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Abstract—This paper discusses limitations in one of the most 

widely cited single source scan detection algorithms: threshold 

random walk (TRW). If an attacker knows that TRW is being 

employed, these limitations enable full circumvention allowing 

undetectable high speed full horizontal and vertical scanning of 

target networks from a single Internet Protocol address. To 

mitigate the discovered limitations, we provide 3 enhancements 

to TRW and analyze the increased cost in computational 

complexity and memory. Even with these mitigations in place, 

circumvention is still possible but only through collaborative 

scanning (something TRW was not designed to detect) with a 

significant increase in the required level of effort and usage of 

resources. 
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I. INTRODUCTION 
Network scans often originate from malicious actors to map 

out a target network and identify candidate points of 
penetration [1]. Single source scans originate from a single 
Internet Protocol (IP) address while collaborative scans 
originate from a reservoir of multiple cooperating IPs [2].  
Horizontal scans probe a single port on many IP addresses. 
Vertical scans probe many ports on a single IP address. In 
practice, scans may be a combination of the two. 

One of the most cited single source scan detection 
algorithms is Threshold Random Walk (TRW) [3]. This highly 
effective algorithm can often detect horizontal scanners after 
only 4 or 5 connection attempts. It takes advantage of the fact 
that scanners do not know the mapping of active servers and 
services to IP addresses and are thus more likely to access 
inactive services than legitimate users. For each source IP, 
TRW computes a likelihood ratio (a function of the cumulative 
sum of successful and failed connection attempts). This 
likelihood ratio is compared against lower and upper thresholds 
(set according to false negative and positive tolerances) to label 
source IPs as either benign or malicious. 

However, there are 4 limitations that restrict TRW’s 
effectiveness and applicability in certain environments. The 
first 3 limitations were acknowledged but not addressed in [3]: 
1) attackers can bypass TRW by scanning over non-TCP 
protocols, 2) attackers can initiate a vertical scan on all ports of 
a target IP with little or no penalty towards being classified as a 
scanner, 3) attackers can camouflage their activity by mixing in 
successful connections with scan attempts. A fourth limitation, 
and the most impactful, has not been mentioned in prior work: 
attackers can completely bypass TRW by tricking a detector 
into categorizing their source IP as benign prior to scanning. 
This enables full circumvention allowing undetectable high 

speed full horizontal and vertical scanning of target networks 
from a single IP address. 

These limitations in TRW can be mostly mitigated through 
simple changes to the algorithm without augmentation with 
alternate detection approaches. Stateless protocol monitoring 
can be addressed through providing TRW access to network 
topology and host/service status information. Vertical scan 
circumvention can be mitigated through penalizing successive 
unsuccessful port accesses. And horizontal scan circumvention 
can be addressed through removing the lower threshold bound 
and perpetually monitoring source IPs for their level of 
maliciousness. Even with these mitigations, however, 
circumvention is still possible through collaborative scanning 
(something TRW was not designed to detect) but with a 
significant increase in an attacker’s required level of effort and 
usage of resources. 

There is also an increased cost to the defender in terms of 
time complexity and memory usage. The big-O computational 
complexity is the same as for TRW, but the constants will 
normally be much larger. The memory usage increases 
dramatically as most IP sources are monitored in perpetuity. 
However, strategies exist to manage the memory growth. Also, 
we discover that in the original TRW attackers can alter TRW 
memory usage while in our modified TRW memory 
consumption is independent of attacker activity. 

The remainder of this paper is structured as follows. 
Section II discusses related work. Section III provides a 
detailed overview of the TRW algorithm and section IV 
provides example TRW calculations. Section V enumerates 
TRW limitations, section VI discusses related mitigation 
approaches, and section VII analyzed remaining limitations. 
Section VIII provides a theoretical analysis of the computation 
complexity and memory requirements of TRW vs. our 
mitigated version. Section IX concludes. 

II. RELATED WORK 
There are many approaches to detecting both single source 

and collaborative scans as discussed in [2]. The subject of our 
paper, TRW, is one of the most influential prior works and has 
been used as a fundamental building block in other work.  

The following work extends TRW without mention of the 
limitations addressed in this paper. The work of [4] describes 
the enhancement of TRW with a severity metric to distinguish 
reconnaissance scanning from peer-to-peer scanning. The work 
of [5] examines an extension of the TRW method in which 
target thresholds for the likelihood ratio are sequentially 
adapted according to user-defined acceptable risk for a 
bounded sequence, allowing TRW to converge to a decision in 
finite time. In [6], TRW is combined with honeypots to reduce  



false negatives by increasing the weight of connections to 
honeypot hosts. 

However, a couple of papers do mention and, in one case, 
partially address our stated TRW limitations. [7] cites TRW’s 
dependence on stateful traffic analysis and thus TCP, however, 
their solution is still TCP centric. It allows monitoring of TCP 
in backbone environments where state is difficult to determine 
(e.g., with asymmetric routing). [8] presents a variant of TRW 
that enables detection of vertical scans but doesn’t explicitly 
discuss or analyze this limitation in the original TRW 
algorithm. Their approach computes a modified TRW 
likelihood ratio exclusively for vertical scan detection and a 
separate one for horizontal scan detection. 

III. OVERVIEW OF  THRESHOLD RANDOM WALK 
TRW is based on the mathematical approach Sequential 

Hypothesis Testing [9], developed during World War II to 
reduce sample sizes when testing anti-aircraft gunnery [10]. 

