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In-Plane Rotation and Scale Invariant Clustering
Using Dictionaries
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Abstract— In this paper, we present an approach that simulta-
neously clusters images and learns dictionaries from the clusters.
The method learns dictionaries and clusters images in the radon
transform domain. The main feature of the proposed approach
is that it provides both in-plane rotation and scale invariant
clustering, which is useful in numerous applications, including
content-based image retrieval (CBIR). We demonstrate the effec-
tiveness of our rotation and scale invariant clustering method on
a series of CBIR experiments. Experiments are performed on
the Smithsonian isolated leaf, Kimia shape, and Brodatz texture
datasets. Our method provides both good retrieval performance
and greater robustness compared to standard Gabor-based and
three state-of-the-art shape-based methods that have similar
objectives.

Index Terms— Clustering, content-based image retrieval
(CBIR), dictionary learning, radon transform, rotation
invariance, scale invariance.

I. INTRODUCTION

IN RECENT years, sparse representation has emerged as
a powerful tool for efficiently processing data in non-

traditional ways. This is mainly due to the fact that signals
and images of interest tend to enjoy the property of being
sparse or compressible in an appropriate dictionary. In other
words, they can be well approximated by a linear combination
of a few elements (also known as atoms) of a dictionary.
The dictionaries can be composed of wavelet or Fourier basis
functions or can be learned from data. It has been observed
that dictionaries learned directly from data provide better
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representation and hence improve the performance on many
practical applications such as restoration and classification
[1]–[4].

Dictionaries can be learned for both reconstruction and
discrimination applications. In the late nineties, Etemad and
Chellappa proposed a linear discriminant analysis (LDA)
based basis selection and feature extraction algorithm for
classification using wavelet packets [5], and Phillips pro-
posed a dictionary method for face recognition [6]. Recently,
algorithms for simultaneous sparse signal representation and
discrimination have been proposed [2]–[14]. Additional tech-
niques may be found within these references.

Dictionary learning techniques for unsupervised clustering
have gained traction in recent years. In [15], a method for
simultaneously learning a set of dictionaries that optimally
represent each cluster was proposed. To improve the accuracy
of sparse coding, this approach was later extended by adding
a block incoherence term in their optimization problem [16].
Additional sparsity motivated subspace clustering methods
include [17]–[19].

Invariance to rotation and scale are desirable in many
practical applications. One important application is image
classification and retrieval where one wants to classify or
retrieve images having the same content but at different
orientation and scale. For instance, in content based image
retrieval (CBIR), images are retrieved from a database using
features that best describe the orientation and scale of objects
in the query image. Gabor filters have been used to extract
features for retrieval and classification [20]. However, the
chosen directions of Gabor filters may not correspond to
the orientation of the content in the query image. Hence, a
feature extraction method that is independent of orientation
and scale in the image is desirable [21]. Wavelet-based meth-
ods have been proposed to achieve rotation invariance for
image classification and retrieval [22], [23]. There have also
been methods proposed to learn invariant dictionaries in the
image domain [10], [24], [25]. Recently, a shift, scale and
rotation invariant dictionary learning method for multivariate
signals was proposed in [26]. Hierarchical dictionary learning
methods for invariant classification have also been proposed in
[13] and [27]. These methods learn a dictionary in a log-polar
domain to be invariant to scale and rotation. A cellular neural
network-based method for rotation invariant texture has also
been proposed in [28].

Numerous descriptors have been proposed in the literature
that are invariant to image transformations [29], [30]–[33].
A shape matching approach based on correspondences
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between points on two shapes was proposed in [30]. This shape
context descriptor essentially estimates the shape similarity
and solves the correspondence problem. A shock graph-based
feature extraction method that uses object silhouettes was
proposed in [31]. The length of the shortest path within the
shape boundary (called inner-distance) was used to build shape
descriptors in [32]. These descriptors were shown to be robust
to articulation in complicated shapes. In [33], a feature extrac-
tion method based on features that characterize the geometric
relationships between each pair of images was proposed. This
method was shown to be invariant to articulations and rigid
transforms. Some of these methods are only shape-based and
require the extraction of shape contour. These methods do not
perform well on non-shape images such as textures.

In this paper, we present an in-plane rotation and scale
invariant clustering approach (box 1∼3 in Fig. 1), which
extends the dictionary learning and sparse representation
framework (box 4, 5 in Fig. 1) for clustering and retrieval
of images. Fig. 1 illustrates the overview of the proposed
approach. Given a database of images {x j }Jj=1 and the number
of clusters K , our method uses the Radon transform to
find scale and rotation-invariant features. It then uses sparse
representation methods to simultaneously cluster the data and
learn dictionaries for each cluster. One of the main features of
our method is that it is effective for shape-based and certain
texture-based images. We demonstrate the effectiveness of our
approach in image retrieval experiments, where we report sig-
nificant improvements in performance. A preliminary version
of this work appeared in [34]. The following extensions have
been made to [34]:

1. We propose a normalization method validated by a
mathematical proof, to achieve scale invariance in the
Radon domain.

2. We propose a method to obtain initial classes and class
dictionaries in a deterministic way. We refer to our
in-plane rotation and scale invariant clustering using
dictionaries method as RSICD.

3. In the experiment section, we introduce both rotation and
scale variations to shape-based databases (Smithsonian
isolated leaf and Kimia) and compare RSICD with four
other state-of-the-art methods (LBP [35], BAC [33],
IDSC+DP [32] and SC [30]). We further demonstrate
the effectiveness of RSICD on a texture-based database
(Brodatz) by comparing it with three other texture-based
methods (Modified Gabor [21], DC [15] and LBP [35]).

The organization of the paper is as follows. A method based
on scale and rotation invariant features that are extracted using
the Radon transform is detailed in Section II. Our simultaneous
clustering and dictionary learning method is described in
Section III. Experimental results are presented in Section IV.
In Section V, we conclude the paper with a brief summary
and future research directions.

II. RADON-BASED ROTATION AND SCALE INVARIANCE

In this section, we show how the Radon transform is used
to achieve in-plane rotation and scale invariance (box 1 ∼ 3
in Fig. 1).

Fig. 1. Overview of the proposed simultaneous clustering and dictionary
learning method.

