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Measurements of mode transfer matrices of various multimode fiber optic connectors are presented. To

analyze the accuracy and repeatability of such measurements, a theoretical framework which employs mode

transmission functions is derived. It is shown that the transfer function can be used to find transfer matrices
for any set of launches. A procedure for determination of the mode transfer function is given.

1. Introduction

Multimode fiber systems are not describable in
terms of the results of simple loss measurements alone.
Mode dependent transmission by fiber system compo-
nents such as splices, connectors and splitters, as well
as mode dependent attenuation, causes the modal
power distribution to vary with propagation distance
along the system propagation path. As component
intensive systems such as local area nets (LANs) and
premises wiring do not include the great fiber lengths
that are necessary to achieve steady state power distri-
bution (probably several kilometers), the modal power
distribution in such a system will remain in a transient
state. There is therefore no standard launch that can
be used to determine typical loss values. Although it
is clear that overfilled loss measurements would lead to
much too pessimistic loss values, differences between
the associated steady state modal distribution for oth-
er components do not allow one to select a lower bound
loss excitation.

The above considerations indicate that one needs to
analyze multimode systems with a tool which carries
some information concerning the evolution of the
modal power distribution through the system.
Holmes proposed just such a tool in 1981 in a paper in
which he introduced the mode transfer matrix.' The
idea of the mode transfer matrix was that the input and
output power distributions could be arbitrarily quan-
tized into power vectors that could then be related by a
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transfer matrix. Indeed, this tool was later successful-
ly applied to the prediction of loss in fusion splices,2

microbends, 3 connectors, 4 and power splitters 5 as well
as to the prediction of system bandwidth.6

A potential problem with the mode transfer matrix
approach arises from the fact that Holmes's' original
definition of the matrix as being that matrix which
relates the input power vector to the output power
vector is not an operational definition in the sense that
the matrix cannot be experimentally determined from
its definition. Specification of the N components of
the input power vector and measurement of the N
components of the output power vector cannot provide
sufficient information for the determination of the N2

elements of the transfer matrix. In practice, a deter-
mination of the matrix must require the selection of N
independent launches and the measurement of the N
components of the output vector for N different
(known) input vectors. This is the procedure that has
been used in the literature.2-6 Unfortunately, though,
the definition of the transfer matrix yields no informa-
tion regarding how to choose the N input launches nor,
for that matter, any information concerning what
would constitute N independent launches. However,
these questions are crucially important in determining
the ultimate accuracy and repeatability of the transfer
matrix approach.

The electromagnetic theory of guided wave propaga-
tion does yield some information on how transfer ma-
trices should be chosen. For example, in the coupled
mode theory of Marcuse, 7 the transition matrix is a
complex-valued matrix which relates the amplitude
and phase of each mode excitation coefficient at the
input and output of a fiber section. As Marcuse him-
self states, however, this amount of information is
generally unnecessary and he proceeds to derive cou-
pled power equations.7 Indeed, if one excites a multi-
mode fiber with a coherent source, one rapidly finds
out that one would rather not have phase information
carried by the modes, as the result is speckled near
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fields and modal noise.8 As was shown in Ref. 9, use of
multimode or incoherent excitation of a multimode
fiber leads to the excitation of a continuum of modes
and therefore an averaging out of phase information.
As a continuum of modes is excited, one can pass mode
sums to integrals and represent modal excitation coef-
ficients in terms of a function of a single continuous
parameter. This function is generally referred to as a
modal power distribution which is a function of the
mode parameter. In this picture, an output distribu-
tion can be represented as an integral operator operat-
ing on an incident distribution. The kernel of this
operator is the transfer function. This transfer func-
tion can therefore be taken as the object which repre-
sents given fiber components, at least in practical sys-
tems where the mode continuum approximation
applies.

In the mode continuum approximation where a
transfer function can be used to completely character-
ize a component, transfer matrices appear as truncated
projections of the transfer function. To perform a
projection, one must choose a basis. Such is the prob-
lem of choosing a set of independent launches. As will
be shown in the following development, though, a seri-
ous problem arises in that the transfer matrix turns out
to be a weighted average of the transfer function, with
the weight being the incident power distribution.
This is a serious failing of the transfer matrix, as sever-
al incident distributions are necessary for its determi-
nation. This leads to a situation in which the values of
the on-diagonal matrix elements have a higher accura-
cy than those off-diagonal. It further leads to a situa-
tion in which there is no unique transfer matrix unless
the launch conditions are specified in detail. Errors
incurred in generating these specified launches are
serious, as they affect not only the accuracy to which
the desired result is perturbed but perturb the desired
result itself.

In the present work, we try to assess the uncertainty
of the transfer matrix method by using the transfer
function as a tool. Relations between the transfer
matrix and transfer function will be derived. A gener-
al form for the transfer function is presented and a
form for the undetermined coupling function con-
tained in the transfer function is proposed. Experi-
mentally determined transfer matrices will be ana-
lyzed using this transfer function approach. The
development will naturally lead to concepts suggesting
an improved measurement approach. The paper is
organized as follows: Section II contains a short re-
view of the mode continuum approximation, thereby
defining the quantities and symbols to be used in the
later presentation. Section III contains a presenta-
tion of the experimental results. Section IV presents
the main theoretical results of this work. Section V
contains a transfer function analysis of the experimen-
tal results. The last section contains conclusions.

