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Abstract:  This paper presents a computational assessment of the performance of steel gravity framing 

systems with single-plate shear connections and composite floor slabs under column loss scenarios. The 

computational assessment uses a reduced modeling approach, while comparisons with detailed model 

results are presented to establish confidence in the reduced models. The reduced modeling approach 

enables large multi-bay systems to be analyzed much more efficiently than the detailed modeling 

approaches used in previous studies. Both quasi-static and sudden column loss scenarios are considered, 

and an energy-based approximate procedure for analysis of sudden column loss is adopted, after 

verification through comparisons with direct dynamic analyses, further enhancing the efficiency of the 

reduced modeling approach. Reduced models are used to investigate the influence of factors such as span 

length, slab continuity, and the mode of connection failure on the collapse resistance of gravity frame 

systems. The adequacy of current structural integrity requirements is also assessed, and based on the 

computational results, a new relationship is proposed between the uniform load intensity and the tie forces 

required for collapse prevention. 
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Introduction 

From the early 1980s (ANSI 1982) to the present (ASCE 2010), standards for structural design in the 

United States have included requirements for “general structural integrity.” Such requirements are 

intended to ensure that structures are resistant to disproportionate collapse, in which local damage spreads 

progressively, resulting in a partial or total collapse that is disproportionate to the initiating event. ASCE 

7-10 (ASCE 2010) includes “extraordinary event” load combinations, to be used in assessing residual 

capacity following the notional removal of selected load-bearing elements. While ASCE 7-10 does not 

include specific provisions or criteria for resistance to disproportionate collapse, the 2009 version of the 

International Building Code (IBC) (ICC 2009, Section 1614) introduced structural integrity requirements 

for design of high-rise buildings in occupancy categories III and IV. These new requirements include 

minimum levels of tensile strength for the end connections of beams in steel frame structures.  

 For U.S. military buildings, the Unified Facilities Criteria (UFC) 4-023-03 (DOD 2009) provides 

tie force requirements that were developed with the specific objective of preventing collapse under 

internal and exterior column loss scenarios (Stevens 2008). In the development of these tie force 

requirements (Stevens 2008), it was noted that most steel connections are not capable of sustaining the 

magnitudes of rotation necessary to carry the gravity loads through catenary action (i.e., through tensile 

forces in the beams). For this reason, the 2009 version of the UFC 4-023-03 requires that tie forces be 

carried by the floor system, unless the connections can be shown capable of developing the required 

tensile forces while sustaining substantial rotations of 0.20 rad. This approach contrasts sharply with the 

integrity requirements in the 2009 IBC, which specify minimum tensile capacities for the end connections 

of beams without consideration of the rotational capacity of the connections. 

 Recent full-scale tests (Lew et al. 2012) and computational studies (Main et al. 2010, Alashker et 

al. 2011, Sadek et al. 2012) have demonstrated the good performance of seismically designed steel 

moment connections under column loss, with the connections sustaining rotations almost twice as large as 

those observed in previous seismic tests and developing significant vertical capacity through a 
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combination of flexural and catenary action. In contrast, analyses of composite floor systems with simple 

shear connections (Foley et al. 2008, Sadek et al. 2008, Alashker et al. 2010) have suggested a 

susceptibility to collapse under column loss. While Sadek et al. (2008) found that the composite floor slab 

significantly enhanced the capacity of a 2 bay × 2 bay floor system relative to the capacity of the bare 

steel framing system, the capacity of the composite system was still inadequate to sustain the gravity 

loads under sudden loss of the center column. Alashker et al. (2010) considered the influence of a number 

of factors on the collapse resistance of the 2 bay × 2 bay system, including thickness of the steel deck, 

area of the welded wire reinforcement, and the number of bolts in the shear tab connections.  

 Motivated by these concerns about the susceptibility to collapse of steel gravity framing systems 

with composite floors, this paper presents a reduced modeling approach for these systems and uses this 

approach to investigate the influence of factors such as span length, slab continuity, slab reinforcement, 

and the mode of connection failure on the capacity of the systems. The reduced modeling approach 

enables large multi-bay systems to be analyzed much more efficiently than the detailed approach used 

previously by Sadek et al. (2008) and Alashker et al. (2010). A number of previous studies have proposed 

reduced modeling approaches to represent the anisotropic, nonlinear behavior of concrete slab on profiled 

steel deck. Kwasniewski (2010) used alternating strips of shell elements to represent a composite floor 

slab with steel deck. Alashker et al. (2011) proposed an approach in which lines of beam elements parallel 

to the ribs were used to represent the steel deck, while the concrete slab was modeled with shell elements. 

Alashker and El-Tawil (2011) proposed a design-oriented model to represent the collapse resistance of 

composite floors. Cashell et al. (2011b) analyzed composite slabs using simplified analytical modeling as 

well as finite element modeling with an orthotropic shell element formulation, also presenting 

comparisons with experimental measurements reported by Cashell et al. (2011a).  

 This study, like Kwasniewski (2010), uses alternating strips of shell elements to represent the 

anisotropic behavior of the composite slab. However, while Kwasniewski (2010) incorporated integration 

points representing the steel deck in both types of alternating strips, the proposed approach includes the 
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steel deck only in strips representing the ribs, conservatively neglecting the stiffness and strength of the 

metal deck in the across-rib direction. In addition, while the strips of shell elements proposed by 

Kwasniewki (2010) were of the same width as the ribs of the steel deck, it was found in this study that 

strips much wider than the rib width can be used in order to enhance computational efficiency, without 

significant loss in accuracy. An energy-based approximate procedure for analysis of sudden column loss 

(Powell 2003, Guo and Gilsanz 2003, Izzuddin et al. 2008) is also applied and verified in this study, 

enabling the structural capacity under sudden column loss to be evaluated using the results of a single 

quasi-static pushdown analysis. Analyses are performed using explicit time integration in LS-DYNA 

(Hallquist 2007), and comparisons of detailed and reduced model results are presented to establish 

confidence in the reduced models. The reduced modeling approach is then used to (1) evaluate the 

collapse resistance of composite floor systems from prototype buildings, (2) assess the effectiveness of 

the structural integrity requirements in the 2009 IBC (ICC 2009) and the tie force requirements in UFC 4-

023-03 (DOD 2009) in preventing collapse under column loss scenarios, and (3) evaluate the tie force 

levels required for prevention of collapse. 

Prototype Composite Floor Systems 

Fig. 1 shows the plan layouts of two composite floor systems considered in this paper, which represent 

portions of the interior gravity framing systems of two prototype 10-story buildings described in Main 

and Sadek (2012). The alternate plan layouts shown in Fig. 1 were developed to examine the influence of 

span length on disproportionate collapse resistance. Since the focus of this study is on the collapse 

resistance of gravity frame systems, no moment frames are considered. Beams and girders in the 

prototype gravity frames were designed assuming fully composite action with the concrete slab, while it is 

noted that partially composite beams are common in practice. ASTM A992 structural steel beams and 

columns are connected using single-plate shear connections, illustrated in Fig. 2. Shear connections on the 

east-west beams in building B have four bolts, while all other shear connections have three bolts. The 
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composite floor slab consists of 83 mm of lightweight concrete (specific weight = 17.3 kN/m
3
, nominal 

compressive strength = 20.7 MPa) over a 20 gage steel deck (ASTM A653, Grade 33) with a depth of 

76 mm and an average rib width of 152 mm. The concrete slab has welded wire reinforcement (ASTM 

A82 steel wire), with W1.4 wire (cross-sectional area = 9.0 mm
2
) in a 152 mm × 152 mm grid spacing. 