Conceptually, TRW computes a likelihood ratio, L, for 
each source IP, s, from the set of all source IPs S. Ls is updated 
whenever an s attempts to connect to a new distinct target IP 
address, d. The argument to the likelihood calculation, Ls, is 
the Boolean set, Y, of the success or failure of connections first 
initiated by s to each of the IPs in the set of distinct target IPs, 
Ds. If Ls exceeds a certain threshold, η1, then s is labeled as a 
scanner. If Ls falls below a different threshold, η0, then s is 
labeled as benign. In either case, the algorithm ceases to 
monitor s once categorized.  

More specifically, TRW records the likelihood ratio ˄(Y) 
for each s in S where Y is a list of Boolean values 
(0=success,1=failure) representing the success or failure of 
connections to distinct target IPs, Ds. Once calculated, ˄(Y)  is 
referred to as Ls to specify an application of the ratio to a 
specific s. H0 represents the hypothesis that a source IP is 
benign and H1 represents the hypothesis that a source IP is a 
scanner. n represents the number of distinct IP addresses to 
which s has initiated a connection attempt. With this 
nomenclature, the likelihood ratio is computed as follows: 
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To calculate the conditional probabilities, TRW uses the 

following equations.  
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θ0 is the probability that a source is benign given a 

successful connection while θ1 is the probability that a source 
is a scanner given a successful connection. θ0 and θ1 must be 
provided by the user with the constraint that θ0 > θ1. [3] uses θ0 
=.8 and θ1 =.2 for their experiments.  

Lastly, the user must provide the maximum false positive 
probability, α, and the minimum detection probability, β. [3] 
uses α=0.01 and β=0.99. Two thresholds η0 and η1 are then 
computed based on α and β. 
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 While monitoring the connections of a source IP, s, if at 
any point ˄(Y)≤η0 then s is labeled benign whereas if ˄(Y)≥η1 
then s is labeled a scanner. This comparison routine is shown 
in Figure 1 (copied from [3]). 

 
Figure 1. Flow Diagram for Ratio Comparison 

The full algorithm that describes how to process lines in a 
connection log dataset is shown below. We now review the 
nomenclature: s represents a source IP, d represents a 
destination IP, Ds represents the distinct target IPs contacted by 
s, Ss represents the label for s (PENDING, H0, or H1), and Ls 
represents the likelihood ratio for s.  

 
 

1) Skip the line if Ss is not PENDING (a decision has 

already made for the remote host s). 

2) Determine whether the connection is successful or not. 

A connection is considered successful if it elicited a 

SYN ACK. 

3) Check whether d already belongs to Ds. If so, skip the 

next two steps and proceed to the next line. 

4) Update Ds with d, and update the likelihood ratio, Ls 

5) If Ls equals or exceeds η1, set Ss to H1. If Ls is lower 

than or equal to η0, set Ss to H0. 
Algorithm 1. TRW Algorithm from [3]  

IV. EXAMPLE TRW CALCULATIONS 
To calculate some examples, take the parameters used in 

[3] where α=0.01, β=0.99, θ0 =.8, and θ1 =.2. The lower and 

upper thresholds are calculated as follows:    
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     . Now consider 3 source IPs. Source 1 

initiates a mix of successful and failed connections with a Y for 
source 1 equal to [1,1,0,1,1,0,1]. Source 2 initiates only failed 
connections resulting in a Y for source 2 equal to [1,1,1,1]. 
Source 3 initiates only successful connections resulting in a Y 
for source 3 equal to [0,0,0,0]. Table 1 provides the likelihood 
ratios after each connection attempt. Figure 2 displays the 
results graphically. 

 



 
Table 1. Example Likelihood Ratio Calculations 

 
Figure 2. Example Likelihood Ratio Calculations 

V. ALGORITHM LIMITATIONS 
The TRW algorithm as provided in [3] has several 

limitations: applicability only to TCP, blindness to vertical 
scanning,  susceptibility to camouflage attacks, and permanent 
benign classifications.  

The first, second, and third limitation were mentioned but 
not analyzed in [3]. One could argue that the first 2 limitations 
are merely the expressed scope of [3] and thus it is unnecessary 
to restate them. However, one point of this paper is that these 
limitations can be addressed through simple modifications 
resulting in a greatly enhanced scope for TRW. The fourth 
limitation, permanent benign classification, enables full 
circumvention of TRW detection and has not yet been 
presented in the literature. 

A. Applicability only to TCP 

The TRW algorithm was design to work exclusively with 
TCP due to [3] having availability only to TCP logs.  From [3], 
“since the data we have available… consists almost solely of 
TCP connections, we confine our analysis to detecting TCP 
scanners.” From a technical perspective, TRW is limited to 
TCP because it monitors for SYN ACK packets, leveraging the 
stateful nature of TCP to identify established connections.  

One obvious way to expand TRW to stateless protocols 
(e.g., ICMP and UDP) is to monitor for bi-directional 
communication between IP-port pairs. However, for stateless 
protocols bidirectional communication is not guaranteed within 
any particular time frame. Thus, this naïve application of TRW 
to such protocols may classify valid benign communication as 
scanning attempts. 

B. Blindness to Vertical Scanning 
The TRW algorithm was not designed to consider detecting 

vertical scans (we “do not consider detecting ‘vertical’ scans of 
a single host” [3]). The TRW algorithm does not update Ls for 

each connection attempt from a source IP, s, to a target host, d. 
Instead, it adjusts Ls based only on the outcome of the initial 
connection to d. This means that s can scan all ports on d and 
only be penalized for one unsuccessful connection. If s is lucky 
on the first probe and accesses an active service, there is no 
penalty for the vertical scan. Building on this idea, for a 
destination IP where an active service is known a priori, the 
attacker can first connect to the known service prior to 
initiating the vertical scan. In this case, s will be able to scan 
all 65,536 ports while, non-intuitively, having its Ls score 
moved closer to its being classified as benign. This is true even 
if all of other ports are inactive. Furthermore, this vertical scan 
can be repeated periodically and indefinitely without any 
additional penalty or risk of detection. 

