by

 as shown in Equation 1 and

Equation 2. If x represents the number of unsuccessful
connections and y represents the number of successful

connections, then () (

)

 (

)

. If we set ()

, and substitute in the (

)

 (

)

term, then we can

use algebraic simplification to isolate x. The equation below
then gives the maximum number of unsuccessful connections,
x, given a number of successful connections, y.

(

)
[

 (

)

] (4)

 For the parameters provided in [3], this simplifies to
 () This allows y+3 failed
connections prior to s being labeled a scanner. In a sense, each
successful connection then cancels out each unsuccessful
connection for the supplied parameters. However, this is not
true in general.

Once an attacker has reached a point at which another
failed connection could result in detection, the attacker can
migrate to another IP address and continue the scan. To
maximize y, an attacker can first scan as many known active

Probe L 1 L 2 L 3
1 4 4 0.2500
2 16 16 0.0625
3 4 64 0.0150
4 16 256* 0.004**
5 64
6 16
7 64

* permanently labeled

scanner; ** permanently

labeled benign

services as possible. This set can initially be determined
beforehand from public information (e.g., web, DNS, and
email servers). Once collaborative scanning is underway, any
successful probes will reveal active services that can be added
to this list to increase the allowable y value of the next source
IP to be used. This enables each successive scanning IP to send
out a larger number of probes while evading detection.

This idea can be furthered through leveraging TRW’s
blindness to vertical scanning. After each new connection to a
target IP (whether it succeeds or fails), the attacker can
vertically scan the target IP with no penalty. Since most IPs
will have some port open, this enables the attacker to rapidly
increase the size of y for successive scanning IPs; dramatically
reducing the required size of the attacker scanning IP reservoir.

While we defer a complete derivation to Appendix A, a
stopping time argument combined with standard random walk
results shows that, conditional on n services being discovered
already, the number of new services discovered grows in
expectation as approximately

 []

∑ (

 []

√ ()
)

()

 ,

where () is the CDF of the standard Gaussian distribution,
growing exponentially for small values of , is the step
increment for each stage of the random walk, and is a
constant related to the relative weighting of successful and
failed connections in the random walk that will be fixed for any
given instantiation of the algorithm.

2) Simulation of the camouflage attack

We next employ simulations to examine the impact of this
custom scan approach, designed to circumvent TRW, in more
realistic (i.e., non-asymptotic) settings. We used Python 2.7.3
with the data from [3] for the LBL and ICSI networks using the
supplied TRW parameters. The LBL network had 131836 IP
addresses with 5906 active hosts. The ICSI network had 512 IP
addresses with 217 active hosts. We make the assumption that
each active host has 1 active port from a set of 17 common
ports

1
 and that hosts are randomly distributed throughout the IP

address ranges.
We varied the number of initial services known by the

attackers to be active in the networks and determined the
necessary size of the attackers’ reservoirs in order to scan all IP
addresses with the intent of identifying all active hosts. We ran
1000 trials at each data point and provide the results in Figure 3
and Figure 4.
 With no prior knowledge of the target network, LBL

requires on average 162.3 IPs (with a standard deviation of

13.4) to conduct a full scan. ISCI requires on average 4.3 IPs

(with a standard deviation of 1.0). Note the diminishing return

on knowledge of existing active services for both the LBL and

ICSI scans.

1
 MXToolbox [11] default scan ports: ftp 21, ssh 22, telnet

23, smtp 25, dns 53, http 80, pop3 110, netbios 139, imap 143,
ldap 389, https 443, msa-outlook 587, notes 1352, sql server
1433, my sql 3306, remote desktop 3389, and webcache 8080.
Mention of MXToolbox is not intended to imply
recommendation or endorsement, nor is it intended to imply
that the entities, materials, or equipment are necessarily the
best available for the purpose.

Figure 3. Minimum Reservoir Size for LBL Camouflage Attack

Figure 4. Minimum Reservoir Size for ISCI Camouflage Attack

 Figure 5 shows an ensemble of simulated scans on the

LBL network, with no prior knowledge, depicting how the

scope of the scan increases more than linearly as new scanning

IPs are deployed.