A. Estimating the Rotation Present in an Image

The Radon transform of a two variable function x is defined
as

Rθ x(t) =
∫ ∞
−∞

x(t cos θ − s sin θ, t sin θ + s cos θ)ds (1)

where (t, θ) ∈ (−∞,∞)× [0, π). Fig. 2(a) illustrates how the
Radon transform is calculated. We use (1) to compute the value
at any given point (θ, t) in the Radon domain by integrating
along the line: (u, v) = (t cos θ − s sin θ, t sin θ + s cos θ),
∀s ∈ R. If x̃ is a rotated copy of x by an angle θ̂ , then a
simple proof shows that their Radon transforms are related as

Rθ x̃(t) = Rθ+θ̂ x(t) ∀t, θ. (2)

For directional texture images, the principal orientation is
roughly defined as the direction where there are more straight
lines. The Radon transform can be used to detect linear trends
in images. For general images, the principal orientation may
be taken as the direction along which the Radon transform
has the maximum variability. Let σθ � Vart [Rθ x(t)] denote
the variance with respect to t of the Radon transform at θ .
In [36], σθ was found to be useful in estimating the principal
orientation in an image. An important observation was that the
Radon transform along θ̂ has larger variations with respect to t
and hence the variance σθ̂ is a local maximum along the θ axis.
Based on the observation, one can estimate θ̂ of a given image
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(a)

(b)

Fig. 2. (a) Illustration of how the Radon transform is calculated. Given any
point (u, v) in the image domain, we can express u and v as: u = −s sin θ,
v = s cos θ for some s and θ , where s is the distance between (u, v) and the
origin; and θ is the angle between the positive vertical axis direction and the
line passing through (u, v) and the origin. As indicated, a t-translated point
from (u, v) is located at (t cos θ − s sin θ, t sin θ + s cos θ). t is the distance
between the line that passes through (u, v) and the origin, and the parallel
line that passes through (t cos θ − s sin θ, t sin θ + s cos θ). (b) In practice,
the Radon transform of an image is represented as a matrix called sinogram,
where the column indices correspond to discrete values of θ and row indices
correspond to discrete values of t . θ and t are the two continuous variables
of Rθ x(t) given in (1).

x̃ from the following formula1

θ̂ = arg min
θ

(
d2σθ

dθ2

)
. (3)

The global minimum of the second derivative of σθ is com-
puted in order to locate the angle at which the change rate
of the first derivative of σθ is the maximum, which represents
the maximum number of line trends (i.e., along the principal
orientation where the local maximum is the narrowest in shape,
as indicated by Figs. 1(b) and (d) in [36]). Once the orientation
is estimated, this estimate and (2) can be used to align the
rotation in the Radon domain. Hence, we achieve rotation
invariance.

In practice, the Radon transform of an image is represented
as a matrix, called a sinogram. Fig. 2(b) gives the illustration
of a sinogram. In a sinogram, column indices correspond to
discrete values of θ , while row indices correspond to discrete
values of t , where θ and t are the two continuous variables of

1In this paper, we apply this approach not only to directional texture images,
but also to other isotropic textures (any direction is the principal orientation)
and shape-based images.
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Fig. 3. For the rotated images present on the first row, the plots on the second

row show their d2σθ
dθ2 (along the vertical axis) versus θ (along the horizontal

axis). The second row plots indicate that the difference between the points of
global minimum of both curves preserves the rotation present in the second
image.

Rθ x(t) given in (1). σθ is the variance computed from values
of the column that corresponds to angle θ .

Fig. 3 illustrates how the sinogram is used to estimate the
angle present in an image.2 The second image shown on the
first row of Fig. 3 is a rotated copy of the first image by
30◦. The plots on the second row are the second derivatives
of variances σθ (vertical axis) versus θ (horizontal axis) of
their sinograms, where σθ is the variance over all entries in
the column that corresponds to θ . It may be noted that the
difference between the points of global minima of both curves
is 30◦, coinciding with the rotation present in the second
image. Consequently, the estimate presented in (3) is useful
for estimating the presence of rotation in the images.

B. Scale Invariance

Let x̄ be a scaled copy of x with the scaling factor ξ such
that x̄(u, v) = x(ξu, ξv). We can relate their Radon transforms
as follows:

Rθ x̄(t) =
∫ ∞
−∞

x̄(t cos θ − s sin θ, t sin θ + s cos θ)ds

=
∫ ∞
−∞

x(ξ t cos θ − ξs sin θ, ξ t sin θ + ξs cos θ)ds

= 1

ξ
Rθ x(ξ t).

From the above equations, size scaling in the image domain
results in scaling and normalization of the Radon trans-
form. From this observation, scale invariance can be achieved
through the following normalization in the Radon domain:

1

Mx̄
Rθ x̄ (Tx̄ t) (4)

2http://www.flowersofpictures.com/wp-content/uploads/2011/07/Lily-
Flowers.jpg.
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where

Mx̄ � max
t,θ
|Rθ x̄(t)|

and

Tx̄ = inf{T |Rθ x̄(t) = 0 ∀|t| > T, θ ∈ [0, 2π)}.
Based on this formulation, one can derive the following

result:
1) Proposition 1: Let Y be a set of functions related by

different scales. For any pair x̄, x ∈ Y related by x̄(u, v) =
x(ξu, ξv) where ξ > 0, the following holds

1

Mx̄
Rθ x̄ (Tx̄ t) = 1

Mx
Rθ x (Txt) .

Proof: For any pair x̄, x ∈ Y related by x̄(u, v) =
x(ξu, ξv) where ξ > 0, we have

Mx̄ = max
t,θ
|Rθ x̄(t)|

= max
t,θ

∣∣ 1
ξ Rθ x(ξ t)

∣∣
= 1

ξ max
t,θ
|Rθ x(ξ t)|

= 1
ξ max

τ,θ
|Rθ x(τ )|(let τ = ξ t)

= 1
ξ Mx (5)

and

Tx̄ = inf{T |Rθ x̄(t) = 0 ∀|t| > T, θ ∈ [0, 2π)}
= inf{T |1

ξ
Rθ x(ξ t) = 0 ∀|t| > T, θ ∈ [0, 2π)}

= inf{T |Rθ x(ξ t) = 0 ∀|t| > T, θ ∈ [0, 2π)}
= inf{T |Rθ x(ξ t) = 0 ∀|ξ t| > ξT, θ ∈ [0, 2π)}
= 1

ξ
inf{ξT |Rθ x(ξ t) = 0 ∀|ξ t| > ξT, θ ∈ [0, 2π)}

= 1

ξ
inf{T ′|Rθ x(τ ) = 0 ∀|τ | > T ′, θ ∈ [0, 2π)}

(let T ′ = ξT, τ = ξ t)

= 1

ξ
Tx . (6)

Therefore,

1

Mx̄
Rθ x̄ (Tx̄ t) = ξ

Mx
Rθ x̄

(
Tx

ξ
t

)

= ξ

Mx ξ
Rθ x

(
ξTx

ξ
t

)

= 1

Mx
Rθ x (Txt) . (7)

As the above result holds for any pair of x̄, x ∈ Y , we have
shown the invariance of 1

Mx̄
Rθ x̄ (Tx̄ t) over all x̄ ∈ Y.

Fig. 4 illustrates an example of scale alignment in the Radon
domain. Figs. 4(a) and (d) show the flower images with the
same orientation but in different scales. The corresponding
sinograms are shown in Figs. 4(b) and (e), respectively. The
corresponding normalized sinograms obtained according to (4)
are shown in Figs. 4(c) and (f), respectively. As can be seen
from the figure, after the adjustment, the resulting sinograms
are scale-aligned to each other.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Alignment of sinograms (a) and (d) show the flowers images with
different scales. (b) and (e) Show their corresponding sinograms. Sinograms
obtained after normalization are shown in (c) and (f). Note that after the
adjustment, the resulting sinograms are closely scale-aligned to each other.