AWS D1.1 type B shear connector studs (AWS 2010) with a diameter of 19 mm are used to develop 

composite action between the steel beams and the concrete slab. Circled columns in Fig. 1 indicate 

column loss scenarios considered subsequently. While the tie force requirements in UFC 4-023-03 were 

developed to prevent collapse under both interior and exterior column loss scenarios (Stevens 2008), only 

interior column loss scenarios are considered in this paper. Exterior column loss scenarios for these 

prototype floor systems are considered in Main and Sadek (2012). 

Gravity Loads 

ASCE 7-10 (ASCE 2010, Section 2.5.2.2) specifies a load combination for assessing residual capacity of 

structural systems following the notional removal of load-bearing elements. For the floor systems 

considered in this study, this load combination can be simplified as follows: 

 1.2 0.5D L  (1) 

in which the factor 1.2 is selected for the dead load, rather than 0.9, because gravity loads do not stabilize 

the structural system. Roof live loads, snow loads, and rain loads are omitted because a typical 

intermediate floor of the structure is considered. For a typical floor in the prototype buildings, the total 

dead load D is 3.64 kN/m
2
, which includes the floor self-weight of 2.2 kN/m

2
 and a superimposed dead 

load of 1.44 kN/m
2
. The nominal live load of 2.40 kN/m

2
, applicable to offices, is reduced using Eq. (4.7-

1) in ASCE 7-10, based on the influence area of a typical floor beam, yielding a combined gravity load, 

1.2D + 0.5Loffice, equal to 5.40 kN/m
2
 for building A and 5.36 kN/m

2
 for building B. 

 In some of the analyses presented subsequently, the floor systems are unable to sustain the 

combined floor loading from Eq. (1) under sudden column loss. In such cases, it is of interest to compare 



6 

 

the capacity of the floor systems with the expected (or “point-in-time”) value of the gravity loading. This 

lower level of gravity loading is given as follows: 

 survey1.05D L  (2) 

where Lsurvey = 0.52 kN/m
2
 denotes the mean live load for offices based on survey data, from Table C4-2 

of ASCE 7-10 (ASCE 2010). The dead load factor in Eq. (2) is taken as 1.05 in order to more accurately 

represent the expected dead load, because the mean dead load in modern construction typically exceeds 

the nominally specified value by 5 % to 10 % (Ellingwood et al. 2007, p. 22). The total gravity loading 

given by Eq. (2) equals 4.34 kN/m
2
 for both buildings A and B. 

Reduced Modeling of Composite Floor Systems 

Fig. 3 shows a reduced model of a 2 bay × 2 bay portion of the floor system from prototype building A, in 

which the wide flange girders, beams, and columns are represented using beam elements, and the 

composite floor slab is represented using shell elements. The columns extend one story above and below 

the floor slab, and the tops and bottoms of the columns are modeled as pinned, except for the center 

column, which is unsupported vertically. This 2 bay × 2 bay floor system was previously studied by 

Sadek et al. (2008) and Alashker et al. (2010) using a detailed model, and comparisons of detailed and 

reduced model results are presented subsequently.  

Composite Floor Slab 

As illustrated in Fig. 3, the concrete slab on steel deck is represented in the reduced model using 

alternating strips of shell elements denoted “strong” and “weak” strips, which are oriented parallel to the 

ribs in the steel deck. As illustrated in Fig. 4, the weak strips include only the concrete above the top of 

the steel deck, while the strong strips include the full depth of concrete. No contribution from the steel 

deck is included in the weak strips, in order to represent the much lower stiffness and strength of the steel 

deck across the ribs than along the ribs. Six integration points are used through the thickness of each shell 
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element, with four integration points representing the concrete, a fifth integration point representing the 

welded wire, and a sixth integration point representing either the steel deck (for the strong strips) or a 

“dummy material” with negligible stiffness and strength (for the weak strips). The strips of shell elements 

used in this study have a width of 610 mm, which is about four times the average rib width. Results in 

Main and Sadek (2012) show that further refinement of the mesh produces little change in the computed 

results. Main and Sadek (2012) considered two arrangements for the alternating strips, in which either (a) 

the weak strips or (b) the strong strips were located along the girders. This comparison showed that 

placing the weak strips along the girders is preferable, as in Fig. 3, enabling the use of larger shell 

elements for the floor slab without sacrificing accuracy. While elements larger than 610 mm could 

potentially be used to speed up the computations, this element size was selected to achieve a good spatial 

resolution of the in-plane membrane forces for subsequent plotting and analysis.  

 The thickness of the steel deck used in the strong strips is scaled to represent the steel area of only 

the bottom segment of each rib [e.g., for the deck profile in Fig. 4, the bottom segment of each rib has a 

width of 132 mm, while the average rib width is 152 mm, so the actual deck thickness of td = 0.91 mm is 

scaled by the ratio (132 mm) ∕ (152 mm)]. Assuming that forces develop only in the bottom segment of 

each rib results in lower stiffness and strength than if the entire steel deck were engaged. However, this is 

consistent with the observation based on detailed modeling by Alashker and El-Tawil (2011) that since 

the deck is attached to the beams by shear studs, only a portion of the deck effectively yields at peak load. 

While the area of concrete above and below the top surface of the deck is correctly represented by the 

alternating strips in Fig. 4(b), the tapered profile of the concrete in the ribs is represented by applying 

weighting factors to the corresponding integration points in the strong strips. 

 Integration points through the thickness of the floor slab are assigned distinct material models for 

the concrete, welded wire reinforcement, and steel deck. The concrete in the floor slab is modeled using 

equations and material data from Eurocode 2, part 1.2 (material 172 in LS-DYNA), which represent 

concrete cracking in tension and crushing in compression. The minimum specified compressive strength 
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of 20.7 MPa is used in the model, and this compressive strength is reached at a strain of 0.25 %, beyond 

which the stress decreases linearly to zero at a compressive strain of 2 %. A tensile strength of 2.07 MPa 

is used in the model, and cracking is activated when the maximum in-plane principal stress reaches this 

value. After cracking, the tensile stress decreases following a bilinear curve, reaching zero stress at a 

tensile strain of 0.25 %. The welded wire reinforcement and the steel deck are represented using a 

piecewise linear plasticity model (material type 24 in LS-DYNA), with minimum specified yield and 

ultimate strength values of 450 MPa and 515 MPa, respectively, for the A82 steel wire, and 230 MPa and 

310 MPa, respectively, for the A653 Grade 33 steel deck. The wire reinforcement is modeled as 

continuous, under the assumption that splices are sufficient to develop the full capacity of the wire.  

 Fracture is modeled using element erosion, in which shell elements are deleted when all 

integration points have reached or exceeded their specified values of plastic strain at fracture. Plastic 

strains at fracture were calibrated to match specified values of elongation under uniaxial tension. The 

minimum specified elongation of 20 % at fracture is used for the A653 Grade 33 steel deck. Because 

ASTM standard A82 (ASTM 2007) does not specify a minimum elongation for welded wire 

reinforcement, a value of 5 % was used for the fracture elongation, based on tensile test data reported by 

Gilbert and Sakka (2007), which indicated an elongation between 4 % and 6 % at fracture. For 

elongations beyond 5 %, no resistance is provided at integration points representing the wire 

reinforcement, although element erosion does not occur until all integration points have reached their 

applicable fracture strain. For the strong strips of shell elements (see Fig. 4), element erosion is specified 

at an elongation of 20 %, corresponding to fracture of the steel deck. The resistance of the weak strips 

becomes negligible at a much smaller engineering strain of 5 %, after failure of the wire reinforcement. 