Figure 5. Simulated Camouflage Scans on LBL Network

D. Permanent Benign Classification

TRW permanently classifies source IPs as either scanners
or benign. This greatly reduces the time complexity and
memory consumption but enables a significant circumvention.
Assume that an attacker can a priori determine a small number
of active and reachable hosts on the target network (e.g., web
servers, DNS, and email). In this case the attacker can begin a
scan with accesses to these servers. After a small number of
accesses, the attacker’s source IP will be labeled as ‘benign’
and ALL further activity will be ignored (see algorithm in
Algorithm 1). The attacker may then scan the full target
network rapidly and without stealth while evading TRW

detection. Reservoirs of cooperating IPs can make this a priori
knowledge unnecessary as the requisite information can be
discovered.

In this section, we first calculate the minimum number of
consecutive successful accesses that are required in order for a
source IP to be labeled benign. We then derive an estimator for
the approximate number of cooperating IP addresses required
for an attacker to achieve a “benign” classification. Lastly, we
simulate the permanent benign classification attack using the
network information and parameters provided by [3].

1) Minimum number of consecutive successful accesses

We now calculate the minimum number of consecutive
successful accesses that are required in order for a source IP, s,

to be labeled benign. s will be labeled benign when ()

. Expanding both sides yields (

)

 where n is the

number of successful connections. Solving for n,

(

). Thus, once n consecutive successful connections

have been established, s will be labeled benign.
For the parameters used in [3], this simplifies to

(

) . Thus, an attacker needs knowledge of 4

legitimate and accessible services to achieve a permanent
benign classification.

Now assume that an attacker has no a priori knowledge
regarding active services on the target network. The attacker
can still obtain permanent benign classification through
leveraging a reservoir of scanning IPs. The attacker begins
with a single IP address and connects to all known services, K,
(initially this set is empty). The attacker then launches probes
and any newly detected services are added to K. If a probe is
unsuccessful, the attacker vertically scans the target IP on all
ports until an active service is found and added to K. When the
situation arises where the next unsuccessful horizontal
scanning probe would trigger detection (as calculated using the
formula in the previous section), the attacker moves K to a new
IP address and commences the same scan procedure. Once K is
large enough, the next scanning IP used will achieve a
permanent benign classification and can scan the target
network at will. Note how the blindness to vertical scanning
enables us to rapidly build a sufficiently sized K.

While closed-form expression for the number of scanning
IPs required to achieve this permanent classification are
generally intractable, we summarize a general method for
estimating this quantity in Appendix B. Using our approach,
we can show that on average a pool of 15 addresses will be
sufficient for classification as benign in the parameterization of
[3].

2) Simulation of permanent benign classification

As above, we next simulated this attack for two realistic
non-asymptotic cases using Python 2.7.3 with the data from [3]
for the LBL and ICSI networks with the supplied TRW
parameters. We use the same assumptions as in the previous
simulations except that here the attacker has no a priori
knowledge. We ran 1000 trials on each network. For the LBL
network, we found that the attacker needed a reservoir of on
average 22.2 scanning IPs (with a standard deviation of 10.4)
to scan the entire network (compared to 15.123 for method-of-

moments estimator). This is on average 5939 IPs probed per
scanner without being detected. For the ICSI network, the
attacker needed on average only 3.2 scanning IPs (with a
standard deviation of 0.9) to scan the entire network (versus an
estimate of 1.257 from the method of moments estimator,
however, note that the independence assumptions underlying
the asymptotic analysis are severely violated here). This is on
average 160 IPs probed per scanner without being detected.

VI. MITIGATIONS FOR THE ENUMERATED LIMITATIONS
The limitations of applicability only to TCP, blindness to

vertical scanning, and permanent benign classifications can be
fully addressed through 3 simple modifications to the TRW
algorithm. These mitigations are as follows: interfacing with a
system state oracle, penalizing successive failed port
connections, and removing the lower threshold (η0).

The limitation of camouflage attacks remains an issue as
TRW is fundamentally a single source scan detector and
camouflage attacks are in essence collaborative scans.
However, implementing these mitigations dramatically
increases the resource cost to the attacker when mounting a
camouflage attack (analysis in section VII).