An additional impact, not mentioned in previous work, is 
that this blindness to vertical scanning can decrease the 
effectiveness of TRW’s horizontal scan detection. This 
happens when the blindness to vertical scanning is combined 
with evasion approaches using permanent benign classification 
or camouflage attacks (discussed below). 

C. Suceptibility to Camouflage Attacks 
An attacker can indefinitely maintain a state of 

‘PENDING’ for an s by mixing connections to known services 
with scanning probes while keeping Ls below η1. This section 
describes how to apply this concept to a reservoir of 
cooperating scanning IPs in order to implement an effective 
TRW circumvention. 

We first provide an equation for the maximum number of 
unsuccessful connections given a number of successful 
connections. Next, we derive an equation for the expected 
number of IP addresses identified given a scanning reservoir of 
a particular size. Lastly, we simulate the camouflage attack 
using the network information and parameters provided by [3]. 

1) Equation for the maximum number of unsuccessful 

connections given a number of successful connections 

Every successful connection decreases  ( )   by 
  

  
 and 

every failure increases it by 
    

    
  as shown in Equation 1 and 

Equation 2. If x represents the number of unsuccessful 
connections and y represents the number of successful 

connections, then  ( )  (
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term, then we can 

use algebraic simplification to isolate x. The equation below 
then gives the maximum number of unsuccessful connections, 
x, given a number of successful connections, y. 
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 For the parameters provided in [3], this simplifies to 
      (     )          This allows y+3 failed 
connections prior to s being labeled a scanner. In a sense, each 
successful connection then cancels out each unsuccessful 
connection for the supplied parameters. However, this is not 
true in general. 

Once an attacker has reached a point at which another 
failed connection could result in detection, the attacker can 
migrate to another IP address and continue the scan. To 
maximize y, an attacker can first scan as many known active 

Probe L 1 L 2 L 3
1 4 4 0.2500
2 16 16 0.0625
3 4 64 0.0150
4 16 256* 0.004**
5 64
6 16
7 64

* permanently labeled 

scanner; ** permanently 

labeled benign



services as possible. This set can initially be determined 
beforehand from public information (e.g., web, DNS, and 
email servers). Once collaborative scanning is underway, any 
successful probes will reveal active services that can be added 
to this list to increase the allowable y value of the next source 
IP to be used. This enables each successive scanning IP to send 
out a larger number of probes while evading detection.  

This idea can be furthered through leveraging TRW’s 
blindness to vertical scanning. After each new connection to a 
target IP (whether it succeeds or fails), the attacker can 
vertically scan the target IP with no penalty. Since most IPs 
will have some port open, this enables the attacker to rapidly 
increase the size of y for successive scanning IPs; dramatically 
reducing the required size of the attacker scanning IP reservoir. 

While we defer a complete derivation to Appendix A, a 
stopping time argument combined with standard random walk 
results shows that, conditional on n services being discovered 
already, the number    of new services discovered grows in 
expectation as approximately 
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where  ( ) is the CDF of the standard Gaussian distribution, 
growing exponentially for small values of  ,    is the step 
increment for each stage of the random walk, and   is a 
constant related to the relative weighting of successful and 
failed connections in the random walk that will be fixed for any 
given instantiation of the algorithm. 

2) Simulation of the camouflage attack 
 

We next employ simulations to examine the impact of this 
custom scan approach, designed to circumvent TRW, in more 
realistic (i.e., non-asymptotic) settings. We used Python 2.7.3 
with the data from [3] for the LBL and ICSI networks using the 
supplied TRW parameters. The LBL network had 131836 IP 
addresses with 5906 active hosts. The ICSI network had 512 IP 
addresses with 217 active hosts. We make the assumption that 
each active host has 1 active port from a set of 17 common 
ports

1
 and that hosts are randomly distributed throughout the IP 

address ranges. 
We varied the number of initial services known by the 

attackers to be active in the networks and determined the 
necessary size of the attackers’ reservoirs in order to scan all IP 
addresses with the intent of identifying all active hosts. We ran 
1000 trials at each data point and provide the results in Figure 3 
and Figure 4. 
     With no prior knowledge of the target network, LBL 

requires on average 162.3 IPs (with a standard deviation of 

13.4) to conduct a full scan. ISCI requires on average 4.3 IPs 

(with a standard deviation of 1.0). Note the diminishing return 

on knowledge of existing active services for both the LBL and 

ICSI scans.  

                                                           
1
 MXToolbox [11] default scan ports: ftp 21, ssh 22, telnet 

23, smtp 25, dns 53, http 80, pop3 110, netbios 139, imap 143, 
ldap 389, https 443, msa-outlook 587, notes 1352, sql server 
1433, my sql 3306, remote desktop 3389, and webcache 8080. 
Mention of MXToolbox is not intended to imply 
recommendation or endorsement, nor is it intended to imply 
that the entities, materials, or equipment are necessarily the 
best available for the purpose. 