II. Transfer Function Theory

To aid in interpretation of the experimental results
as well as to serve as a basis for later theory, this section

of the paper contains the basic relations used in trans-
fer function theory. A basic tenet behind the use of
transfer function theory is that the modes of the fiber
actually form a continuum. This is a condition on the
linewidth, bX, of the source of center wavelength X. As
was derived in Ref. 9, the inequality to be satisfied for
the mode continuum approximation to hold is

aX, V2

X N 1ka (1)

where 2A is the index contrast which can be defined
by the fiber profile

An -2Af 1/2 r < a, (2)

n1[1 - 2A]/2 r > a,
where f(r/a) is the profile function, a is the fiber core
radius, k = 27r/X is the mean propagation constant, n is
the axial refractive index, and N, = n - dnl/dX is the
axial group index. Were Eq. (1) not to hold, actually
two problems would arise. Clearly, for small enough
linewidths, modal noise would arise and it would be-
come necessary to keep track of all the phases of all the
modes, something that transfer function theory does
not do. Second, if Eq. (1) is violated, the theory could
not be expressed in terms of continuum concepts.
More will be said about this as we proceed.

If Eq. (1) is satisfied, a modal power distribution
p(R) can be defined by

V
2 af/aS ds =

1
(R)

(3)

where the dimensionless radial coordinate s = ra, the
fiber V number is given by V2 = 2Akla where ki = nlk,
I(s) is the near field intensity of the fiber, f1 is the
inverse function to the profile function f, and R is the
mode parameter. The mode parameter can either be
expressed in terms of the modal propagation constant
j by

(4)

or, by using geometrical optics, in terms of the ray
tracing parameters s = r/a and (the angle a ray makes
with the z axis) by

R2 2 + sin2o
2A (5)

It is easily shown that R is a constant of the motion
along a ray path in sufficiently weakly guiding fibers.

p(R) is an important function in that practically any
quantity of interest about the fiber can be calculated in
terms of it. For example, the near field intensity is
expressible as

(6)I(s) = -l/2s p(R)RdR,

and the total power carried by the fiber as

P = J p(R)m(R)dR, (7)
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where m(R) is the modal density and is given by

m(R) = VOR[r W'R]. (8)

The essence of transfer matrix theory goes back to a
work of Holmes,' and the basic tenet is that a compo-
nent can be represented by a matrix. To do this, one
has to represent the power incident on the component
by a vector Pi and the power exiting by a vector PO.
The transfer matrix can then be defined by the matrix
relation

PO = TP (9)

where, using Eq. (7), we can make the identifications

PO=U021, Pi=F/21, (10)

and

PJ = |' p0(R)m(R)dR for 1 Sj S n,

= JR} pi(R)m(R)dR for 1 j < n,

(Ila)

(lib)

where RO = 0 and Rn = 1, and the others can be chosen
as one wishes. Evidently, although Eq. (9) defines T,
it is not sufficient to solve for T. We need N more
relations of N equations to define the N2 components
of T. By making N independent excitations, however,
we can form matrices PO and pi according to the rule

PO = [P Po...] pi = [PiP2 .. Ph], (12)

where the P'(P) is the output (input) vector for the jth
independent excitation. With these matrices, one can
now write the analog of Eq. (9):

PO = TPi, (13)

which can be solved for T to yield

T= P-[Pi]-'. (14)

A final point should be made before going on to the
discussion of the experiment. Clearly, the choice of
the discretization of Eq. (11) appears to be somewhat
arbitrary, as there seems to be no rule on how to discre-
tize. But in fact, if Eq. (1) is satisfied, we really do
have a mode continuum and we need not discretize.
We could just as well define a transfer function
T(R,R'):

p0 (R)m(R) = J T(R,R')pU(R')m(R)dR1 (15)

and the associated transfer operator is defined by

PO(R) = TP(R), (16)

where

P0 (R) = p0 (R)m(R),
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Fig. 1. Schematic depiction of the experimental apparatus used to
measure the mode transfer matrices used in this paper.

P(R) = p(R)m(R). (17b)

It is just such a viewpoint that we take later on in the
development.

Ill. Experiment

The experimental apparatus is depicted in Fig. 1. A
100-W halogen lamp with an ellipsoidal reflector was
used as the source. The light source is focused onto a
spot size generator by means of 5X microscope lens.
The combination of the lens of 100-mm focal length
and input microscope lens of 20X magnification pro-
duces a demagnification of 10.96, since the focal length
of the 20X lens is 9.12 mm. To select the range of the
wavelengths, an infrared bandpass filter with center
wavelength of 850 nm and a passband of 50 nm was
employed. The spot size generator consists of three
patterns. The first is a small hole with a diameter of
100 ,um which is used for central excitation; the second
is used for off-central excitation and is an annulus
which has an outer diameter of -688 Am and an opaque
center circle with a diameter of 525 ,im; and the third is
a large hole with a diameter of -1.5 mm which is used
for overfilled excitation. The fiber end is easily
viewed by means of the microscope, which also allows
measurement of the spot size of the launched beam as
well as of the core diameter.