However, retaining such failed elements in the analysis has little effect on the solution. For convenience 

in post-processing, element erosion for the weak strips is specified at a larger engineering strain of 38 %, 

corresponding to the strain at which the steel deck would be completely flat, after unfolding of the ribs. 

Analysis results were found to be insensitive to changes in the erosion strain specified for the weak strips. 
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Shear Stud Connectors 

As illustrated in Fig. 5, rigid links extend vertically from the centerline of the beams and girders to the 

top-of-steel elevation, and elements representing shear studs connect these rigid links to nodes of the shell 

elements representing the floor slab. Using a discrete beam formulation (beam element formulation 6 in 

LS-DYNA with material type 119), the force vs. slip curve labeled “reduced model” in Fig. 6 is used to 

represent the shear behavior of the shear studs along both the longitudinal and transverse axes of the beam 

or girder. Transverse forces in the shear studs can be generated by membrane forces in the floor slab 

under large displacements. The initial portion of the piecewise-linear “reduced model” curve in Fig. 6 

approximates the empirical load-slip relationship proposed by Ollgaard et al. (1971) based on pushout 

testing of shear studs without steel deck. The empirical curve is also plotted in Fig. 6, and while the curve 

is plotted up to a slip of 25 mm, it is noted that the equation is only intended to represent the initial load-

slip behavior, up to slip of about 5 mm. Based on observations at larger slip values by Rambo-

Roddenberry (2002, pp. 71, 114), for shear studs welded through steel deck, the shear force in the reduced 

model curve remains constant at the ultimate load between 5 mm and 15 mm, after which it drops linearly 

to zero at a displacement of 25 mm. AWS D1.1 Type B studs (AWS 2010) are assumed, with an ultimate 

strength of 450 MPa, and the ultimate shear strength of a 19 mm diameter shear stud was calculated as 

Qu = 76.1 kN based on the AISC Specification (AISC 2010, Section I8.2a). Elastic flexural stiffness is 

also specified for the shear stud elements to provide torsional restraint along the top flange of the floor 

beams. The number of shear stud elements along each beam in the model depends on the mesh size 

selected and is generally less than the number specified in the design. To provide the proper shear 

resistance in the model, force values in the force vs. slip curve (Fig. 6) are scaled by the ratio of the actual 

number of shear studs to the number of shear stud elements in the model.  
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Single-Plate Shear Connections 

The primary components of the reduced connection model in Fig. 5 are the bolt springs, which represent 

the in-plane behavior of the connection, and which are interconnected with rigid links to maintain the 

proper connection geometry. Following the approach outlined by Main and Sadek (2013), each bolt 

spring is implemented using a zero-length discrete beam element, with distinct load-deformation curves to 

represent yielding and failure (1) along the beam axis and (2) in vertical shear. Failure is represented by 

deleting each bolt spring from the model when its resistance drops to zero along either axis. The yield and 

ultimate capacities of the bolt springs are calculated using equations in the AISC Specification (AISC 

2010) with a resistance factor of  = 1. Minimum specified values of yield strength Fy and ultimate 

strength Fu for each type of steel are used in these equations, and connection capacities are divided by the 

number of bolts to obtain the capacity of a single bolt row. Connection deformations at yield and at the 

ultimate load are calculated using equations in Sadek et al. (2008), based on data from seismic testing 

(FEMA 2000). Sadek et al. (2008) considered axial behavior controlled by bolt tear-out and proposed a 

load-deformation relationship of the form labeled “gradual softening” in Fig. 7, which exhibits a gradual 

drop in resistance after the ultimate load in tension is reached and no drop in resistance after the ultimate 

load in compression is reached. In this study an alternate form of load-deformation relationship is also 

considered, labeled “sudden fracture” in Fig. 7, which exhibits a steeper drop in resistance after the 

ultimate load is reached in both tension and compression, reflecting failures that have been observed 

experimentally (Thompson 2009, Weigand et al. 2012).  

 Because of the three-dimensional nature of composite floor systems, membrane forces in the floor 

slab can subject the connections to a combination of torsion and transverse shear. Accordingly, an 

additional discrete beam element (labeled “shear tab” in Fig. 5) is used to represent the torsional and 

transverse shear behavior of the shear tab connection. Using this “shear tab” beam element, piecewise-

linear relationships based on detailed model results (see Main and Sadek 2012, section 4.3.2) are specified 

for the torsional and transverse shear behavior of the connections, while the in-plane axial, shear, and 
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bending behavior is represented by the bolt springs. Each individual bolt spring provides no resistance to 

rotation, but bending moment in the connection is generated through differential axial forces that develop 

in the bolt springs under in-plane rotation. A “gap spring” is included at the level of the bottom flange of 

the beam, to allow bearing forces to be transmitted if the initial gap between the beam flange and the 

column closes (see Fig. 2). Concrete contact springs could be included to represent bearing of the 

concrete slab against the columns, using properties defined in Sadek et al. (2008). However, these springs 

were found to have a negligible effect for column removal scenarios considered in this study and 

therefore were not included in the analyses. 

Detailed Modeling of Composite Floor Systems 

Fig. 8 shows portions of a detailed model of the 2 bay × 2 bay floor system shown in Fig. 3, based on the 

model developed by Sadek et al. (2008). Only one quarter of the floor system is modeled, with 

appropriate boundary conditions on the planes of symmetry. Concrete in the floor slab is represented 

using solid elements, while the welded wire reinforcement is represented using beam elements sharing 

common nodes with the solid elements (i.e., no bond slip). The profiled steel deck and the wide flange 

steel sections are represented using shell elements. The typical edge length of the elements is about 

38 mm. Contact is defined among the various components of the model to prevent interpenetration. Shear 

studs are represented using beam elements sharing common nodes with the solid and shell elements of the 

concrete slab and steel deck, while a spot weld model (material type 100 in LS-DYNA) is used to 

represent the portion of the shear stud connecting the steel deck to the beam flange, with a shear failure 

criterion based on the nominal shear strength from the AISC Specification (AISC 2010, Section I8.2a). 

While the detailed model is based on that developed by Sadek et al. (2008), several changes were made 

for the analyses in this study, as summarized in the following points: 

 Connections: While Sadek et al. (2008) used specially calibrated shell elements to model the in-plane 

behavior of the shear tab connections, the detailed model in this study uses the same bolt spring 
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elements as in the reduced model. As illustrated in Fig. 8(b), these bolt springs interconnect nodes of 

shell elements on the beam webs with nodes of shell elements representing the shear tabs. Two rows 

of shell elements represent each shear tab, and since bearing-induced deformations and failure are 

incorporated in the bolt springs, shell elements in the row connected to the bolt springs are assigned 

an elastic material model to preclude plastic deformations. Shell elements in the row connected to the 

column are assigned a piecewise linear plasticity material model, to capture yielding of the 

connections when subjected to torsion and transverse shear loading.  