 
Figure 3. Minimum Reservoir Size for LBL Camouflage Attack 

 
Figure 4. Minimum Reservoir Size for ISCI Camouflage Attack 

      Figure 5 shows an ensemble of simulated scans on the 

LBL network, with no prior knowledge, depicting how the 

scope of the scan increases more than linearly as new scanning 

IPs are deployed.

 
Figure 5. Simulated Camouflage Scans on LBL Network 

D. Permanent Benign Classification 

TRW permanently classifies source IPs as either scanners 
or benign. This greatly reduces the time complexity and 
memory consumption but enables a significant circumvention. 
Assume that an attacker can a priori determine a small number 
of active and reachable hosts on the target network (e.g., web 
servers, DNS, and email). In this case the attacker can begin a 
scan with accesses to these servers. After a small number of 
accesses, the attacker’s source IP will be labeled as ‘benign’ 
and ALL further activity will be ignored (see algorithm in 
Algorithm 1). The attacker may then scan the full target 
network rapidly and without stealth while evading TRW 



detection. Reservoirs of cooperating IPs can make this a priori 
knowledge unnecessary as the requisite information can be 
discovered. 

In this section, we first calculate the minimum number of 
consecutive successful accesses that are required in order for a 
source IP to be labeled benign. We then derive an estimator for 
the approximate number of cooperating IP addresses required 
for an attacker to achieve a “benign” classification. Lastly, we 
simulate the permanent benign classification attack using the 
network information and parameters provided by [3]. 

1)  Minimum number of consecutive successful accesses  
 

We now calculate the minimum number of consecutive 
successful accesses that are required in order for a source IP, s, 

to be labeled benign.  s will be labeled benign when  ( )  

 
 
. Expanding both sides yields  (
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 where n is the 

number of successful connections.  Solving for n,    

     
  

(
   

   
). Thus, once n consecutive successful connections 

have been established, s will be labeled benign. 
For the parameters used in [3], this simplifies to   

     
  

(
     

     
)       . Thus, an attacker needs knowledge of 4 

legitimate and accessible services to achieve a permanent 
benign classification.  

Now assume that an attacker has no a priori knowledge 
regarding active services on the target network. The attacker 
can still obtain permanent benign classification through 
leveraging a reservoir of scanning IPs. The attacker begins 
with a single IP address and connects to all known services, K, 
(initially this set is empty). The attacker then launches probes 
and any newly detected services are added to K. If a probe is 
unsuccessful, the attacker vertically scans the target IP on all 
ports until an active service is found and added to K. When the 
situation arises where the next unsuccessful horizontal 
scanning probe would trigger detection (as calculated using the 
formula in the previous section), the attacker moves K to a new 
IP address and commences the same scan procedure. Once K is 
large enough, the next scanning IP used will achieve a 
permanent benign classification and can scan the target 
network at will. Note how the blindness to vertical scanning 
enables us to rapidly build a sufficiently sized K. 

While closed-form expression for the number of scanning 
IPs required to achieve this permanent classification are 
generally intractable, we summarize a general method for 
estimating this quantity in Appendix B.  Using our approach, 
we can show that on average a pool of 15  addresses will be 
sufficient for classification as benign in the parameterization of 
[3]. 

2) Simulation of permanent benign classification  
 

As above, we next simulated this attack for two realistic 
non-asymptotic cases using Python 2.7.3 with the data from [3] 
for the LBL and ICSI networks with the supplied TRW 
parameters. We use the same assumptions as in the previous 
simulations except that here the attacker has no a priori 
knowledge. We ran 1000 trials on each network. For the LBL 
network, we found that the attacker needed a reservoir of on 
average 22.2 scanning IPs (with a standard deviation of 10.4) 
to scan the entire network (compared to 15.123 for method-of-

moments estimator). This is on average 5939 IPs probed per 
scanner without being detected. For the ICSI network, the 
attacker needed on average only 3.2 scanning IPs (with a 
standard deviation of 0.9) to scan the entire network (versus an 
estimate of 1.257 from the method of moments estimator, 
however, note that the independence assumptions underlying 
the asymptotic analysis are severely violated here). This is on 
average 160 IPs probed per scanner without being detected. 

VI. MITIGATIONS FOR THE ENUMERATED LIMITATIONS 
The limitations of applicability only to TCP, blindness to 

vertical scanning, and permanent benign classifications can be 
fully addressed through 3 simple modifications to the TRW 
algorithm. These mitigations are as follows: interfacing with a 
system state oracle, penalizing successive failed port 
connections, and removing the lower threshold (η0). 

The limitation of camouflage attacks remains an issue as 
TRW is fundamentally a single source scan detector and 
camouflage attacks are in essence collaborative scans. 
However, implementing these mitigations dramatically 
increases the resource cost to the attacker when mounting a 
camouflage attack (analysis in section VII). 

A. Interfacing with a System State Oracle 
The restriction of TRW to TCP can be overcome through 

interfacing it with an oracle that provides system topology and 
state information. In particular, the oracle must provide a list of 
active IP and port pairs that is updated dynamically as services 
go up and down. With this information, connections can be 
graded and used as input to TRW without having to see any 
return traffic. This enables TRW to monitor non-TCP protocols 
and eliminates the problems, discussed earlier, with false 
positives when using stateless protocols. 

B. Penalizing Successive Failed Port Connections 
The blindness to vertical scanning can be mitigated through 

adjusting Ls for each connection attempt to each distinct target 
IP-port pair. This is in contrast to the original TRW algorithm 
that adjusts Ls only for the initial connection to each distinct 
target IP. The cost for this modification is increased 
computation and memory as the list of ports accessed by each 
source IP must be maintained for every source IP being 
monitored. Note that we do not perform experimentation 
demonstrating efficacy of detection since this was done for a 
related vertical scan solution in [8]. 