A. Interfacing with a System State Oracle
The restriction of TRW to TCP can be overcome through

interfacing it with an oracle that provides system topology and
state information. In particular, the oracle must provide a list of
active IP and port pairs that is updated dynamically as services
go up and down. With this information, connections can be
graded and used as input to TRW without having to see any
return traffic. This enables TRW to monitor non-TCP protocols
and eliminates the problems, discussed earlier, with false
positives when using stateless protocols.

B. Penalizing Successive Failed Port Connections
The blindness to vertical scanning can be mitigated through

adjusting Ls for each connection attempt to each distinct target
IP-port pair. This is in contrast to the original TRW algorithm
that adjusts Ls only for the initial connection to each distinct
target IP. The cost for this modification is increased
computation and memory as the list of ports accessed by each
source IP must be maintained for every source IP being
monitored. Note that we do not perform experimentation
demonstrating efficacy of detection since this was done for a
related vertical scan solution in [8].

C. Removing the Lower Threshold
The permanent benign classifications limitation can be

eliminated through dropping the lower threshold, η0, and to
continuously monitor all source IPs in perpetuity. Source IPs,
s, are never labeled as benign and thus Ls continuously
measures how close s is to being labeled a scanner. Using this
approach, permanent benign evasion attempts become
converted into relatively less effective camouflage attacks
(analyzed in section VII).

Removing the lower threshold increases the computational
and memory costs as the algorithm must keep track of all
source IPs that have ever been seen. To limit this cost, one
could time out and delete apparently inactive source IPs.
Alternately, one could periodically wipe the algorithm’s data
store and accept the limitation of only detecting scans
performed within the chosen time window.

A lighter weight approach is to restart monitoring a source
IP, s, immediately after classifying it as benign. This means
deleting Ds (the set of all target IPs accessed by s) as well as Ls
because otherwise the computational penalties of perpetual
monitoring would still be experienced. Permanent benign
classification is now impossible since IPs labeled benign are
immediate reset to a PENDING state. This has a much more
modest increase in computation and memory costs. However,
this approach opens up another evasion strategy where the
attacker alternates launching a small number of probes (few
enough for s not to be classified as a scanner) followed by
connections to enough known services that s is labeled benign.
The benign classification triggers the deletion of Ds, enabling s
to launch a few more probes before having to repeat this
routine. The attacker can then effectively scan at will from a
single IP, as in the permanent benign classification approach,
while evading detection at the cost of having to repeatedly
issue connections to known active and reachable services.

VII. REMAINING LIMITATIONS
The proposed mitigations eliminate 3 of the stated TRW

limitations: applicability only to TCP, blindness to vertical
scanning, and permanent benign classifications. The fourth
limitation, susceptibility to camouflage attacks, remains. This
is in part due to TRW being in its nature a single source scan
detector as opposed to a collaborative scan detector.

However, our mitigations make it much more expensive for
an attacker to mount a camouflage attack against TRW to
discover all active IPs on a network. To show this, we simulate
camouflage scans on the LBL and ICSI networks. We assume
that each host has 9 active ports from among the 17 commonly
used ports discussed previously which is a worst case
assumption for most networks. We chose this high value
because additional active ports per target IP will not benefit
scans against the original TRW but will benefit scans against
the modified TRW. We are trying to show that even with these
advantages, scans against the modified TRW require much
larger source IP reservoir sizes.

We implement two attacker scenarios, both where the
attacker has no prior knowledge of network services: 1) the
attacker randomly chooses destination IP/port pairs from hosts
not yet fully scanned or identified as active; and 2) the attacker
randomly chooses an IP that has not yet been scanned, scans all
common ports on this IP until finding an active service, and
then repeats the process.

The results of applying these scenarios to both the original
TRW and our modified TRW using the mean of 1000 trials are
shown in Table 2. Note that we do not simulate the original
TRW against attack scenario 1 because it is guaranteed to
always do worse than scenario 2 (since TRW allows full
vertical scanning without penalty once an IP is probed once).
With the original TRW, once a host is probed, the attacker
might as well scan all the possible ports and thus no
knowledgeable attacker would ever use scenario 1 against the
original TRW.