 Steel modeling: As in Sadek et al. (2008), the steel components in the detailed model are represented 

using piecewise linear plasticity models, and fracture is modeled using element erosion. However, the 

detailed model in this study uses values of yield strength, ultimate strength, and fracture elongation 

that are calibrated to match those reported above for the reduced model, and these values differ in 

some cases from those assumed by Sadek et al. (2008). Perhaps most significantly, Sadek et al. 

(2008) assumed a fracture elongation of 25 % for the wire reinforcement, while both the detailed and 

reduced models in this study assume a fracture elongation of 5 %. 

 Concrete modeling: The most significant difference between the detailed model used in this study and 

that of Sadek et al. (2008) is in the modeling of concrete. The detailed model in this study uses both a 

different material model than Sadek et al. (2008) and different hourglass control parameters to 

suppress spurious modes of deformation in the reduced-integration solid elements. Parametric studies 

reported by Main and Sadek (2012, section 4.2.2) indicate that the combined effect of these 

differences results in an ultimate capacity for the detailed model in this study that is about 30 % larger 

than that obtained by Sadek et al. (2008). The detailed model in this study uses a continuous surface 

cap model for concrete (material type 159 in LS-DYNA), which incorporates a hardening cap that can 

expand and contract, smoothly intersecting the shear yield surface. This model can capture 

confinement effects and softening behavior in both tension and compression due to brittle and ductile 

damage accumulation. Detailed documentation of the material model is provided by Murray et al. 
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(2007). Default parameters recommended by Murray et al. (2007) are used in the model, based on a 

compressive strength of 20.7 MPa. An assumed strain co-rotational stiffness form of hourglass 

control was selected (hourglass control type 6 in LS-DYNA), and an hourglass control coefficient of 

QM = 0.03 was found sufficient to limit the energy associated with hourglass modes and achieve 

convergence in the computed results (Main and Sadek 2012, section 4.2.2). 

Comparison of Detailed and Reduced Model Results 

In comparing the detailed and reduced model results, two different methods of quasi-static loading are 

considered, as described in Alashker et al. (2010). The first method involves applying a concentrated load 

to the unsupported center column under displacement control, while the second method involves applying 

a gradually increasing uniform load to the entire slab under force control. Both types of analysis are 

performed using explicit time integration, in order to avoid convergence problems encountered by 

implicit methods and to enable the analyses to progress beyond local failures to evaluate the ultimate 

capacity of the system. While the solution method is dynamic in nature, quasi-static loading conditions 

are maintained by applying the loading as a gradually increasing function of time over a duration of 

several seconds. Both the applied load and the total vertical reaction at the column bases are computed in 

the analyses, and the load carried by the system is taken as the smaller of these values, in order to avoid 

overestimating the capacity of the system due to transient effects associated with local failures (see Main 

and Sadek 2012, section 4.1). 

 Fig. 9 shows a comparison of load-displacement curves obtained using the detailed and reduced 

models of the 2 bay × 2 bay floor system under (a) concentrated loading and (b) uniform loading. Values 

of load intensity are plotted on the vertical axis for both concentrated and uniform loading, and the load 

intensity for concentrated loading is calculated by dividing the applied load by the tributary area of 

55.7 m
2
 for the center column. As noted by Alashker et al. (2009), the capacity of the system obtained 

using the two loading methods is comparable when presented in terms of load intensity. Since the 
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displacement of the center column is not meaningful after the connections have failed and the column has 

completely detached from the beams and girders, the vertical displacement plotted on the horizontal axes 

in Fig. 9 (and in subsequent figures) is the largest vertical displacement of the beam and girder ends 

originally attached to the center column. Prior to connection failure, this displacement matches very 

closely the displacement of the center column. 

 Good general agreement is observed between the detailed and reduced models in Fig. 9, 

providing verification of the reduced modeling approach. Under concentrated loading [Fig. 9(a)], both the 

detailed and reduced models show that all connections to the center column have completely failed at a 

displacement of about 650 mm, after which no further load can be applied to the system. Under uniform 

loading [Fig. 9(b)], the reduced model is quite consistent with the detailed model up to the initial peak 

load at a displacement of about 600 mm, prior to failure of the connections to the center column. After 

failure of these connections, the system continues to carry load as the floor slab bridges across the failed 

connections, and the detailed model predicts load values that are slightly greater than those from the 

reduced model. The slightly larger strength predicted by the detailed model is partly a consequence of the 

resistance of the steel deck to extension in the across-rib direction, which is neglected in the reduced 

model (see Fig. 4). However, the differences between the detailed and reduced model remain fairly small, 

and the predictions of the reduced model are conservative. Throughout the remainder of this paper, results 

are presented using the reduced modeling approach. 

Analysis of Sudden Column Loss 

While the previous section described procedures for quasi-static pushdown analysis with a missing 

column, the demands imposed under sudden column loss are higher than those under static loading. 

Gudmundsson and Izzuddin (2010) discuss the “sudden column loss” idealization and note that it 

provides a useful event-independent design scenario for disproportionate collapse assessment. The 

following subsections describe two approaches for analysis of sudden column loss. 
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Direct Dynamic Analysis 

The procedure used for direct dynamic analysis of sudden column loss is similar to that presented by 

Alashker et al. (2010) and is illustrated in Fig. 10 using analysis results from the 2 bay × 2 bay floor 

system (Fig. 3). Uniform gravity loading denoted w1 is first applied gradually over a period of 1 s using a 

smooth ramp function and is held constant. At t = 1.25 s, the vertical support of the center column is 

suddenly removed. As shown in the inset of Fig. 10, the column drops vertically to a peak dynamic 

displacement denoted 1 before rebounding and oscillating about a new equilibrium position. By 

repeating this analysis procedure for different levels of the uniform load intensity wk, and calculating in 

each case the peak displacement k, discrete points on a load-displacement curve for sudden column loss 

can be generated, as illustrated in Fig. 10. Different values of the load intensity wk are achieved in the 

computational model by adding distributed mass to the floor slab in addition to the self-weight. Gravity 

loading is applied by imposing body forces due to gravitational acceleration in the model. In this manner, 

both the gravity loading and the inertia of the structure are correctly represented. The resulting curve 

represents the relationship of the load intensity to the peak displacement after sudden column loss.  

Energy-Based Approximate Analysis 

While the procedure described in the previous section requires a separate dynamic analysis to be 

performed for each load-intensity, a load-displacement curve for sudden column loss can be generated 

more efficiently using an energy-based procedure similar to that previously used by Powell (2003), Guo 

and Gilsanz (2003), and Izzuddin et al. (2008). This procedure, which is summarized here in a somewhat 

different form for uniformly distributed loading, is based on the assumption that the structure responds in 

a single mode of deformation, whereby it can be analyzed as a single-degree-of-freedom system. In a 

sudden column loss scenario, the external work done by the applied loads in reaching the peak dynamic 

displacement o can be expressed as  

 ( ) ( )SCL o SCL o oW w U      (3) 
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where SCLw  is the uniform load that produces a peak displacement of o  after sudden column loss,  is a 

constant that depends on the deformation mode, and U(o) is the internal energy in the system, which 

equals the external work because the kinetic energy is zero at the peak displacement. Assuming the same 

deformation mode under static loading, the external work at displacement o can be expressed as 

 
0

( ) ( ) ( )
o

static o static oW w d U


       (4) 

where the function w = wstatic(), illustrated in Fig. 11, represents a load-displacement curve obtained 

from quasi-static pushdown analysis under uniform load. Because the same deformation mode is 

assumed, the internal energy U(o) is the same for static loading and sudden column loss. Equating Eqs. 