C. Removing the Lower Threshold 
The permanent benign classifications limitation can be 

eliminated through dropping the lower threshold, η0, and to 
continuously monitor all source IPs in perpetuity. Source IPs, 
s, are never labeled as benign and thus Ls continuously 
measures how close s is to being labeled a scanner. Using this 
approach, permanent benign evasion attempts become 
converted into relatively less effective camouflage attacks 
(analyzed in section VII). 

Removing the lower threshold increases the computational 
and memory costs as the algorithm must keep track of all 
source IPs that have ever been seen. To limit this cost, one 
could time out and delete apparently inactive source IPs. 
Alternately, one could periodically wipe the algorithm’s data 
store and accept the limitation of only detecting scans 
performed within the chosen time window. 



A lighter weight approach is to restart monitoring a source 
IP, s, immediately after classifying it as benign. This means 
deleting Ds (the set of all target IPs accessed by s) as well as Ls 
because otherwise the computational penalties of perpetual 
monitoring would still be experienced. Permanent benign 
classification is now impossible since IPs labeled benign are 
immediate reset to a PENDING state. This has a much more 
modest increase in computation and memory costs. However, 
this approach opens up another evasion strategy where the 
attacker alternates launching a small number of probes (few 
enough for s not to be classified as a scanner) followed by 
connections to enough known services that s is labeled benign. 
The benign classification triggers the deletion of Ds, enabling s 
to launch a few more probes before having to repeat this 
routine. The attacker can then effectively scan at will from a 
single IP, as in the permanent benign classification approach, 
while evading detection at the cost of having to repeatedly 
issue connections to known active and reachable services. 

VII. REMAINING LIMITATIONS 
The proposed mitigations eliminate 3 of the stated TRW 

limitations: applicability only to TCP, blindness to vertical 
scanning, and permanent benign classifications. The fourth 
limitation, susceptibility to camouflage attacks, remains. This 
is in part due to TRW being in its nature a single source scan 
detector as opposed to a collaborative scan detector.  

However, our mitigations make it much more expensive for 
an attacker to mount a camouflage attack against TRW to 
discover all active IPs on a network. To show this, we simulate 
camouflage scans on the LBL and ICSI networks. We assume 
that each host has 9 active ports from among the 17 commonly 
used ports discussed previously which is a worst case 
assumption for most networks. We chose this high value 
because additional active ports per target IP will not benefit 
scans against the original TRW but will benefit scans against 
the modified TRW. We are trying to show that even with these 
advantages, scans against the modified TRW require much 
larger source IP reservoir sizes. 

We implement two attacker scenarios, both where the 
attacker has no prior knowledge of network services: 1) the 
attacker randomly chooses destination IP/port pairs from hosts 
not yet fully scanned or identified as active; and 2) the attacker 
randomly chooses an IP that has not yet been scanned, scans all 
common ports on this IP until finding an active service, and 
then repeats the process.  

The results of applying these scenarios to both the original 
TRW and our modified TRW using the mean of 1000 trials are 
shown in Table 2. Note that we do not simulate the original 
TRW against attack scenario 1 because it is guaranteed to 
always do worse than scenario 2 (since TRW allows full 
vertical scanning without penalty once an IP is probed once). 
With the original TRW, once a host is probed, the attacker 
might as well scan all the possible ports and thus no 
knowledgeable attacker would ever use scenario 1 against the 
original TRW. 

Network Modified 
TRW 
(scenario 1) 

Modified 
TRW 
(scenario 2) 

Original 
TRW 
(scenario 2) 

LBL 673.86 2810 169.3 

ICSI 36.3 105.6 8.4 

Table 2. Required Average Reservoir Size 

As can be seen, the modified TRW algorithm raises the 
cost of camouflage attacks and requires the attackers to employ  
reservoirs of scanning IPs at least 3.98 time larger, regardless 
of which of the 2 scanning strategies are used. 

VIII. THEORETICAL COMPLEXITY ANALYSIS 
In this section, we discuss the computational time 

complexity of TRW and it memory usage. We then compare 
these results to the modified TRW approach to determine the 
cost of our proposed mitigations. 

A. Computational Complexity of TRW 
We provide here a TRW algorithm that has linear time 

complexity O(n) where n represents the number of flows being 
analyzed. We divide our analysis into two parts: the 
computation time for the oracle and then for the main TRW 
algorithm. 

We design the oracle as a preprocessor to the TRW 
algorithm and assume that flows arrive to the oracle in 
chronological order. The oracle reads each flow and appends it 
to the beginning of a list. It also uses a hash table to map each 
flow (using the source IP, destination IP, and destination port 
tuple as the key) to a Boolean value indicating whether or not 
the flow was part of a successful connection.  All flows are 
initially marked as unsuccessful. When a SYN ACK is 
received by the oracle’s monitor, it looks up the originating 
flow’s tuple in the hash table and marks the flow as successful. 
The oracle then removes each flow from the end of the list 
after a certain time threshold. The time threshold is set to the 
length of time that must elapse in the TRW algorithm for a 
connection attempt to be marked as unsuccessful when no 
SYN ACK has yet been received. When a flow is removed 
from the end of the list, its state is retrieved from the hash 
table. The flow and state are delivered to the main TRW 
algorithm and the flow is deleted from both the list and the 
hash table. This implementation of the oracle works in O(n) 
time where n is the number of flows. This is because flow 
addition and deletion from the list is done in O(1) time and 
lookup, insertion, and deletion from the hash table is done in 
O(1) time. Lastly, there will be fewer SYN ACKs monitored 
than flows (since every SYN ACK must be part of some flow) 
and thus processing of these packets does not introduce a new 
term into the computational complexity. 