III. SIMULTANEOUS CLUSTERING AND

DICTIONARY LEARNING

In this section, we present the proposed rotation and scale
invariant clustering and dictionary learning framework. Our
method learns dictionaries and clusters images in the Radon
domain. Let {x j }Jj=1 be the database of images represented as
vectors and K be the number of clusters. x j is a Z I×1 column
vector representing the j th image, where Z I is the image size
(i.e., product of width and height in pixels). Let C � {Ck}Kk=1
denote the collection of K clusters such that Ck is a cluster that
contains images belonging to the kth class. Given an image
x j and its estimated orientation θ̂ j that is calculated from the
discretized version of (3), we use a Z R × 1 column vector
Rθ̂ j

x j to denote the (column-vectorized) vector version of the
column-shifted, scale normalized sinogram, where Z R is the
sinogram size (i.e., product of width and height in pixels).
This sinogram is obtained by left shifting columns of the scale
normalized sinogram of x j by θ̂ j . Let Ck be a Z R×Lk matrix
containing Rθ̂ j

x j s as columns, where Lk is the population
size of Ck (i.e., number of images in Ck). Let Dk be the
class dictionary learned from Ck such that Dk is a Z R × dk

matrix where dk is the number of dictionary atoms. Define
D = [D1 . . . DK ] as the concatenation of class dictionaries.
Note that Ck is the matrix with columns as vector forms of
kth-class images’ sinograms. Table I gives a summary of the
notations.

Our objective is to simultaneously cluster the data into K
groups and learn the best dictionaries for each cluster by
solving the following optimization problem

min
C,D,α

K∑
k=1

∑
x∈Ck

min
θ

{
‖Rθx−Dδk(α)‖22 + μ1‖α‖1 + μ2

∣∣∣∣d2σ̃θ

dθ2

∣∣∣∣
}

(8)
where μ1, μ2 > 0, and ‖.‖1 denotes the �1 norm, α is
the representation vector and δk(α) is the masked version
of α such that its only nonzero entries are those of α that
correspond to the kth dictionary. Here, σ̃θ is the variance of the
column corresponding to θ of the scale-normalized sinogram
of x. In other words, σ̃θ is the variance of the first column of
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TABLE I

SUMMARY OF NOTATIONS

Variable Definition Dimensions Domain

x j
a column representing the j th

image Z I × 1 image

Ck
a cluster that contains x j s
belonging to the kth class

Z I × Lk image

C the collection all Cks
Z I ×

(
∑K

k=1 Lk)
image

R
θ̂ j

x j

column form of the
column-shifted, scale
normalized sinogram

Z R × 1 Radon

Ck
a matrix with R

θ̂ j
x j s as

columns
Z R × Lk Radon

Dk
the class dictionary learned

from Ck
Z R × dk Radon

D
the concatenation of class

dictionaries Dks
Z R ×

(
∑K

k=1 dk )
Radon

the sinogram that is column left-shifted (by θ ) version of the
scale normalized sinogram of x. According to (3), if θ is not
the principal orientation, then the last term in (8) can never be
the minimum. Therefore, this term introduces a penalty due
to rotation misalignment. It uses σ̃θ to estimate the presence
of rotation in images. Our approach for solving the above
optimization problem essentially consists of two steps: cluster
assignment and dictionary learning. Detailed descriptions of
these two steps are given below.

A. Cluster Assignment (Box 4 in Fig. 1)

Given dictionary D(i) = [D(i)
1 . . . D(i)

K ] at iteration i , we
obtain the sparse representation of Rθ̂ j

x j in D(i) by solving
the following optimization problem:

α j = arg min
ω
‖ω‖1 subject to Rθ̂ j

x j = D(i)ω. (9)

Several approaches have been suggested for solving (9) [37].
In our approach, we employ a highly efficient algorithm that
is suitable for large-scale applications known as the spectral
projected gradient (SPGL1) algorithm [38]. Once the sparse
coefficients are found, x j is set to belong to cluster k̂ if the
coefficients corresponding to the k̂th dictionary give the best
representation of the sinogram Rθ̂ j

x j [39]. In other words, if

k̂ = arg min
k
‖Rθ̂ j

x j − D(i)δk(α
j )‖22, j = 1, . . . , J (10)

then x j is set to belong to C
(i)

k̂
. The motivation for this

consideration is that if x j belongs to the kth cluster, then the
dictionary corresponding to cluster k will represent Rθ̂ j

x j well.

B. Dictionary Learning (Box 5 in Fig. 1)

The K-SVD algorithm is a common dictionary learning
algorithm [1]. Given clusters {C(i)

k }Kk=1, we use the K-SVD
algorithm to learn the dictionary D(i+1) = [D(i+1)

1 . . . D(i+1)
K ].

In this section, we first detail the K-SVD principle. Then, we
show how it is included in the dictionary learning step of our
RSICD method.

1) K-SVD Algorithm: Given a set of input examples (in a
column-vectorized form) {yk

l }nk
l=1 belonging to the kth class,

the K-SVD algorithm finds a dictionary B̂k that provides the
best representation for each example in this set by solving the
following optimization problem:

(B̂k, 
̂k) = arg min
Bk ,
k

‖Yk − Bk
k‖2F , s.t. ‖λk,l‖0 ≤ T0

∀l ∈ {1, ..., nk}∀k ∈ {1, ..., K } (11)

where λk,l represents the lth column of 
k , Yk is the matrix
whose columns are yk

l s and T0 is the sparsity parameter. Here,

the Frobenius norm is defined as ‖A‖F =
√∑

i j A2
i j and

the norm ‖λ‖0 counts the number of non-zero elements in λ.
The K-SVD algorithm alternates between sparse-coding and
dictionary update steps.

In the sparse-coding step, Bk is fixed and the representation
vectors λk,l s are found for each example yk

l by solving the
following equation:

min
λk,l
‖yk

l − Bkλk,l‖22 such that ‖λk,l‖0 ≤ T0

∀l ∈ {1, .., nk}∀k ∈ {1, ..., K }. (12)

As solving (12) is NP-hard, approximate solutions are
usually sought [37], [40]. Greedy pursuit algorithms such as
matching pursuit and orthogonal matching pursuit [41] are
often used to find the approximate solutions to the above
sparse coding problem [42]. In the dictionary update step, the
dictionary is updated atom-by-atom in an efficient way. The
K-SVD algorithm has been observed to converge in a few
iterations.

2) Learning D(i+1): Having obtained clusters {C(i)
k }Kk=1, we

update the dictionaries D(i+1)
k with the K-SVD algorithm. In

particular, we find the best representation of the members in
C(i)

k by solving the following optimization problem:
(

D(i+1)
k , �

(i+1)
k

)
= arg min

Dk,�k
‖C(i)

k − Dk�k‖2F , s.t.‖γ l‖0 ≤ T0

∀l ∈ {1, ..., Lk} ∀k ∈ {1, ..., K }
(13)

where �
(i+1)
k is a dk × Lk coefficient matrix that contains γ ls

as its columns. Here C(i)
k , Lk , Dk and �k in (13) correspond to

Yk , nk , Bk and 
k in (11), respectively. Note that each Rθ̂ j
x j

corresponds to a yk
l for some k and l in (11).