Network Modified
TRW
(scenario 1)

Modified
TRW
(scenario 2)

Original
TRW
(scenario 2)

LBL 673.86 2810 169.3

ICSI 36.3 105.6 8.4

Table 2. Required Average Reservoir Size

As can be seen, the modified TRW algorithm raises the
cost of camouflage attacks and requires the attackers to employ
reservoirs of scanning IPs at least 3.98 time larger, regardless
of which of the 2 scanning strategies are used.

VIII. THEORETICAL COMPLEXITY ANALYSIS
In this section, we discuss the computational time

complexity of TRW and it memory usage. We then compare
these results to the modified TRW approach to determine the
cost of our proposed mitigations.

A. Computational Complexity of TRW
We provide here a TRW algorithm that has linear time

complexity O(n) where n represents the number of flows being
analyzed. We divide our analysis into two parts: the
computation time for the oracle and then for the main TRW
algorithm.

We design the oracle as a preprocessor to the TRW
algorithm and assume that flows arrive to the oracle in
chronological order. The oracle reads each flow and appends it
to the beginning of a list. It also uses a hash table to map each
flow (using the source IP, destination IP, and destination port
tuple as the key) to a Boolean value indicating whether or not
the flow was part of a successful connection. All flows are
initially marked as unsuccessful. When a SYN ACK is
received by the oracle’s monitor, it looks up the originating
flow’s tuple in the hash table and marks the flow as successful.
The oracle then removes each flow from the end of the list
after a certain time threshold. The time threshold is set to the
length of time that must elapse in the TRW algorithm for a
connection attempt to be marked as unsuccessful when no
SYN ACK has yet been received. When a flow is removed
from the end of the list, its state is retrieved from the hash
table. The flow and state are delivered to the main TRW
algorithm and the flow is deleted from both the list and the
hash table. This implementation of the oracle works in O(n)
time where n is the number of flows. This is because flow
addition and deletion from the list is done in O(1) time and
lookup, insertion, and deletion from the hash table is done in
O(1) time. Lastly, there will be fewer SYN ACKs monitored
than flows (since every SYN ACK must be part of some flow)
and thus processing of these packets does not introduce a new
term into the computational complexity.

As far as memory, the oracle periodically receives flows
and then removes them from memory after a set time threshold.
The memory usage for each flow is independent of the other
flows being processed and is thus a constant per flow. The
oracle thus uses O(r) memory where r is the current arrival rate
of the packets.

We design the main TRW algorithm using the following
data structures. We first construct a hash table, H1, that maps
each source IP, s, to a data structure containing the state of s
(i.e., pending, scanner, or benign), the likelihood ratio Ls, and a
hash table H2. H2 maps each destination IP, d, to the value 1.
If an entry exists in H2 for d, then s has communicated with d.
With these data structures, insertions and deletions of
individual source IPs and destination IPs can occur in O(1)
time. To process a single flow, the TRW algorithm (shown in
Algorithm 1) contains only simple formulas and a constant
number of s and d lookups, insertions, and deletions. Thus, the

time complexity of TRW to process all flows is O(n). Note that
the actual time complexity is slightly larger as we did not take
into account the occasional need to resize the hash tables.

The memory grows relative to the number of distinct IP
source/destination pairs where the sources are not marked
‘PENDING’. H1 uses O(|S|) memory, not including the H2
sub-tables, since Hash tables can expand linearly to the data
being stored and are often resized when reaching 70-80%
capacity. If P represents the set of all pairs of communicating
IPs, the H2 sub-tables altogether use (|()| ()

).

B. Computational Complexity of Mitigated TRW

The mitigated oracle receives notices regarding the state
(active or inactive) of each of the monitored services
represented by tuples of IP address, port number, and protocol
name. It can store and update this information in a hash table
H3. This takes O(1) time for each notice and consumes O(|D|)
memory where D is the set of destination hosts on the
monitored network. The ports and protocols are not factored
into the time complexity analysis because they are constants
(65535 for the number of available ports and 2 for TCP and
UDP). Adding new protocols like ICMP simply increases these
constants. The oracle can then immediately grade any received
flow as either a ‘success’ or ‘failure’ relative to the TRW
algorithm, without having to wait for any return traffic. This
hash lookup from H3 takes O(1) time and thus the oracle takes
O(n+|notices|) where n is the number of flows. We expect
service notifications to be less than n which enables the oracle
to operate in O(n) time as with the original TRW oracle. That
said, the constant factor could be much greater.