As far as memory, the oracle periodically receives flows 
and then removes them from memory after a set time threshold. 
The memory usage for each flow is independent of the other 
flows being processed and is thus a constant per flow. The 
oracle thus uses O(r) memory where r is the current arrival rate 
of the packets. 

We design the main TRW algorithm using the following 
data structures. We first construct a hash table, H1, that maps 
each source IP, s, to a data structure containing the state of s 
(i.e., pending, scanner, or benign), the likelihood ratio Ls, and a 
hash table H2. H2 maps each destination IP, d, to the value 1. 
If an entry exists in H2 for d, then s has communicated with d. 
With these data structures, insertions and deletions of 
individual source IPs and destination IPs can occur in O(1) 
time. To process a single flow, the TRW algorithm (shown in 
Algorithm 1) contains only simple formulas and a constant 
number of s and d lookups, insertions, and deletions. Thus, the 



time complexity of TRW to process all flows is O(n). Note that 
the actual time complexity is slightly larger as we did not take 
into account the occasional need to resize the hash tables.  

The memory grows relative to the number of distinct IP 
source/destination pairs where the sources are not marked 
‘PENDING’. H1 uses O(|S|) memory, not including the H2 
sub-tables, since Hash tables can expand linearly to the data 
being stored and are often resized when reaching 70-80% 
capacity. If P represents the set of all pairs of communicating 
IPs, the H2 sub-tables altogether use  (|(   )|   (   )   
             

         ).  

B. Computational Complexity of Mitigated TRW 

The mitigated oracle receives notices regarding the state 
(active or inactive) of each of the monitored services 
represented by tuples of IP address, port number, and protocol 
name. It can store and update this information in a hash table 
H3. This takes O(1) time for each notice and consumes O(|D|) 
memory where D is the set of destination hosts on the 
monitored network. The ports and protocols are not factored 
into the time complexity analysis because they are constants 
(65535 for the number of available ports and 2 for TCP and 
UDP). Adding new protocols like ICMP simply increases these 
constants. The oracle can then immediately grade any received 
flow as either a ‘success’ or ‘failure’ relative to the TRW 
algorithm, without having to wait for any return traffic. This 
hash lookup from H3 takes O(1) time and thus the oracle takes 
O(n+|notices|) where n is the number of flows. We expect 
service notifications to be less than n which enables the oracle 
to operate in O(n) time as with the original TRW oracle. That 
said, the constant factor could be much greater.  

For memory, the O(|D|) usage for our mitigated oracle has 
to be compared to the O(r) usage for the original oracle. Since 
|D| can’t grow quickly and is under control of the defender 
while r can be manipulated by the attacker, the mitigated oracle 
has an advantage in memory management. That said, it must be 
pointed out that the mitigated TRW oracle may use vastly more 
memory due to very high constants. 

Moving from the oracle to the mitigated TRW algorithm, 
H2 now must store entries for the tuple destination IP, port 
number, and protocol name (not just for each source IP). Also, 
the mitigation of dropping the lower bound    means that 
many     labeled ‘PENDING’ would have been labeled 
benign under the original TRW algorithm. Since there are a 
constant number of ports and monitored protocols, the time 
complexity doesn’t increase but the constant factors may be 
much greater.  

The memory usage is still  (|(   )|   (   )       
         

         )  but the number of ‘PENDING’ 
sources has increased dramatically. 

IX. CONCLUSIONS 
TRW is an effective algorithm for detecting single source 

scanners. However, it has several limitations that allow for 
varying degrees of attacker circumvention: applicability only to 
TCP, blindness to vertical scanning, permanent benign 
classifications, and susceptibility to camouflage attacks. These 
limitations allow a single scanning IP to aggressively and 
repeatedly scan a target network over all protocols and ports 
without any chance of being detected by TRW. Fortunately, 
these limitations can be overcome while retaining the 

fundamental TRW concepts and underlying mathematics 
through 3 mitigations: interfacing with a system state oracle, 
penalizing successive failed port connections, and removing 
the lower threshold. These limitations do not remove the ability 
to perform camouflage circumvention attacks, but we showed 
that they significantly increase the resource cost to the attacker. 
Finally, our mitigated TRW has the same computational 
complexity as the original TRW but with much higher 
constants. Memory usage is likewise increased due to the need 
to keep track of all source IPs. These issues may be addressed 
through periodically purging old or inactive source IPs from 
the dataset. We leave it to future work to empirically measure 
the computational cost and memory of the mitigated algorithm.  

ACKNOWLEDGMENT 
This research was sponsored by both the U.S. National 

Institute of Standards and Technology and the Army Research 
Labs, and was partially accomplished under Army Contract 
Number W911QX-07-F-0023. The views and conclusions 
contained in this document are those of the authors, and should 
not be interpreted as representing the official policies, either 
expressed or implied, of the Army Research Laboratory or the 
U.S. Government. The U.S. Government is authorized to 
reproduce and distribute reprints for Government purposes, 
notwithstanding any copyright notation hereon. 

REFERENCES 

[1]  S. Panjwani, S. Tan and K. Jarrin, "An experimental 

evaluation to determine if port scans are precursors to an 

attack," in International Conference on Dependable 

Systems and Networks, Washington, D.C., 2005.  