(3) and (4) then allows the constant  to be eliminated: 

 
0

( )
o

SCL o staticw w d


     (5) 

The right-hand side of Eq. (5) represents the shaded area in Fig. 11, while the left-hand side represents the 

hatched area. Eq. (5) then yields the following expression for the load intensity wSCL that yields a peak 

dynamic displacement of o after sudden column loss:   

 
0

1
( )

o

SCL static

o

w w d


  
   (6) 

By evaluating Eq. (6) with varying o, the function w = wSCL() can be obtained, which represents the 

load-displacement curve for sudden column loss, shown by the dashed curve in Fig. 11. In this manner, 

the dynamic enhancement associated with sudden column loss can be included using only the results from 

a static pushdown analysis. The dynamic increase factor, denoted ( )  , can be defined as follows: 

 
( )

( )
( )

static

SCL

w

w


  


 (7) 

Ultimate Capacity under Sudden Column Loss 

While Izzuddin et al. (2008) used a limit state of first connection failure in assessing structural capacity, 

the quasi-static pushdown analysis procedure described previously, using explicit time integration with 
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uniform loading under force control, allows the quasi-static load-displacement curve w = wstatic) to be 

evaluated beyond the initial failure of connections to assess the ultimate static capacity of a structural 

system. Let u denote the vertical column displacement corresponding to the ultimate static capacity, as 

illustrated in Fig. 11. It is evident in Fig. 11 that the function w = wSCL() can continue to increase for 

displacements exceeding u, due to residual, post-ultimate resistance of the structural system. Provided 

that wstatic() > wSCL(), the analysis predicts that collapse will not occur. However, uncertainties in model 

predictions increase significantly in the post-ultimate response, particularly given the force-controlled 

nature of the uniform loading protocol, which produces accelerations and increasing dynamic effects after 

the ultimate capacity of the system is exceeded. The assumption of an unchanging mode of deformation, 

inherent in Eq. (6), may also become less appropriate after the ultimate load has been exceeded and 

displacements become very large. For these reasons, and for the sake of conservatism, the ultimate 

capacity under sudden column loss, denoted wSCL,u, is evaluated at the displacement u corresponding to 

the ultimate static load (see Fig. 11): 

 , ( )SCL u SCL uw w   (8) 

A maximum permissible displacement max can also be introduced, so that if the uniform load wstatic) is 

still increasing at max, the ultimate static load is limited to its value at this displacement:  

  
max0

( ) max ( )static u staticw w


    (9) 

In this study, max = 1300 mm is selected, which corresponds to the approximate displacement at which 

erosion of shell elements, representing fracture of the steel deck, is first observed for the 2 bay × 2 bay 

floor system in Fig. 3. In almost all cases, the ultimate static load occurs prior to max.  
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Analysis of Prototype Floor Systems 

Comparison of Direct and Approximate Analysis Results 

Fig. 12 shows load-displacement results for (a) 2 bay × 2 bay and (b) 4 bay × 4 bay floor systems from 

building A under loss of the center column. Fairly good agreement is observed between the results for 

sudden column loss using direct dynamic analysis (open circles) and energy-based approximate analysis 

(dashed curves), with differences in the load intensity being generally less than 10 %. While initial 

connection failures (i.e., erosion of bolt springs) are observed for center column displacements of about 

400 mm, Fig. 12 shows good agreement between the direct and approximate analysis results for much 

larger displacements, confirming that the approximate procedure illustrated in Fig. 11 remains applicable 

even after connection failures have occurred. Subsequent results in this paper use only the approximate 

procedure for analysis of sudden column loss. 

 Shown as horizontal lines in Fig. 12 are the two levels of gravity loading discussed previously: 

the load combination 1.2D + 0.5Loffice from Eq. (1) and the lower level of expected gravity loading from 

Eq. (2). Fig. 12(a) shows that the ultimate capacity of the 2 bay × 2 bay floor system under sudden 

column loss, wSCL,u from Eq. (9), is slightly less than the expected gravity loading. For the 4 bay × 4 bay 

floor system, Fig. 12(b) shows that wSCL,u exceeds both the expected gravity loading and the larger level of 

gravity loading, with wSCL,u in this case corresponding to the maximum permissible displacement of 

max = 1300 mm. The continuity provided by the adjoining bays in the 4 bay × 4 bay floor system is found 

to increase its capacity under sudden column loss by 63 % relative to the 2 bay × 2 bay floor system. 

Because real buildings generally comprise more than two bays in each direction, their floor systems can 

usually benefit from such continuity. The influence of slab continuity is further discussed subsequently. 

Influence of Post-Ultimate Connection Behavior 

Fig. 13 shows plots comparable to those in Fig. 12, but based on an assumption of sudden fracture, rather 

than gradual softening, in the post-ultimate behavior of the connections (see Fig. 7). Comparing Figs. 12 
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and 13 shows that sudden connection fracture reduces wSCL,u by 17 % for the 2 bay × 2 bay system and by 

13 % for the 4 bay × 4 bay system. While these reductions are significant, it is noted that reductions by as 

much as 23 % in peak vertical capacity were observed for two-span beam assemblies without floor slab 

for sudden fracture vs. gradual softening (Main and Sadek 2012, section 3.5.3). The contribution of the 

floor slab is thus found to make the composite framing systems somewhat less sensitive to the effect of 

sudden connection failure than the bare steel framing system. For the sake of conservatism, all subsequent 

analyses in this report use connection models that represent sudden fracture in the post-ultimate response. 

Influence of Slab Continuity 

Fig. 13 shows that the ultimate capacity wSCL,u of the 4 bay × 4 bay floor system is 71 % larger than that of 

the 2 bay × 2 bay system. Insight into this enhanced capacity is afforded by considering the corresponding 

forces in the beams and the floor slab, as shown in Fig. 14(a) for the 2 bay × 2 bay floor system and in 

Fig. 14(b) for the 4 bay × 4 bay floor system. Forces are shown along the edges of the bay immediately to 

the northwest of the missing center column, and alphanumeric column designations at each corner of the 

isolated bay correspond to the grid systems shown in Fig. 1(a) and in Fig. 3 for the 4 bay × 4 bay and 

2 bay × 2 bay floor systems, respectively. Axial forces at the beam ends are shown using arrows, and 

numerical values of axial force are indicated, with positive values denoting tension. Tensile forces normal 

to the slab edges are shown using filled areas along the slab edges, and peak values of force per length are 

indicated. The forces in Fig. 14 were obtained under quasi-static loading. However, analysis results 

indicated that internal forces at the same level of displacement under sudden column loss are comparable 

to those under quasi-static loading (discrepancies are generally less than 15 %, with some larger local 

discrepancies in the slab edge forces). Since internal forces depend directly on the structural 

deformations, this is consistent with the assumption in the energy-based approximate analysis presented 

above, that the deformation mode under static loading is the same as under sudden column loss. Dynamic 

effects influence the response of the system not primarily through differences in internal forces at a given 
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displacement, but through the fact that the internal forces are partially balanced by inertial forces, thus 

reducing the uniform load that can be sustained.  