For memory, the O(|D|) usage for our mitigated oracle has
to be compared to the O(r) usage for the original oracle. Since
|D| can’t grow quickly and is under control of the defender
while r can be manipulated by the attacker, the mitigated oracle
has an advantage in memory management. That said, it must be
pointed out that the mitigated TRW oracle may use vastly more
memory due to very high constants.

Moving from the oracle to the mitigated TRW algorithm,
H2 now must store entries for the tuple destination IP, port
number, and protocol name (not just for each source IP). Also,
the mitigation of dropping the lower bound means that
many labeled ‘PENDING’ would have been labeled
benign under the original TRW algorithm. Since there are a
constant number of ports and monitored protocols, the time
complexity doesn’t increase but the constant factors may be
much greater.

The memory usage is still (|()| ()

) but the number of ‘PENDING’
sources has increased dramatically.

IX. CONCLUSIONS
TRW is an effective algorithm for detecting single source

scanners. However, it has several limitations that allow for
varying degrees of attacker circumvention: applicability only to
TCP, blindness to vertical scanning, permanent benign
classifications, and susceptibility to camouflage attacks. These
limitations allow a single scanning IP to aggressively and
repeatedly scan a target network over all protocols and ports
without any chance of being detected by TRW. Fortunately,
these limitations can be overcome while retaining the

fundamental TRW concepts and underlying mathematics
through 3 mitigations: interfacing with a system state oracle,
penalizing successive failed port connections, and removing
the lower threshold. These limitations do not remove the ability
to perform camouflage circumvention attacks, but we showed
that they significantly increase the resource cost to the attacker.
Finally, our mitigated TRW has the same computational
complexity as the original TRW but with much higher
constants. Memory usage is likewise increased due to the need
to keep track of all source IPs. These issues may be addressed
through periodically purging old or inactive source IPs from
the dataset. We leave it to future work to empirically measure
the computational cost and memory of the mitigated algorithm.

ACKNOWLEDGMENT
This research was sponsored by both the U.S. National

Institute of Standards and Technology and the Army Research
Labs, and was partially accomplished under Army Contract
Number W911QX-07-F-0023. The views and conclusions
contained in this document are those of the authors, and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation hereon.

REFERENCES

[1] S. Panjwani, S. Tan and K. Jarrin, "An experimental

evaluation to determine if port scans are precursors to an

attack," in International Conference on Dependable

Systems and Networks, Washington, D.C., 2005.

[2] M. Bhuyan, D. K. Bhattacharyya and J. K. Kalita,

"Surveying Port Scans and Their Detection

Methodologies," The Computer Journal, vol. 54, no. 10,

pp. 1565-1581, 2011.

[3] J. Jung and V. Paxson et al., "Fast portscan detection

using sequential hypothesis testing," in IEEE Symposium

on Security and Privacy, Oakland, CA, 2004.

[4] V. Falletta et al., "Detecting scanners: emperical

assessment of a 3G network," International Journal of

Network Security, vol. 9, no. 2, pp. 143-155, 2009.

[5] X. Chen, "New Sequential Methods for Detecting

Portscanners," 2012.

[6] X. Wang et al., "Research for scan detection algorithm of

high-speed links based on honeypot," in Proceedings of

IC-NIDC2010, Beijing, 2010.

[7] A. Sridharan et al., "Connectionless port scan detection

on the backbone," in Performance, Computing, and

Communications Conference, 2006.

[8] L. Aniello et al., "Inter-domain stealthy port scan

detection through complex event processing," in 13th

European Workshop on Dependable Computing, 2011.

[9] A. Wald, Sequential Analysis, New York: J. Wiley &

Sons, 1947.