[2]  M. Bhuyan, D. K. Bhattacharyya and J. K. Kalita, 

"Surveying Port Scans and Their Detection 

Methodologies," The Computer Journal, vol. 54, no. 10, 

pp. 1565-1581, 2011.  

[3]  J. Jung and V. Paxson et al., "Fast portscan detection 

using sequential hypothesis testing," in IEEE Symposium 

on Security and Privacy, Oakland, CA, 2004.  

[4]  V. Falletta et al., "Detecting scanners: emperical 

assessment of a 3G network," International Journal of 

Network Security, vol. 9, no. 2, pp. 143-155, 2009.  

[5]  X. Chen, "New Sequential Methods for Detecting 

Portscanners," 2012. 

[6]  X. Wang et al., "Research for scan detection algorithm of 

high-speed links based on honeypot," in Proceedings of 

IC-NIDC2010, Beijing, 2010.  

[7]  A. Sridharan et al., "Connectionless port scan detection 

on the backbone," in Performance, Computing, and 

Communications Conference, 2006.  

[8]  L. Aniello et al., "Inter-domain stealthy port scan 

detection through complex event processing," in 13th 

European Workshop on Dependable Computing, 2011.  

[9]  A. Wald, Sequential Analysis, New York: J. Wiley & 

Sons, 1947.  

[10]  T. L. Lai, "Sequential Analysis: Some Classical Problems 

and New Challenges," Statistica Sinica, vol. 11, 2001.  



[11]  "Supertool," MXToolbox, [Online]. Available: 

mxtoolbox.com/SuperTool.aspx  

 

APPENDIX A. EQUATION FOR THE EXPECTED NUMBER OF IP 

ADDRESSES IDENTIFIED GIVEN A SCANNING RESERVOIR OF 

A PARTICULAR SIZE 

We now build on the equations in [3] to derive an 
approximate solution for the expected value of the number of 

active IP addresses identified by the     scanning IP, showing 
the exponential growth in the mean value of   with respect to 
number of scanning IPs. 

We consider the asymptotic limit, where the pool of 
potential IP addresses is effectively infinite and populated at 
some constant rate such that the probability that any randomly 
sampled IP address is active is independently and identically  . 
While this clearly does not hold in practice, it is worth 
remarking that (as indirectly alluded to in [3]) by considering 
  [    |  ]     to be constant, the TRW method makes an 
almost identical tacit assumption. We further assume that at 
least one active service can be obtained from any active IP 
address.  Note that in the following, we concern ourselves with 
the case   ; expectations and probabilities are assumed to be 
taken with respect to that. 

As observed in [3], taking the logarithm of the total data 
likelihood  ( ̅)  results in a random walk with absorbing 
boundaries at       and      , and increments  

   {
   [     ]

   [(    ) (    )]
 
            

              
 

We place absorbing regions at           and         . 
If    services are known in total prior to the beginning of the 

    scan, then we set          [     ] ; starting the 
random walk from a lower location as the scanning IP contacts 
known services prior to beginning its scanning step in order to 
lower its TRW score. 

Conditional on the number of steps that the algorithm 
required to terminate we can estimate the number of active IP 
addresses identified on any given scan.  We wish to do so 
conditional on the event that the scan is eventually detected; if 
it is not detected, and the IP classified as benign, then it will be 
able to complete the scan of the network without fear of further 
detection. Retaining the notation in [3], but indexing from 0, 

we define       ∑   
 
   .  If we neglect the lower stopping 

condition, we then can express the probability that a walk has 

terminated by the     step as the probability that the value of 
that walk exceeds the upper bound.  We can then write a minor 
modification of equation 18 in [3] to include the starting value 
  as: 

 [
   ∑       [  ]

 
   

√    (  )
 
         [  ]

√    (  )
] 

                                                                            (    |  ), 
where    (  )    and    [  ]   are identical to the 
values given in [3] conditional on    

( √  (    )   (
    

    

  

  
 )  and (    )   

    

    
     

  

   
, 

respectively).  If        then the sequence ∑   
 
    will form 

a submartingale: our stopped process is bounded above by 
      and our increments have finite expectation and variance, 
and so by the martingale convergence theorem it will converge 

in the limit to some random variable, even if we neglect the 
lower absorbing state.  We may use this in combination with 
bounded first and second moments to thus justify a similar 
appeal to the central limit theorem as in [3], specifically that 
the normalized sum will ultimately converge in distribution to 
a standard normal random variable, and write an approximation 
for  (    ) as 

 (    |  )     (
         [  ]    

( )

√    (  )
), 

where, since     ,  [  ]  may itself be approximated from 
the approximate PDF by: 

 [  ]  ∑ (
         [  ]     

( )

√    (  )
)

 

   

 

As in [3] the approximate CDF will generally 
underestimate the probability of a scan of length  , and so our 
expected value will typically be an overestimation of the true 
value.  These results thus represent worst-case scenarios for the 
defender. 

From the work of the previous section, note that in general 
– defining   as the number of failed probes and   as the 
number of successful ones – we have          , with a 
scan terminating when                  for some 
constant  .  We may substitute and take expectations to find a 
simple method of moments estimator   ̂ for the number of new 
services discovered: 

  ̂  
 [  ]  (           )

   
 

If we discover   ̂ new services on the     scan, under the 
assumption that the scanner is eventually detected, then for 
iteration     we have: 

  
(   )     [

(    )

(    )
](∑ ̂  

 

   

) 

A Taylor series expansion for  ( ) shows that   has an 
exponential dependence on   for small values of  , and so 
under the repeated substitutions indicated by the previous two 
equations, we find that the number of scanned IPs and the 
number of active IP addresses identified by a scanner is 
exponential in the number of iterated scans performed. 