C. RSICD Algorithm

Our RSICD algorithm is an iterative approach, where there
are global iterations and local iterations. Each global iteration
consists of cluster assignment and dictionary learning. As the
K-SVD algorithm is used for the dictionary learning step, this
step further consists of local K-SVD iterations. In particular,
given C(i)

k in the beginning of the dictionary learning step
in the i th global iteration, Dk in (13) is set by D(i)

k . After a
few local K-SVD iterations, D(i+1) is obtained as the updated
dictionary for the next global iteration. We iteratively repeat
the cluster assignment and dictionary learning steps till there
is no significant change in {C(i+1)

k }Kk=1.
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Note that (9) is used in each global iteration under an
error constraint to find the sparsest coefficients using the
concatenation of all class dictionaries, while (12) is used in
each local iteration under a sparsity constraint to find the
coefficients that give the minimum representation error for
each class dictionary.

D. Obtaining Initial Dictionaries

As one can see from the previous discussion, the perfor-
mance of our algorithm depends on the choice of initial dic-
tionaries. In this section, we describe a method for obtaining
the initial dictionary D(0) = [D(0)

1 . . . D(0)
K ].

Let L � min
k∈{1,...K } Lk be the minimum cluster population

size. To determine initial clusters {C(0)
1 , . . . , C

(0)
K }, we propose

an approach that uses the Hamming distance between Ri and
R j for any pair (i, j) ∈ {1, 2, ..., J }, where R j is the set that
consists of Rθ̂ j

x j and its L − 1 nearest neighbors. Algorithm
1 details our approach.

Let S be the set that consists of Rθ̂ j
x j , j = 1, 2, . . . , J

(i.e., S = {Rθ̂ j
x j }Jj=1). In step 1, for each Rθ̂ j

x j , we find
its L − 1 nearest neighbors and obtain the set R j . Rθ̂ j

x j

in general should be closer to other within-class members
than to other different-class members. Therefore, we expect
R j s that correspond to within-class members to be similar to
each other, while different to those that correspond to other
different-class members. In step 2, we calculate the Hamming
distance between Ri and R j , defined by

d(Ri , R j ) � (L − # of common elements in Ri and R j ).

Like the Euclidean distance, the Hamming distance d(Ri , R j )
is an indication of how far the feature pair Rθ̂i

xi and Rθ̂ j
x j

are separated from each other. However, d(Ri , R j ) for Rθ̂i
xi

and Rθ̂ j
x j that belong to two different classes, is always

upper bounded by L. Hence, the Hamming distance d(Ri , R j )
preserves the class separability between any different-class
pair Rθ̂i

xi and Rθ̂ j
x j . Using this property, we are able to

choose K initial representatives such that they belong to K
different classes with high probability (as shown in steps 3
to 6). With these K initial representatives, the corresponding
initial K partitions are determined by the nearest neighbor
criterion (step 7). We assume each of the K initial partitions
contains one exemplar. For all subsequent iterations (steps 8
and 9), K distinct representatives {sk}Kk=1 are always chosen
from these predetermined K initial partitions, and are used to
calculate the associated score M(S({sk}Kk=1)) defined by

M
(

S({sk}Kk=1)
)
= div

(
S({sk}Kk=1)

)
err

(
S({sk}Kk=1)

) .

The terms err
(
S({sk}Kk=1)

)
and div(S({sk}Kk=1)) are square

error and diversity, respectively [43]. They are defined as
follows:

err
(

S
(
{sk}Kk=1

))
� tr

⎡
⎣ K∑

k=1

∑
s∈Sk

(s− sk)(s− sk)
T

⎤
⎦

Algorithm 1 Design of Initial Dictionary, D(0)

Input: Scale and rotation aligned sinograms,
Rθ̂ j

x j , j = 1, 2, ...J .

Initialization of sets: S← {Rθ̂ j
x j }Jj=1, I ← {1, 2, ..., J }

T ← φ. Procedure:
1. For each Rθ̂ j

x j in S, find its L − 1 nearest neighbors.
Rθ̂ j

x j and its L − 1 nearest neighbors form a set denoted
by R j .
2. For all pairs (i, j), calculate the Hamming distance
between Ri and R j , d(Ri , R j ).
3. Find (i∗, j∗) = argmax

i, j∈I,i �= j
d(Ri , R j ).

4. Update of sets: t1 ← i∗, t2 ← j∗, T ← T
⋃{t1, t2},

I ← I \ {i∗, j∗}. If |T | = K , goto 7.
5. Find k∗ = argmax

k∈I

∏|T |
l=1 d(Rtl , Rk).

6. Update of sets: t|T |+1 ← k∗, T ← T
⋃{t|T |+1},

I ← I \ {k∗}, and goto step 3.
7. Given {Rθ̂tk

xtk }Kk=1, use the nearest neighbor criterion
to partition S into K partitions, denoted by
S({Rθ̂tk

xtk }Kk=1) =
⋃K

k=1 Sk .
8. Randomly select sk from Sk , k = 1, 2, ..., K , as
representatives. Find the corresponding nearest neighbor
partitions S({sk}Kk=1), and calculate the corresponding
score M(S({sk}Kk=1)).
9. Repeat step 8, and keep updating for {s∗k}Kk=1 that
gives the highest score M , until the number of repeating
iterations for step 9 reaches W1. In other words,
{s∗1, ..., s∗K } =

argmax
sk∈Sk,k=1,2,...,K , in W1 iterations

M(S({sk}Kk=1)).

10. Obtain K initial clusters {C(0)
1 , . . . , C

(0)
K } from

S({s∗k}Kk=1).
Output: Initial dictionaries, D(0) = [D(0)

1 . . . D(0)
K ], where

D(0)
k = C(0)

k , k = 1, . . . , K .

and

div
(

S
(
{sk}Kk=1

))
� tr

[
K∑

k=1

(sk − s̄)(sk − s̄)T

]

where s̄ = 1
K

∑K
k=1 sk and tr(A) denotes the trace of matrix A.

The diversity represents the scatter of representatives to their
mean, while the square error represents the total summation
of partition-specific scatters, over all K partitions. The max-
imization of M(S({sk}Kk=1)) is achieved through maximizing
the diversity while minimizing the square error. Since these
K exemplars by assumption respectively fall within the K
initial partitions, they can be found after a sufficient number
of iterations. The representatives that give the maximum score
M(S({sk}Kk=1)) in W1 iterations, are recorded as exemplars.
The corresponding final partitions are obtained by finding
nearest neighbors of the exemplars.
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Algorithm 2 RSICD-Based CBIR

Input: Database {x j }Jj=1 and query image xq .
1. Use (3) and (4) to obtain scale and rotation aligned
sinograms of {x j }Jj=1 and xq .
2. Use Algorithm 1 to design initial dictionaries
{D(0)

k }Kk=1.