[10] T. L. Lai, "Sequential Analysis: Some Classical Problems

and New Challenges," Statistica Sinica, vol. 11, 2001.

[11] "Supertool," MXToolbox, [Online]. Available:

mxtoolbox.com/SuperTool.aspx

APPENDIX A. EQUATION FOR THE EXPECTED NUMBER OF IP

ADDRESSES IDENTIFIED GIVEN A SCANNING RESERVOIR OF

A PARTICULAR SIZE

We now build on the equations in [3] to derive an
approximate solution for the expected value of the number of

active IP addresses identified by the scanning IP, showing
the exponential growth in the mean value of with respect to
number of scanning IPs.

We consider the asymptotic limit, where the pool of
potential IP addresses is effectively infinite and populated at
some constant rate such that the probability that any randomly
sampled IP address is active is independently and identically .
While this clearly does not hold in practice, it is worth
remarking that (as indirectly alluded to in [3]) by considering
 [|] to be constant, the TRW method makes an
almost identical tacit assumption. We further assume that at
least one active service can be obtained from any active IP
address. Note that in the following, we concern ourselves with
the case ; expectations and probabilities are assumed to be
taken with respect to that.

As observed in [3], taking the logarithm of the total data
likelihood (̅) results in a random walk with absorbing
boundaries at and , and increments

 {
 []

 [() ()]

We place absorbing regions at and .
If services are known in total prior to the beginning of the

 scan, then we set [] ; starting the
random walk from a lower location as the scanning IP contacts
known services prior to beginning its scanning step in order to
lower its TRW score.

Conditional on the number of steps that the algorithm
required to terminate we can estimate the number of active IP
addresses identified on any given scan. We wish to do so
conditional on the event that the scan is eventually detected; if
it is not detected, and the IP classified as benign, then it will be
able to complete the scan of the network without fear of further
detection. Retaining the notation in [3], but indexing from 0,

we define ∑

 . If we neglect the lower stopping

condition, we then can express the probability that a walk has

terminated by the step as the probability that the value of
that walk exceeds the upper bound. We can then write a minor
modification of equation 18 in [3] to include the starting value
 as:

 [
 ∑ []

√ ()

 []

√ ()
]

 (|),
where () and [] are identical to the
values given in [3] conditional on

(√ () (

) and ()

,

respectively). If then the sequence ∑

 will form

a submartingale: our stopped process is bounded above by
 and our increments have finite expectation and variance,
and so by the martingale convergence theorem it will converge

in the limit to some random variable, even if we neglect the
lower absorbing state. We may use this in combination with
bounded first and second moments to thus justify a similar
appeal to the central limit theorem as in [3], specifically that
the normalized sum will ultimately converge in distribution to
a standard normal random variable, and write an approximation
for () as

 (|) (
 []

()

√ ()
),

where, since , [] may itself be approximated from
the approximate PDF by:

 [] ∑ (
 []

()

√ ()
)

As in [3] the approximate CDF will generally
underestimate the probability of a scan of length , and so our
expected value will typically be an overestimation of the true
value. These results thus represent worst-case scenarios for the
defender.

From the work of the previous section, note that in general
– defining as the number of failed probes and as the
number of successful ones – we have , with a
scan terminating when for some
constant . We may substitute and take expectations to find a
simple method of moments estimator ̂ for the number of new
services discovered:

 ̂
 [] ()

If we discover ̂ new services on the scan, under the
assumption that the scanner is eventually detected, then for
iteration we have:

() [

()

()
](∑ ̂

)

A Taylor series expansion for () shows that has an
exponential dependence on for small values of , and so
under the repeated substitutions indicated by the previous two
equations, we find that the number of scanned IPs and the
number of active IP addresses identified by a scanner is
exponential in the number of iterated scans performed.

Restricting our attention to probability of detection on a
single iteration, exact expressions for the change in this
probability of detection given an attacker’s a priori knowledge
of the network and use of a camouflage attack are tractable in
the symmetric case, and again may be approximated in the
asymmetric case.If we again assume that (as in [3]), [
] [() ()] (since they have set
), we may obtain exact results. Our random walk
has symmetric step sizes with asymmetric probabilities, and
unique absorbing states above and below. Adjust and
 such that they are integer multiples of ; as this is a
random walk with symmetric step sizes, there are unique
values of that are attainable by the walk given the
stopping conditions and this adjustment does not change the
result of the analysis.