 The values of tensile force per unit length in Fig. 14 do not include concrete forces, because the 

focus here is on components with sufficient ductility to potentially serve as horizontal ties in the floor 

system and on determining the tensile forces that these components must sustain. Although concrete 

provides some initial tensile resistance prior to cracking, this resistance is depleted for tensile strains 

exceeding 0.25 % in the reduced model, as noted previously. Therefore, forces normal to the ribs in the 

steel deck (west and east edges in Fig. 14) correspond only to the tension in the welded wire 

reinforcement, while forces along the ribs (north and south edges in Fig. 14) include tension from both the 

wire reinforcement and the steel deck. In some cases, flexure of the slab caused the steel deck to be in 

compression while the wire reinforcement was in tension, or vice versa. The compressive component was 

not included in such cases to prevent cancellation of forces that would obscure the true magnitude of 

tension sustained by one component or the other. Tensile forces along interior edges of the bay were 

calculated as the larger tensile value from the elements on either side of the edge. Note that because only 

tensile forces in the steel components are included in Fig. 14, these do not represent the net forces in 

equilibrium with the surrounding structure. 

 Fig. 14(a) shows forces in the 2 bay × 2 bay system at the ultimate static load, while Fig. 14(b) 

shows forces in the 4 bay × 4 bay system at a comparable displacement of the center column. Comparable 

forces are observed along the south and east edges of the isolated bays, but tensile forces along the north 

and west edges are significantly larger for the 4 bay × 4 bay system than for the 2 bay × 2 bay system, due 

to continuity of the floor slab. The larger tensile forces in the slab along the north and west edges are 

associated with much larger values of axial compression at the beam ends, indicating the development of 

a negative bending moment through composite action of the beams and slab. Such flexural resistance, 

which is developed at the beam ends opposite the missing column, is much more pronounced in Fig. 

14(b) than in Fig. 14(a) and contributes to the enhanced capacity of the 4 bay × 4 bay system. 
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Near-Penultimate Column Loss 

Fig. 15(a) shows load-displacement curves for the 4 bay × 4 bay floor system under loss of near-

penultimate column D4 [see Fig. 1(a)], for which the ultimate capacity wSCL,u is about 19 % less than that 

under loss of the center column [Fig. 13(b)], due to the lack of slab continuity along two edges of the 

affected bays. The ultimate capacity wSCL,u in Fig. 15(a) is adequate to sustain the expected gravity 

loading but not the higher level of gravity loading. Fig. 15(b) shows comparable load-displacement curves 

for loss of near-penultimate column D3 in the 3 bay × 4 bay gravity framing system from building B [see 

Fig. 1(b)]. Fig. 15(b) shows that the ultimate capacity wSCL,u of the 3 bay × 4 bay system from building B 

is inadequate to sustain even the expected gravity loading. Noting that building B has longer spans in the 

N-S direction than building B, Fig. 15 shows that the floor system with longer spans (and correspondingly 

larger tributary areas) is more susceptible to collapse than the floor system with shorter spans.  

Assessment of Current Tie Force Requirements 

2009 International Building Code 

The structural integrity requirements in the 2009 IBC (ICC 2009, Section 1614) include the following 

requirement for the end connections of beams and girders in steel frame structures: 

 
2

3
n uT V  (10) 

where Tn is the nominal tensile strength and Vu is the required shear strength, using the notation of AISC 

360-10 (AISC 2010) for LRFD. Geschwindner and Gustafson (2010) previously showed that all properly 

designed single-plate shear connections comply with this requirement. For shear connections in the 

prototype floor systems, the ratio Tn ∕ Vu ranges from 2.01 to 2.20 (Main and Sadek 2012, section 5.4.1), 

indicating that the nominal tensile strength is more than three times greater than required. 

 Although the shear tab connections considered in this study satisfy the structural integrity 

requirements of the 2009 IBC, it was observed in Fig. 15(b) that the 3 bay × 4 bay floor system from 
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building B is unable to sustain sudden column loss under the expected gravity loading. It can therefore be 

concluded that the structural integrity requirements of the 2009 IBC are not always sufficient to prevent 

collapse under sudden column loss. In addition, for cases in which collapse of the floor system is arrested, 

the connections are called upon to carry axial forces that substantially exceed the tensile strength required 

by the 2009 IBC. Consider the 4 bay × 4 bay floor system from building A, which can sustain sudden loss 

of the center column under the expected gravity loading with a peak dynamic displacement of about 320 

mm [Fig. 13(b)]. The connections in the North-South direction for this floor system fail at a displacement 

of about 210 mm, sustaining a peak tensile force of 314 kN prior to failure, which is 3.1 times larger than 

the tensile strength required by the 2009 IBC.  

Unified Facilities Criteria 4-023-03 

Because the shear connections considered in this study are unable to sustain tensile forces while 

undergoing rotations of 0.20 rad (see Main and Sadek, section 5.3.3), the UFC 4-023-03 (DOD 2009, 

Section 3-1) requires the horizontal tie forces to be carried by the floor system. The required strength of 

transverse and longitudinal ties (DOD 2009, Section 3-1.3.1.1) is given by 

 13i FF w L  (11) 

where wF = 1.2D + 0.5L is the uniform floor load, consistent with the load combination in Eq. (1), and L1 

is the distance between the centers of the columns in the direction under consideration. The required 

strength of peripheral ties (DOD 2009, Section 3-1.3.2) is given by 

 16p F pF w L L  (12) 

where Lp = 0.91 m (DOD 2009, Section 3-1.3.2). Values of the required tie forces were calculated by 

setting wF in Eqs. (11) and (12) equal to the combined floor load of 1.2D + 0.5Loffice from Eq. (1). 

 To develop the required tie forces in the prototype floor systems, reinforcing bars were 

incorporated in the floor slabs in addition to the welded wire reinforcement. The added reinforcing bars 

were designed to carry all of the required tie forces, and no contribution from the steel deck and welded 
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wire reinforcement was considered. The reinforcing bars are represented in the computational model 

using beam elements that share common nodes with the shell elements representing the floor slab, 

assuming that the reinforcement remains fully bonded to the surrounding concrete. The reinforcing steel 

is represented using a piecewise-linear plasticity model, with the yield strength, tensile strength, and 

elongation at fracture based on the minimum specified values for ASTM A615 Grade 60 steel. Details on 

the size, placement, and modeling of added reinforcement are provided by Main and Sadek (2012). 

 Fig. 16 shows plots corresponding to those in Fig. 15, but for floor systems that incorporate 

additional reinforcement to satisfy the horizontal tie force requirements of UFC 4-023-03. Comparing 

Figs. 15 and 16 shows that the horizontal ties approximately double the capacity of the floor systems 

under static loading and increase their capacity under sudden column loss by about 50 %. In contrast with 

Fig. 15, the ultimate capacity wSCL,u exceeds the gravity loading of 1.2D + 0.5Loffice for both floor systems 

in Fig. 16, demonstrating the effectiveness of the horizontal ties specified by UFC 4-023-03. 

Evaluation of Required Tie Forces 

To investigate the tie forces that must be developed in the floor slab to sustain specified levels of gravity 

loading, enhanced floor slabs with increased deck thickness and reinforcement area are considered, as 

listed in Table 1. Floor slab S16-2.5 is considered for prototype building A, while floor slabs S16-5 and 

S16-14 are considered for building B. The enhanced slabs incorporate a 16 gage steel deck, which is the 

maximum standard deck thickness (ANSI/SDI 2006). Standard wire sizes (ASTM 2007) are considered 

for the welded wire reinforcement, and the grid spacing is 152 mm × 152 mm in all cases. 