3. Given D(i) = [D(i)
1 · · ·D(i)

K ], assign each x j to C
(i)

k̂
,

where i denotes the current iteration number, and k̂ is
obtained from (9) and (10).
4. Given {C(i)

k }Kk=1, use the K-SVD algorithm to learn
D(i+1)

k from C
(i)
k , k = 1, 2, . . . , K . Then increment i by 1

(i.e., i ← (i+1)).
5. Repeat 3 and 4 until the number of repeating
iterations reaches W2.
6. Determine the closest cluster to xq from (17), from
which the relevances are found by the nearest neighbor
criterion.
Output: Clusters {C(W2)

k }Kk=1, dictionaries {D(W2)
k }Kk=1,

and the relevance of xq in its closest cluster.

E. Application to CBIR

In this subsection, we show how the proposed simultaneous
clustering and dictionary learning method is used in CBIR.
Once the dictionaries have been learned for each class in the
Radon domain, given a query image xq , we obtain its scale and
rotation normalized sinogram Rθ̂q

xq . Then, we project Rθ̂q
xq

onto the span of the atoms in each Dk using the orthogonal
projector

ProjDk
= Dk(DT

k Dk)
−1DT

k . (14)

The approximation and residual vectors can then be calculated
as

Rk
θ̂q

xq = ProjDk

(
Rθ̂q

xq) (15)

and

rk(Rθ̂q
xq) = Rθ̂q

xq − Rk
θ̂q

xq = (I − ProjDk
)Rθ̂q

xq (16)

respectively, where I is the identity matrix. Since the dictionary
learning step in our algorithm finds the dictionary Dk that leads
to the best representation for each member of Ck in the Radon
domain, we assume ‖rk(Rθ̂q

xq)‖2 is small if xq belongs to the
kth cluster and larger for the other clusters. Based on this, if

d = arg min
1≤k≤K

‖rk(Rθ̂q
xq)‖2, (17)

we search for the relevance of xq in Cd by means of a
nearest neighbor search (box 6, 7 in Fig. 1). We refer to
our in-plane rotation and scale invariant clustering using
dictionaries method as RSICD. Algorithm 2 summarizes the
overall RSICD-based CBIR procedure.

The RSICD-based CBIR algorithm consists of two main
steps: cluster assignment and dictionary learning. The overall
algorithm is not convex on both of these steps. It is likely
that the approach may get stuck in a local minima. However,
experiments on various training sets have shown that it usually
takes about 20 iterations for the algorithm to converge.

(a) (b)

Fig. 5. (a) Sample images from the generated dataset containing the rotated
images from the Smithsonian dataset. (b) Sample images from the Smithsonian
dataset containing both scale and rotation variations.

IV. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed
simultaneous clustering and dictionary approach. We report the
results of empirical evaluation of our method and compare it
with six state-of-the-art matching algorithms on three standard
datasets: the Smithsonian isolated leaf dataset [32], Kimia’s
object dataset [31] and Brodatz texture dataset [44]. We
compare the performance of our method with a modified
Gabor-based approach [21], a local binary pattern (LBP)-
based approach [35], and three recently proposed feature-
based approaches [30], [32], [33]. We refer to the index-
ing and retrieval method presented in [33] as the BAC3

method. Note that methods presented in [30], [32], [33] are
(in-plane) rotation and scale invariant as well. In addition,
we compare our method with a recently proposed unsu-
pervised discriminative dictionary learning method [15]. We
refer to the method presented in [15] as dictionary-based
clustering (DC).

For all the experiments implemented using LBP [35], we
first resized each image to 40 × 40 pixels. Each resized
image consists of 25 square patches, each with 64 pixels.
On each patch we implemented uniform rotation-invariant
LBP with P = 8 and R = 1, where P is the member
number in a circularly symmetric neighbor set, and R is the
corresponding radius [35]. Results of all 25 patches are then
combined to form a feature vector of the image. For the
experiments implemented using the dictionary-based methods
(RSICD and DC), we set the sparsity parameter T0 to be 20.

We evaluate the performance of various methods using
precision-recall curves, average retrieval performance
[21], [29] and recognition rates. Recall and precision are
defined as

Precision = Number of relevant images retrieved

Total number of images retrieved
, (18)

Recall = Number of relevant images retrieved

Total number of relevant images
. (19)

3As no representative name was given for the method presented in [33], we
chose the first letter of each author’s last name (i.e., “B”, “A”, and “C” in,
respectively) and connected these letters as ’BAC’ to stand for their respective
methods.
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Fig. 6. Results on rotated 18-class Smithsonian datasets. (a) Precision-recall curves. (b) Average retrieval performance corresponding to the dataset containing
the rotated images. (c) Precision-recall curves and (d) average retrieval performance corresponding to the dataset containing the rotated and scaled images.
For both of these datasets, the proposed RSICD achieves the best precision rates for almost all recall rates and outperforms other methods.
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Fig. 7. First-rank recognition rates on 18-class Smithsonian datasets with missing pixels. (a) Experiment with the dataset with rotated images. (b) Experiment
with the dataset containing both rotated and scaled images. These results show the proposed RSICD is robust to effects of missing pixels.

Recall is the portion of total relevant images retrieved whereas
precision indicates the capability to retrieve only relevant
images. An ideal retrieval should give precision rate that

always equals 100% for any recall rate. Given a certain
number of retrieved images, the average retrieval performance
is defined as the average number of relevant retrieved images
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TABLE II

RANK RECOGNITION RATES (%) CORRESPONDING THE DATASET CONTAINING 18-CLASSES WITH ROTATED IMAGES FROM THE SMITHSONIAN

ISOLATED LEAF DATABASE

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 60.65 27.78 31.02 31.48 30.09 25.93 25.00 21.30 22.22 15.28 19.44
LBP [35] 77.78 49.54 35.19 34.26 25.46 22.69 23.15 20.83 18.06 15.74 14.35
DC [15] 74.54 55.56 48.61 40.74 32.41 27.78 25.00 20.83 23.61 17.59 17.13
SC [30] 91.20 80.09 74.54 68.98 58.33 51.39 40.28 39.81 36.57 26.39 17.13

IDSC+DP [32] 92.13 78.70 73.15 68.98 66.67 55.09 48.15 43.06 35.19 29.63 24.07
BAC [33] 91.20 92.13 85.19 75.93 66.20 54.17 49.07 40.28 33.33 33.33 25.46

RSICD 100 100 100 99.54 100 97.69 99.54 99.07 100 99.54 93.52

TABLE III

RANK RECOGNITION RATES (%) CORRESPONDING THE DATASET CONTAINING 18-CLASSES WITH ROTATED AND SCALED IMAGES FROM THE

SMITHSONIAN ISOLATED LEAF DATABASE

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 48.61 32.87 31.48 24.54 20.83 17.59 18.06 12.96 9.72 12.96 10.65
LBP [35] 41.67 20.83 13.89 20.83 16.20 15.28 8.80 12.50 8.80 10.65 5.09
DC [15] 55.09 35.65 26.39 23.61 18.98 19.44 16.20 15.28 16.67 14.81 11.11
SC [30] 96.30 93.52 87.96 83.80 78.70 67.13 58.33 54.63 53.70 45.83 40.74

IDSC+DP [32] 99.07 99.07 93.52 86.57 79.17 73.61 69.91 62.96 63.43 56.02 49.07
BAC [33] 67.59 49.07 42.59 34.26 26.39 25.46 21.30 16.67 17.59 12.96 8.80

RSICD 100 100 100 99.07 99.54 100 99.07 99.54 99.07 98.15 95.37

over all query images of a particular class. On the other hand,
the rank-n recognition rates indicate how well the recognition
performance of an approach can maintain from the best-match
retrieval up to the n-th best-match retrieval. An ideal retrieval
should also maintain 100% recognition rate for any rank-n
retrieval.