Note that the value of is strictly bounded, and that the
increments of our random walk are finite. We thus are in a
position to use basic martingale arguments to show that the
probability of a classification of “scanning” satisfies:

 ()

 () ()
 ()

where

.

To show this, we first observe that the process is
a martingale, since:

 [|] () () ()

Since the time { } is
trivially a valid stopping time, we obtain by optional stopping
that:

 [] []
And so, denoting (|) , we can find

that for the stopped process:

() ()

()

We solve for to obtain (). This method allows exact

calculation of the approximate values given in [3]. Applying
this result to the parameterization of [3], taking , we can

then show that

 , the true

probability of detection under , is indeed slightly in excess
of (the minimum chance of detection). However, if the
attacker is somehow aware of 2 active hosts on the internal

network, we may find

 : lower

than the desired .
 If we relax the assumption that our step size is uniform, the

problem becomes significantly more complex, and typically
does not have closed-form solution. We may find approximate
results by application of the generalized Wald identity. For a
given parameterization of the scanning problem, find to
satisfy

 []
And note that given such a value for , the sequence below

forms a martingale with constant expectation .

 []
If as in [3] we assume that the differences | | and

| | are negligible across all trajectories, we obtain
by optional stopping that:

 ()

Yielding a modification of the standard random walk result:

 ()

Note that in the case with symmetric increments our

differences | | and | | are exactly 0 for

appropriated adapted , and we may find immediately that

 (

) thus recovering the result ().

APPENDIX B. ESTIMATOR FOR THE NUMBER OF

COOPERATING IP ADDRESSES

In Appendix A we obtained expressions approximating the
probability of detecting a scanner given that the scanner knows
some initial number of active hosts. We may use these
expressions to estimate the number of cooperative IP addresses
required to identify sufficient active hosts that any further
scanning IP may obtain a permanent “benign” classification.

First, note that we may find the probability that at least 1
active service is discovered on a given scan simply by

exclusion. Recall that if we begin with initial value , then we
require () [] failed connections in order
to obtain a classification of “scanner”. Conditional on the
assumption that the scanning IP is ultimately detected, if we
have independent probabilities of on each probe to
generate a failed connection, then we can easily find that the
probability of generating 0 successful connections is (
)

⌈() []⌉ . The complement thus provides the
probability of adding at least 1 IP to the pool of known active
internal IP addresses. If we make the assumption that is very
small, then we may make the simplifying approximation that at
most 1 new IP address will be added per scan. Let us denote

 ()
⌈(([() ()])) []⌉ .

Then note that we may construct a Markov chain denoting
the number of discovered active internal IP addresses after
scanning IPs with the following transition rule:

 (|)

 (|)

By placing an absorbing state at ⌈ ()
 [() ()]⌉ we may numerically evaluate an
upper bound on the CDF for the number of required scanning
IP addresses, from which an expected value may readily be
obtained. Using the parameterization of [3], we may find that
 () , and our absorbing state is at . Our
Markov chain transition matrix is thus

[

]

We may find () by examining [][]
 . An expected

value for this quantity may be calculated via the usual identity

 [] ∑ (()) . Applying this method to the

parameterization in [3], we obtain that [] .
Assuming as in the independent approximation
for the LNL data, we obtain [] . For
as in the ICI data, we obtain [] . It is instructive to
compare these results to those of the simulation, highlighting
the impact of the dependence between successive scans.

Note that this result represents a weak upper bound to an
attacker, since the simplifying assumption is that at most 1
active IP address is identified per scan. For very sparse
networks where is large and thus ()

 decreases very
rapidly in , this assumption is a reasonable one and the
approximation is useful. For more densely populated networks,
we obtain poorer approximations and we may severely
overestimate the number of IP addresses an attacker requires as
they recover multiple active hosts with each scan. In such
cases, the simple geometric estimator () may prove

more accurate.