 Fig. 17 summarizes the influence of floor slab reinforcement on the capacity of (a) the 4 bay × 

4 bay floor system from building A and (b) the 3 bay × 4 bay floor system from building B under sudden 

loss of near-penultimate columns. All curves were obtained using the energy-based approximate analysis 

of sudden column loss, and solid circles on each curve indicate the ultimate capacity under sudden 

column loss, wSCL,u from Eq. (8). Fig. 17(a) shows that the enhanced slab S16-2.5 enables the floor system 
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to sustain the gravity loading of 1.2D + 0.5Loffice without collapse. Fig. 17(b) shows that the enhanced slab 

S16-5 enables the floor system to sustain the expected gravity loading, while the enhanced slab S16-14 

enables the floor system to sustain the higher gravity loading of 1.2D + 0.5Loffice.  

 Gray vertical lines in Figs. 17(a) and 17(b) indicate the center column displacements at which 

initial connection failures occur, and in both cases, the curves corresponding to different levels of 

reinforcement differ only slightly prior to the initial connection failure. This indicates that connection 

failures occur before the tie forces can contribute significantly to the structural resistance. Fig. 17 shows 

that even with the highest level of reinforcement, the floor system is unable to sustain the expected 

gravity loading prior to connection failure. For large displacements of the center column, after connection 

failures have occurred and membrane action in the slab has developed, the tie forces in the slab are found 

to significantly increase the ultimate capacity of the floor system. This confirms the appropriateness of the 

requirement in UFC 3-023-03 (DOD 2009, section 3-1) that tie forces should be carried by the floor slab 

rather than by the beams, unless the beam-to-column connections can be shown to sustain the required tie 

forces while undergoing significant rotations. 

 Fig. 18 shows edge forces at the ultimate static load from the three analysis cases presented in 

Fig. 17(a). These plots were generated using the same procedure described previously for Fig. 14, 

isolating the bay immediately to the northwest of the missing column. Fig. 18 clearly shows increases in 

the tensile forces along the slab edges with increasing levels of slab reinforcement. In all cases, the 

connections to the missing column failed prior to reaching the ultimate load, as indicated by zero forces at 

the beam ends. Composite action is also evident in all cases, with substantial compressive forces at the 

beam ends along the north and west edges being accompanied by tensile forces in the floor slab, together 

providing negative flexural resistance along these edges. In some cases, compressive axial forces that 

exceed the capacity of the connection are observed; these cases are associated with binding of the beam 

flange against the column, as represented in the model by the “gap spring” shown in Fig. 5.  
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 The slab edge forces in Fig. 18 can be used to assess the tie forces necessary to sustain different 

levels of gravity loading without collapse. In making this assessment, it is useful to compare with the 

required strength of the transverse and longitudinal ties from UFC 4-023-03 (DOD 2009), which are 

given in Eq. (11) and can be written in the following alternative form: 

 1/ 3i FF L w  (13) 

The quantity 1/iF L , obtained by dividing the tie force per length by the span length, has units of force per 

area and is denoted the “normalized tie force.” Peak values of the normalized tie force for each case in 

Fig. 18 are obtained by identifying the peak value of iF  (the tie force per length) in each span direction 

and then dividing these values by the corresponding span length L1. The larger of the two values of 1/iF L  

in either span direction is the governing value of the normalized tie force sustained by the floor system.  

 Fig. 19(a) shows a plot of the governing values of the normalized tie forces from Fig. 18 against 

the ultimate capacities of the floor systems under quasi-static loading. Also included in Fig. 19(a) are 

corresponding results for the 3 bay × 4 bay floor system from building B from three of the four analysis 

cases in Fig. 17(b), for which slab edge forces are presented in Main and Sadek (2012, section 5.5). The 

values plotted in Fig. 19(a) indicate the relationship between the tie forces carried by the system and the 

uniform static load that can be sustained. The computed values for buildings A and B collapse fairly well 

along a single curve that can be approximated by the following relationship, shown in Fig. 19(a): 

 
2

2
1 12

/ (  and /  in kN/m )
(3.125 kN/m )

F
i F i

w
F L w F L  (14) 

Eq. (13) from UFC 4-023-03 (DOD 2009) is also shown in Fig. 19(a) for comparison, as the intent of 

both relationships is to indicate the tie forces required to sustain a particular level of loading. The two 

expressions intersect at a load intensity of wF = 9.38 kN/m
2
, which is about 1.73 times larger than the 

combined gravity loading of 1.2D + 0.5Loffice. For loads less than this value, the computed tie forces are 

less than required by Eq. (13), indicating that the UFC is conservative. For loads greater than this value, 

the computed tie forces exceed those required by Eq. (13), indicating that the UFC is not conservative.  
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 While the results in Fig. 19(a) are for quasi-static loading, Fig. 19(b) presents a corresponding 

plot for sudden column loss, in which the governing values of 1/iF L  are plotted against values of ,SCL uw . 

The computed values no longer collapse along a single curve due to variability in the dynamic increase 

factor   defined in Eq. (7). Eq. (14) can be modified as follows to incorporate  : 

 
2

2
1 12

( )
/ (  and /  in kN/m )

(3.125 kN/m )

F
i F i

w
F L w F L


  (15) 

Eq. (15) is plotted in Fig. 19(b) for both 1.68   and 1.16  , which represent the largest and smallest 

values of ,( ) ( ) /u static u SCL uw w     obtained from the different floor systems, and the two curves 

capture fairly well the upper and lower limits of the computed values. A general trend of increasing 

( )u   with increasing slab reinforcement is evident in the results, with more lightly reinforced slabs 

falling near the curve for 1.16  , and more heavily reinforced slabs falling near the curve for 1.68  . 

Smaller values of   for lightly reinforced floor slabs are a consequence of the fact that these systems 

exhibit a clear plateau in the load-displacement curve (e.g., Fig. 15), where for an elastic-plastic response, 

  decreases to approach unity at large displacements. Larger values of   for more heavily reinforced 

slabs are a consequence of the stiffer, more linear response that these systems exhibit up to the ultimate 

load (e.g., Fig. 16), where a linear response corresponds to a value of 2  . 

  Eq. (13) from UFC 4-023-03 (DOD 2009) is also shown in Fig. 19(b), and the intersection points 

occur at load intensities of wF = 3.32 kN/m
2
 for 1.68   and wF = 6.97 kN/m

2
 for 1.16  . For a 

particular value of  , Eq. (13) is conservative for loads below the intersection point and is not 

conservative for loads above this point. Eq. (15) is proposed as a replacement for Eq. (13) from UFC 4-

023-03 for steel frame systems with composite floor systems, as it more accurately captures the nonlinear  

behavior observed in the computations and allows dynamic effects associated with sudden column loss to 

be incorporated directly through the parameter  . The upper-bound value of 1.68  , applicable to the 

heavily reinforced floor slabs in this study, could be conservatively used in design. Additional analyses 
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using the energy-based procedure of Fig. 11 may also enable the development of guidelines for selecting 

an appropriate value of   as a function of the slab reinforcement. 