A. Smithsonian Isolated Leaf Database

The original Smithsonian isolated leaf database consists of
93 different leaves [32]. From the original database, we created
two challenging datasets, one containing rotated images and
the other containing both rotated and scaled images. For the
first set of experiments using this dataset, one representative
image is selected from each of the last 18 leaves. We created
an 18-class Smithsonian dataset by generating 11 additional
in-plane rotated images with the following angles

18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦, 198◦.
(20)

This sub-dataset contains rotated images of different leaves.
We also created a dataset that contains both rotated and scaled
images. This dataset is created by using the same rotated
images as before. However, a random scaling that ranges from
0.25 to 1, is further applied to these rotated images. As a
result, both of these sub-datasets have 18 classes and each
class contains 12 different images. Fig. 5(a) and (b) show the
resulting datasets containing rotated as well as rotated and
scaled images, respectively. In both of these datasets, the final
images were resized to 100× 80 pixels.

1) Results on the Smithsonian Dataset With 18 Classes:
In the first experiment using this dataset, we selected the last
image (i.e., the 12-th image) of each class to form a query
set (with 18 query images), and all the other images to form

an unsupervised4 training set (with 216 − 18 = 198 training
images). The dictionary D is of size 288 × 90. Five atoms
per class dictionary are learned and concatenated to form the
dictionary D. Here, 288 is the dimension of the vectorized
sinogram.

The results of this experiment are shown in Fig. 6(a) and (c).
From the precision-recall curves we see that the proposed
RSICD achieves ideal precision rates for all recall rates and
outperforms other competitive methods. Fig. 6(b) and (d) show
the total average retrieval performance over all shapes. For
the sub-dataset containing rotated images only, on average
RSICD obtained 7.9352 out of 8 retrieved images per shape.
Whereas the BAC [33], IDSC+DP [32], SC [30], DC [15],
LBP [35] and Gabor-based methods [21] obtained 5.5417,
5.2593, 5.0463, 2.9630, 2.8809 and 2.5324, respectively.

For the dataset containing rotated and scaled images, our
RSICD obtained 7.9815 out of 8 retrieved images per shape.
The BAC, IDSC+DP, SC, DC, LBP and Gabor-based methods
obtained 2.8333, 6.6389, 6.2037, 2.1343, 1.5000 and 2.5324,
respectively.

In our CBIR experiments, to determine the class label of
a given test image, we find its nth nearest neighbor among
the training images, and then assign that training image’s
estimated class label (given by our RSICD algorithm) to the
test image. The nth rank recognition rate is therefore defined
as the ratio of the number of test images’ nth nearest neighbors
(among the training images) that are assigned with the same
class labels as the true labels of the test images, to the total
number of test images. Tables II and III show the rank
recognition rates for the above two 18-class datasets. Numbers
in the abscissa of Table II, and III are the values of n (same

4Here ’unsupervised’ means samples’ class labels are unknown to the
algorithm initially.
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(a) (b)

Fig. 8. Kimia datasets containing (a) rotated images and (b) rotated and
scaled images.

for Tables IV, V, VI, VII, VIII, and IX). We observe that the
proposed RSICD performs favorably in comparison to other
methods.

2) Results on All 93 Classes of the Smithsonian Dataset:
In the second set of experiments with the Smithsonian leaves
dataset, we used all 93 classes to evaluate the rank recognition
rates of different methods. Similar to the 18-class sub-datasets,
we created rotated and scaled images for all 93 classes. Five
atoms per class dictionary are learned and concatenated to
form the dictionary D of size 288× 465.

Tables IV and V show the rank recognition rates of
the 1st up to the 15th rank retrieval. For both datasets, the
recognition rates of the RSICD are the highest and at least 10%
above those of the others for all rank retrievals. Comparing
the RSICD results in Table II and Table III, the average
recognition rate goes from 98.99% (18-classes) to 90.95%
(93-classes). This decrease is only 8.04%, which shows that
the RSICD is robust in maintaining recognition performances
on rotated and scaled leaf databases across different class
numbers.

3) Robustness of RSICD to Missing Pixels: We com-
pare the results obtained by different methods when pixels
are randomly removed from the query and probe images.
The results are shown in Fig. 7 where we compare the
rank-1 recognition rates of different methods as we vary the
percentage of missing pixels. We can see that both dictionary
methods (RSICD and DC) outperform the other methods. The
RSICD is able to maintain its recognition rate at 75% even
when 80% of the pixels are missing and it performs better
than the DC.

B. Kimia Shape Database

The Kimia database [31] consists of 216 images, where
there are 18 shapes with small rotation, and each shape has
12 different images. Similar to how we generated new datasets
for the Smithsonian Leaf database in the previous experiments,
we created two sub-datasets from the original Kimia database:
one containing the rotated images and the other containing the
rotated and scaled images.

To obtain the rotated images, we selected one representative
image from each of the 18 shapes in the original Kimia dataset.

For each selected shape, 11 in-plane rotated images with the
same angles as in (20) were created. We created a dataset
that contains rotated and scaled images by scaling the rotated
images as before. The resulting datasets are shown in Fig. 8(a)
and (b), respectively. They possess more rotation and scale
challenges than the original Kimia’s dataset.

We selected the last image (i.e., the 12-th image) of each
class to form a query set, and used all the other images to
form an unsupervised training set. The precision-recall curves
are shown in Fig. 9(a) and the average retrieval performance
curves are shown in Fig. 9(b) for the datasets containing the
rotated images. The dictionary size is set as 288.

As can be seen from both these figures, our method out-
performs other competitive methods. Regarding the overall
retrieval performance, our RSICD obtained 7.0324 out of 8
retrieved images per shape. Whereas the BAC [33], IDSC+DP
[32], SC [30], DC [15], LBP [35] and Gabor-based methods
[21] obtained 6.5185, 4.0231, 3.8935, 2.0926, 2.3657 and
1.2778, respectively. Table VI shows rank recognition rates
for the above two 18-class datasets. The rank recognition
rates of our RSICD remains the second while they still are
close to the best results from BAC, for up to the 5th rank
recognition.

Figs. 9(c) and (d) show the results obtained using the
dataset containing both scaled and rotated images. For the
overall retrieval performance, our RSICD obtained 7.0463 out
of 8 retrieved images per shape. The BAC, IDSC+DP, SC,
DC, LBP and Gabor-based methods obtained 6.5185, 7.8472,
7.2269, 1.2500, 1.3889 and 1.3426, respectively. Table VII
shows the corresponding rank recognition rates.