Restricting our attention to probability of detection on a 
single iteration, exact expressions for the change in this 
probability of detection given an attacker’s a priori knowledge 
of the network and use of a camouflage attack are tractable in 
the symmetric case, and again may be approximated in the 
asymmetric case.If we again assume that (as in [3]),    [   
  ]      [(    ) (    )]    (since they have set 
       ), we may obtain exact results. Our random walk 
has symmetric step sizes with asymmetric probabilities, and 
unique absorbing states above and below.  Adjust       and 
      such that they are integer multiples of  ; as this is a 
random walk with symmetric step sizes, there are unique 
values of       that are attainable by the walk given the 
stopping conditions and this adjustment does not change the 
result of the analysis.   

Note that the value of    is strictly bounded, and that the 
increments of our random walk are finite.  We thus are in a 
position to use basic martingale arguments to show that the 
probability of a classification of “scanning” satisfies: 



     
        (     )  

 (     )    (     )  
           ( ) 

where   
   

 
. 

To show this, we first observe that the process         is 
a martingale, since: 

 [        |     ]    (    )   (   ) (    )          

Since the time      {                       } is 
trivially a valid stopping time, we obtain by optional stopping 
that: 

 [  ]   [  ]        
And so, denoting      (        |  ) , we can find 

that for the stopped process: 

          
(     )    (     ) 

(     )    

We solve for    to obtain ( ). This method allows exact 

calculation of the approximate values given in [3].  Applying 
this result to the parameterization of [3], taking     , we can 

then show that     
            

              
       , the true 

probability of detection under   , is indeed slightly in excess 
of   (the minimum chance of detection).  However, if the 
attacker is somehow aware of 2 active hosts on the internal 

network, we may find     
             

              
       : lower 

than the desired  . 
 If we relax the assumption that our step size is uniform, the 

problem becomes significantly more complex, and typically 
does not have closed-form solution. We may find approximate 
results by application of the generalized Wald identity.  For a 
given parameterization of the scanning problem, find   to 
satisfy 

 [    ]    
And note that given such a value for  , the sequence below 

forms a martingale with constant expectation    .   

 [    ]       
If as in [3] we assume that the differences |        | and 

|        |  are negligible across all trajectories, we obtain 
by optional stopping that: 

        
        (     ) 

        

Yielding a modification of the standard random walk result: 

    
      

 

  
 
   

              (  ) 

Note that in the case with symmetric increments our 

differences |        | and |        |  are exactly 0 for 

appropriated adapted   , and we may find immediately that 

     (
   

 
) thus recovering the result ( ).        

APPENDIX B. ESTIMATOR FOR THE NUMBER OF 

COOPERATING IP ADDRESSES 

In Appendix A we obtained expressions approximating the 
probability of detecting a scanner given that the scanner knows 
some initial number of active hosts. We may use these 
expressions to estimate the number of cooperative IP addresses 
required to identify sufficient active hosts that any further 
scanning IP may obtain a permanent “benign” classification.   

First, note that we may find the probability that at least 1 
active service is discovered on a given scan simply by 

exclusion. Recall that if we begin with initial value   , then we 
require (         )    [     ]  failed connections in order 
to obtain a classification of “scanner”. Conditional on the 
assumption that the scanning IP is ultimately detected, if we 
have independent probabilities of      on each probe to 
generate a failed connection, then we can easily find that the 
probability of generating 0 successful connections is (  
  )

⌈(         )    [     ]⌉ . The complement thus provides the 
probability of adding at least 1 IP to the pool of known active 
internal IP addresses. If we make the assumption that    is very 
small, then we may make the simplifying approximation that at 
most 1 new IP address will be added per scan.  Let us denote 

    (    )
⌈(        (   [(    ) (    )]))    [     ]⌉  . 

Then note that we may construct a Markov chain   denoting 
the number of discovered active internal IP addresses after   
scanning IPs with the following transition rule: 

 (      |    )      

 (         |    )        

By placing an absorbing state at    ⌈ (     ) 
   [(    ) (    )]⌉  we may numerically evaluate an 
upper bound on the CDF for the number of required scanning 
IP addresses, from which an expected value may readily be 
obtained.  Using the parameterization of [3], we may find that 
   (   )   , and our absorbing state is at      .  Our 
Markov chain transition matrix is thus 

  

[
 
 
 
 
               

               
               
               
     ]

 
 
 
 

 

We may find  (   ) by examining [ ][   ]
 . An expected 

value for this quantity may be calculated via the usual identity 

 [ ]  ∑ (   (   )) . Applying this method to the 

parameterization in [3], we obtain that  [ ]        .  
Assuming           as in the independent approximation 
for the LNL data, we obtain  [ ]        .  For           
as in the ICI data, we obtain  [ ]       . It is instructive to 
compare these results to those of the simulation, highlighting 
the impact of the dependence between successive scans. 

Note that this result represents a weak upper bound to an 
attacker, since the simplifying assumption is that at most 1 
active IP address is identified per scan. For very sparse 
networks where    is large and thus (    )

  decreases very 
rapidly in  , this assumption is a reasonable one and the 
approximation is useful. For more densely populated networks, 
we obtain poorer approximations and we may severely 
overestimate the number of IP addresses an attacker requires as 
they recover multiple active hosts with each scan. In such 
cases, the simple geometric estimator   (     ) may prove 

more accurate. 