Conclusions 

This paper presented a computational assessment of the performance of steel gravity framing systems 

with single-plate shear connections and composite floor slabs under column loss scenarios. The 

computational assessment used a reduced modeling approach, while comparisons with detailed model 

results were presented to establish confidence in the approach. Both quasi-static loading and sudden 

column loss were considered, and an energy-based approximate procedure for analysis of sudden column 

loss was adopted, after verification through comparisons with direct dynamic analyses, further enhancing 

the efficiency of the reduced modeling approach. Reduced models were used to investigate the influence 

of factors such span length, slab continuity, and the mode of connection failure on the collapse resistance 

of gravity frame systems, and the following main conclusions were reached: 

1. Sudden fracture of shear connections after reaching the ultimate load reduces the ultimate 

capacity of gravity frame systems under sudden column loss scenarios by as much as 17 % 

compared to a gradual softening behavior associated with bolt tear-out. It is recommended that 

sudden fracture should be conservatively assumed in modeling and analysis of shear connections. 

2. The effect of slab continuity beyond the bays adjoining the missing column was found to be 

significant, with the ultimate capacity of a 4 bay × 4 bay floor system under sudden loss of the 

center column being 71 % larger than that of a corresponding 2 bay × 2 bay system. 

3.  Longer span lengths, with correspondingly larger tributary areas, were found to result in reduced 

capacities under column loss scenarios, with the ultimate capacity under sudden loss of a near-

penultimate column being 18 % lower for prototype building B than for prototype building A. 

4. The structural integrity requirements in the 2009 IBC (ICC 2009) were found to be insufficient 

for preventing collapse under column loss scenarios. 
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5. The tie force requirements in UFC 4-023-03 were found to be conservative for quasi-static 

uniform load intensities less than 9.38 kN/m
2
, while for quasi-static loads exceeding this value, 

computed tie forces exceeded those required by the UFC.   

6. An empirical equation was developed that relates the required tie force levels to the uniform load 

on the slab, capturing well the observed nonlinearity in the computed structural responses and 

accounting for dynamic enhancement due to sudden column loss. 

While this study addressed the tie forces necessary to prevent collapse under column loss scenarios, the 

analyses conducted in this study assumed continuity of the steel deck and welded wire reinforcement. 

Detailing requirements to ensure adequate continuity of load paths through the composite floor system 

need to be considered to enable the required tie forces to be developed. 
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Table 

Table 1. Properties of steel deck and welded wire reinforcement for floor slabs 

Slab Designation* Steel Deck Thickness Wire size 

S20-1.4 (original) 20 gage: t = 0.91 mm W1.4: Aw = 9.03 mm
2
 

S16-2.5 16 gage: t = 1.52 mm W2.5: Aw = 16.1 mm
2
 

S16-5 16 gage: t = 1.52 mm W5: Aw = 32.3 mm
2
 

S16-14 16 gage: t = 1.52 mm W14: Aw = 90.3 mm
2
 

* This is not a standard designation; it is simply used for convenience in this paper. 
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Fig. 1. Plan layouts for prototype composite floor systems: (a) 4 bay × 4 bay system from building A; (b) 3 bay × 

4 bay system from building B (number of shear studs indicated next to beam and girder designations) 
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Shear tab (A36):

9.5 mm x 229 mm x 102 mm

A325 bolts, D = 22 mm 
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Fig. 2. Details of single-plate shear connection with three bolt rows 
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Fig. 3. Reduced model of 2 bay × 2 bay composite floor system 
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Fig. 4. Reduced modeling of composite floor slab: (a) actual profile; (b) alternating strong and weak strips 
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Fig. 5. Reduced modeling of shear studs and beam-to-column connections 
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Fig. 6.  Shear force versus slip relationship for shear studs used in reduced models 
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Fig. 7.  Axial load-deformation relationships for bolt springs with alternate forms of post-ultimate behavior 
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Fig. 8. Finite element mesh used in detailed model: (a) composite floor slab; (b) beam-to-column connections 
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Fig. 9  Comparison of load-displacement curves from detailed and reduced models: (a) concentrated load; (b) 

uniform load (2 bay × 2 bay floor system from building A) 
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Fig. 10. Direct analysis procedure for generating a load-displacement curve for sudden column loss 
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Fig. 11. Approximate procedure for generating a load-displacement curve for sudden column loss 
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Fig. 12. Load-displacement curves under central column loss for floor systems from building A with gradual 

softening in post-ultimate response of connections: (a) 2 bay × 2 bay; (b) 4 bay × 4 bay 
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Fig. 13. Load-displacement curves under central column loss for floor systems from building A with sudden fracture 

in post-ultimate response of connections: (a) 2 bay × 2 bay; (b) 4 bay × 4 bay 
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Fig. 14. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) for 

(a) 2 bay × 2 bay floor system from building A at  = 474 mm (ultimate static capacity) and (b) 4 bay × 4 bay floor 

system from building A at  = 497 mm 
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Fig. 15. Load-displacement curves under near-penultimate column loss: (a) 4 bay × 4 bay floor system from 

building A; (b) for 3 bay × 4 bay floor system from building B 



39 

 

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

U
n
if
o
rm

 L
o
a
d
 I
n
te

n
s
it
y
 (

k
N

/m
2
)

Vertical Displacement of Center Column (mm)

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

U
n
if
o
rm

 L
o
a
d
 I
n
te

n
s
it
y
 (

k
N

/m
2
)

Vertical Displacement of Center Column (mm) (b)(a)

1.05D + Lsurvey

1.2D + 0.5Loffice

sudden column loss – approximate
static pushdown (uniform load)

ultimate capacity (wSCL,u)

u

1.05D + Lsurvey

1.2D + 0.5Loffice

sudden column loss – approx.
static pushdown – uniform load

ultimate capacity (wSCL,u)

u

 

Fig. 16. Load-displacement curves under near-penultimate column loss for floor systems with horizontal ties that 

satisfy UFC 4-023-03: (a) 4 bay × 4 bay system from building A; (b) 3 bay × 4 bay system from building B 

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

U
n
if
o

rm
 L

o
a

d
 I

n
te

n
s
it
y
 (

k
N

/m
2
)

Vertical Displacement of Center Column (mm)

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

U
n
if
o

rm
 L

o
a

d
 I

n
te

n
s
it
y
 (

k
N

/m
2
)

Vertical Displacement of Center Column (mm) (b)(a)

1.05D + Lsurvey

1.2D + 0.5Loffice

Floor slab S16-2.5
Reinforcing bars per UFC 4-023-03

Floor slab S20-1.4 (original)

initial connection

failure

1.05D + Lsurvey

1.2D + 0.5Loffice

Floor slab S16-5
Floor slab S20-1.4 (original)

initial connection 

failure

Reinforcing bars per UFC

ultimate capacity (wSCL,u) ultimate capacity (wSCL,u)

Floor slab S16-14

 

Fig. 17. Load-displacement curves for floor systems with different levels of slab reinforcement under sudden loss of 

near-penultimate columns: (a) 4 bay × 4 bay system from building A; (b) 3 bay × 4 bay system from building B 
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Fig. 18. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) at 

ultimate static load for 4 bay × 4 bay floor system from building A under loss of near-penultimate column (D4):  

(a) floor slab S20-1.4; (b) floor slab S16-2.5; (c) floor slab S20-1.4 with reinforcing bars that satisfy UFC 4-023-03 
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Fig. 19. Relationships between normalized tie forces in slab and uniform floor load intensity:  

(a) quasi-static loading; (b) sudden column loss 