C. Brodatz Texture Database

In addition to shape-based datasets, we demonstrate the
effectiveness of our RSICD on the Brodatz texture dataset [44].
We selected 25 textures and 60 textures from the Brodatz data-
base, which are the dataset 1 and the dataset 3 defined in [36].
For each selected texture, we generated its in-plane rotated
versions at the following angles: 10◦, 20◦, 30◦, ..., 170◦. Each
original texture image and its 17 rotated images form a new in-
plane rotated class. Fig. 10 shows the resulting sample images
from the 25-class dataset. The dictionaries are of size 192×300
and 192×720 for 25 and 60 class datasets, respectively. Here,
192 is the size of vectorized sinogram.

Experimental results using 25 classes and 60 classes are
compared in Table VIII and Table IX, respectively. The
modified Gabor method gives 100% recognition rate on its
first rank retrieval but degrades faster than the other methods
within the first 4 rank retrievals. The average recognition rates
of the RSICD are 60.17% (25-class) and 53.18% (60-class),
which are higher than those of CD: 39.86% (25-class), 34.17%
(60-class); LBP: 44.24% (25-class), 30.14% (60-class); and
modified Gabor: 46.54% (25-class), 36.41% (60-class). This
experiment shows that the RSICD is general enough that it can
also perform well on a dataset that contains rotated textures.

D. Discussion

In this section, we discuss our experimental results in the
aspects of performance, complexity and limitation.
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TABLE IV

RANK RECOGNITION RATES (%) CORRESPONDING THE SMITHSONIAN DATASET CONTAINING 93-CLASSES WITH ROTATED IMAGES

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 48.66 19.44 17.29 11.47 12.10 10.04 9.68 9.68 9.95 9.32 8.24
LBP [35] 56.09 31.09 24.55 16.58 17.65 11.29 11.38 10.39 9.68 7.44 8.06
DC [15] 54.75 34.59 25.27 22.13 17.74 14.78 13.98 12.99 11.83 11.38 9.95
SC [30] 85.13 72.31 64.78 59.95 51.16 43.10 37.90 31.81 28.76 22.85 18.91

IDSC+DP [32] 89.07 80.11 71.77 64.25 56.54 46.51 42.29 37.19 30.65 27.06 22.40
BAC [33] 83.87 75.72 68.46 55.73 44.09 35.93 28.32 27.33 22.94 18.91 16.58

RSICD 99.28 97.49 95.79 95.25 93.55 90.41 91.49 90.23 87.46 83.78 75.72

TABLE V

RANK RECOGNITION RATES (%) CORRESPONDING THE SMITHSONIAN DATASET CONTAINING 93-CLASSES WITH ROTATED AND SCALED IMAGES

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 26.43 16.40 12.10 10.39 10.84 10.30 9.23 9.41 6.72 6.99 6.63
LBP [35] 26.16 11.47 8.87 6.36 6.27 4.93 4.12 4.21 4.93 3.41 3.67
DC [15] 29.75 15.86 11.02 8.33 7.97 6.27 6.54 5.73 5.56 5.38 3.94
SC [30] 92.13 81.81 73.03 63.35 55.11 48.48 44.00 36.65 33.87 29.57 27.06

IDSC+DP [32] 97.58 92.83 83.96 72.85 62.01 54.84 49.73 43.28 43.37 36.83 32.08
BAC [33] 50.54 31.54 20.52 19.27 15.50 14.52 11.20 11.11 9.95 8.60 7.44

RSICD 98.21 95.52 92.83 91.85 90.95 89.16 86.29 86.65 81.36 78.23 73.03
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Fig. 9. Results on Kimia dataset. (a) Precision-recall curves. (b) Average retrieval performance of the dataset containing rotated images. (c) Precision-recall
curves. (d) Average retrieval performance of the dataset containing rotated and scaled images.

1) Performance: For texture-based approaches, the Gabor
method [21] extracts features using a modified Gabor filter to
achieve independence of orientation and scale in the textures.
The LBP [35] is a computationally simple method, but an

efficient multiresolution approach based on uniform local
binary patterns and nonparametric discrimination of sample
and prototype distributions for rotation invariant texture classi-
fication. Both methods are designed for texture-based images.
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TABLE VI

RETRIEVAL RESULTS (RANK RECOGNITION PERCENTAGE RATES) ON KIMIA DATASET CONTAINING ROTATED IMAGES

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 42.13 21.30 15.28 13.43 7.41 12.50 8.33 7.41 4.17 4.63 9.26

LBP [35] 62.96 45.37 26.85 29.17 24.07 15.28 16.20 16.67 11.11 10.65 12.50

DC [15] 60.65 38.43 23.61 21.76 17.59 17.59 16.20 13.43 17.59 12.04 10.19

SC [30] 86.11 66.67 59.26 48.61 40.28 32.41 28.24 27.78 25.00 15.28 12.04

IDSC+DP [32] 86.57 69.91 57.41 48.61 42.13 37.50 31.94 28.24 28.24 21.30 12.04

BAC [33] 100 97.69 88.89 90.28 84.72 70.37 63.89 56.02 48.61 32.41 41.67

RSICD 98.15 92.13 89.81 88.43 82.87 84.26 81.48 86.11 81.02 69.91 62.50

TABLE VII

RETRIEVAL RESULTS (RANK RECOGNITION PERCENTAGE RATES) ON KIMIA DATASET CONTAINING ROTATED AND SCALED IMAGES

Rank 1 2 3 4 5 6 7 8 9 10 11

Modified Gabor [21] 36.11 15.28 16.67 13.43 15.28 11.11 13.43 12.96 11.57 8.33 11.57

LBP [35] 41.67 21.76 17.59 13.89 9.72 14.81 10.65 8.80 9.72 7.41 7.41

DC [15] 43.52 18.52 13.89 10.19 11.57 11.11 11.57 8.80 6.48 7.41 6.48

SC [30] 99.07 98.61 95.83 95.37 92.59 84.26 82.41 74.54 75.93 67.59 56.94

IDSC+DP [32] 100 99.54 98.15 99.07 98.61 97.69 96.30 95.37 90.74 84.72 76.85

BAC [33] 100 97.69 88.89 90.28 84.72 70.37 63.89 56.02 48.61 32.41 41.67

RSICD 97.22 94.44 89.81 89.81 85.19 84.72 81.94 84.26 79.17 76.39 56.94

(a) (b)

Fig. 10. Samples images from the 25-class in-plane rotated Brodatz texture database. (a) 1st ∼ 12th classes: D01, D04, D06, D19, D20, D21, D22, D24,
D28, D34, D52, and D53. (b) 13th ∼ 25th classes: D56, D57, D66, D74, D76, D78, D82, D84, D102, D103, D105, D110, and D111.

TABLE VIII

RANK RECOGNITION RATES (%) ON 25-CLASS (DATA SET 1 IN [36]) IN-PLANE ROTATED BRODATZ DATABASE

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modified
Gabor [21]

100 80.44 81.33 57.11 57.56 43.33 44.44 38.44 40.89 35.78 34.89 33.56 34.22 27.78 26.44

LBP [35] 79.33 67.78 56.89 49.78 46.89 45.78 46.22 43.11 41.56 39.78 38.89 39.11 37.11 33.11 30.44

DC [15] 88.22 69.56 59.33 55.11 47.33 44.44 41.78 38.00 35.33 34.67 32.00 28.22 27.56 22.89 19.33

RSICD 92.00 86.89 85.56 82.00 76.00 75.56 71.11 63.56 57.56 53.11 52.67 46.67 45.11 42.22 38.00

As a result, they did not obtain good results on shape-based
datasets, which can be seen from the experimental results in
Sections IV-A and IV-B.

For shape-based approaches, the SC [30] is a shape match-
ing approach based on correspondences between points on two
shapes. The SC descriptor essentially estimates the shape simi-
larity and solves the correspondence problems. The IDSC+DP

[32] uses the length of the shortest path within the shape
boundary (called inner-distance) to build shape descriptors,
which were shown to be robust to articulation in complicated
shapes. The BAC [33] extracts features that characterize the
geometric relationships between each pair of images. This
method was shown to be invariant to articulations and rigid
transforms.



2178 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 6, JUNE 2013

TABLE IX

RANK RECOGNITION RATES (%) ON 60-CLASS (DATA SET 3 IN [36]) IN-PLANE ROTATED BRODATZ DATABASE

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modified
Gabor [21]

100 71.11 72.41 40.28 42.50 34.44 34.44 27.22 30.37 27.41 24.26 21.20 22.41 19.63 18.70

LBP [35] 76.67 59.35 43.33 38.15 31.30 30.28 27.50 25.28 25.37 25.00 22.31 18.98 21.67 17.31 18.24

DC [15] 86.48 69.07 58.43 51.48 46.11 39.72 33.80 31.57 26.11 25.83 22.50 21.57 19.17 14.44 12.41

RSICD 93.06 86.11 82.13 75.74 70.09 66.39 62.69 54.17 46.57 44.44 42.41 40.19 35.65 32.87 31.48

TABLE X

COMPUTATION TIME OF DIFFERENT METHODS TO OBTAIN PRECISION-RECALL CURVES SHOWN IN FIG. 6(a)

Modified Gabor [21] LBP [35] DC [15] SC [30] IDSC+DP [32] BAC [33] RSICD

Execution Time (s) 10.42 13.34 383.40 1226.34 1383.48 92.31 217.32

Unsupervised Clustering no no yes no no no yes

The SC descriptor [30] relies on the correspondences
between points on two shapes, while the IDSC+DP descriptor
[32] is built based on the normalized inner distance. In
practice, SC and IDSC+DP descriptors remain the same for
similar shapes with different scales and change significantly
for different shapes with different scales. Therefore, introduc-
ing scale variations (shown in Fig. 5(b) and Fig. 8(b)) in
fact boosts the discriminative power of SC and IDSC+DP
features, in that between-class distances are increased due
to scale variations while within-class distances remain the
same. Hence, SC and IDSC+DP obtained better results on
the datasets containing both rotation and scale variations
(see Fig. 6, Fig. 9, Table II, Table III, Table IV, Table V,
Table VI and Table VII). Furthermore, pixels in the Smith-
sonian leaf images appear in different grayscales. Without
additional preprocessing, the shape contours as well as inner
distances-based and point correspondence-based descriptors
are sensitive to changes in grayscale or missing pixels (e.g.,
Fig. 7(a) and (b)). These two reasons explain why SC and
IDSC+DP in our experiments perform much better in the
Kimia dataset with both rotation and scale variations. The
BAC, too, obtained better results on the Kimia dataset. How-
ever, it is sensitive to both scale and rotation changes in
Smithsonian leaf images. On the other hand, the proposed
RSICD does not require any knowledge of the shape contour,
and is not sensitive to grayscale changes and missing pixels in
an image. In addition, the Smithsonian leaf datasets used in our
experiments consist of more directional leaves than isotropic
leaves, which are in favor of our assumption on directional
images described in Section II-A. Hence, the proposed RSICD
obtained good results on the Smithsonian leaf datasets. Finally,
from the experimental results, we observe that DC [15] does
not give satisfactory performances in both shape-based and
texture-based datasets because it uses pixel intensities as
features.

2) Complexity: We present the relative complexity of all the
methods by comparing the computation time required to obtain
precision-recall curves for the rotated 18-class Smithsonian
datasets in Table X. This table shows both the computation

time5 and whether the unsupervised clustering is provided by
each method. Note that the RSCID provides both unsupervised
clustering and dictionary learning. As a result, its computation
time is higher than some of the other methods. Also, both SC
[30] and IDSC+DP [32] require a large amount of time for
image retrieval.

3) Limitation: We have examined the performance of our
method on various shape-based and texture-based datasets.
In practice, there may be objects with background clutter.
For our method to be effective, the background needs to
be removed before applying our algorithm to obtain good
retrieval performances. Hence, it may not provide good results
on datasets where images contain objects with background
clutter. The second limitation of our method is that it does not
work so well for texture-based images where there are more
within-class variations such as illumination changes, noise,
occlusion, variant distances with 3D rotations and spatial
shifts. Moreover, for textures where there are no linear trends
(e.g., isotropic textures) or inapparent linear trends, the Radon-
domain sinogram may no longer be used to accurately capture
the direction to give rotation-aligned features.

V. CONCLUSION

In this paper, we presented a rotation and scale invariant
clustering algorithm suitable for applications such as CBIR.
We extracted in-plane rotation and scale invariant features
of images in the Radon domain. The initial dictionaries are
learned through initial clusters that are determined using the
Hamming distance between nearest-neighbor sets of each fea-
ture pair. With a view to achieve rotation and scale invariance
in clustering, the proposed method learns dictionaries and
clusters images in the Radon transform domain. We demon-
strated the effectiveness of our approach by a series of CBIR
experiments on shape-based and texture-based datasets, its
robustness to missing pixels, and performance improvements
compared to other Gabor-based and shape-based methods.

5We conducted our experiments using MATLAB installed in the 64-bit
Windows OS on a machine with Intel(R) Core(TM) i5 CPU (2.8 GHz) and
8 GB RAM.
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Robustness to within-class variations of texture images is
one of the important research directions. We will continue with
the feature extraction from the Radon-domain sinogram, via
filtering or transformation techniques. We will also consider
using local features. One possible way is to divide the texture
(or its sinogram) into several patches, from each of which
the local feature is extracted. Then we combine all extracted
features using an efficient fusion technique, to improve the
recognition performance.

In addition, we will modify the Radon-domain sinogram
based approach for our algorithm to adapt for textures without
apparent line trends, and for isotropic textures. Furthermore, as
our method being based on heuristic K-SVD lacks theoretical
guarantee on convergence, we will also provide analytical
evidences on convergence.
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