In the receiving system, the fiber output is imaged
with a 60X microscope lens into a Pulnix TV camera.
The beam splitter allows 90% of the output to be trans-
mitted to the camera channel and 10% to the power
meter detector. This configuration allows most of the
energy to be transmitted to the camera channel, since
the power meter channel does not require a large
amount of signal with the high lock-in amplifier sensi-
tivity. The Pulnix camera is a charge-coupled device
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(CCD) array camera which produces resolution in the
horizontal direction of 280 TV lines and in the vertical
direction of 350 TV lines. The near field intensity is
then digitized with the use of a solid state video memo-
ry (Colorado Video 491 Frame Store) with high speed
A-D and D-A converters and is capable of digitizing,
storing, and displaying a single frame of video informa-
tion. This unit utilizes standard 2:1 interlace and dot
interlace to increase horizontal resolution. A model
793 I/O module is installed in the 491 Video Frame
Store, which provides interfacing to a Hewlett-Pack-
ard HP 216 personal computer.

Power measurements are critical in obtaining the
transmission matrices. To obtain the most accurate
power measurements, the software is written in such a
way that 100 power measurements are averaged. Also,
the near field intensity measurement requires some
caution. Here, the software is written such that the
total near field intensity can be averaged from up to
eighty measurements. This technique is much superi-
or to the one used in mechanical scanning setups, since
the high accuracy is achieved by simple and fast aver-
aging. The speed of the system minimizes noise pro-
ducing effects of thermal variation.

In line with the design of the spot generator, we
chose to measure 2 X 2 matrices. The general experi-
mental procedure was as follows. First, a 1-m length
of fiber was placed at the input location. The input
end of this fiber was not moved following its initial
placement. The output of this fiber with the central
excitation as the input then served as a reference. The
component under test, with a 1-m fiber pigtail at its
output, was then attached to the reference fiber output
without a change in the excitation. That the excita-
tion was not changed is rather important since it is very
complicated to return to a given excitation during a
measurement series. By not trying to return to a given
launch, one can greatly improve one's measurement
error on a given component. After measuring the
output for central excitation, the component output is
measured for overfilled excitation and then for non-
central excitation. The component is then removed,
and the reference output for the noncentral excitation
is recorded. The overfilled excitation is then repeat-
ed. It is deemed that this excitation is repeatable.
The reference output is then recorded for this over-
filled excitation.

The data were then processed by a fitting procedure.
One could use Eq. (3) to convert the near fields to
modal power distributions. However, numerical dif-
ferentiation of experimental data is a very error-prone
operation. Instead, the following forms

Measured transfer matrix

E
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Fig. 2. Plot of the elements of the transfer matrix, measured by a
two excitation technique, for a connector in various states of connec-

tion as a function of their overfilled loss.

fit the measured near field. An R, value for use in Eq.
(11) was then selected, and Eq. (14) was used to deter-
mine the 2 X 2 T matrix.

Figure 2 illustrates the main measurement results.
Plotted here are the elements of the T matrix as a
function of the overfilled loss for a connector in various
states of connection. Table I summarizes launch data
for the sets of connection states used for the various
launches. In the table the D denotes the average (over
the ensemble) deviation from the mean, as defined by
the curve used to fit the data. The S is the standard
deviation from this curve. The launches are charac-
terized by their k values, where the k are defined by

Table I. Statistics of Six Groups of Experimental Data, each Group
having the Same Launch Condition denoted by kr and k where D is the
Mean Deviation of the Data in each Group from the Fitted Curve and s is

the Standard Deviation, with the Last Column Showing the Statistical
Results for all the Data in the Six Groups

1 2 3 4 5 6 Total

Ki(Pl/P21) 2.41 446 2.96 2.92 0.06 2.1

K2(P22/P 12) 4.55 4.21 6.40 2.26 2.27 1.05

D .0139 .0059 .0008 -0293 .0084 .0127 0Til
S .0302 .0059 .0537 .037 .027 .0156 .0358

D -.0068 -.0043 -.0064 .0021 .0069 0168 0
T12 --- _ _ _ _

S .0076 .0052 .0118 .02 .0078 .0357 .0153

D -.0082 -.0144 -.018 .0045 .0201 .0192 0
T21 - _ _

S .0252 .0162 .0495 .0246 .023 .043 .0325

T22 D .0064 -0039 .0097 - 012 .0053 -.0241 0
S .0202 0214 0379 0234 .0106 .0591 .0286

p(R) = A exp(-QR),

p(R) = AR 2 exp(-QR 4 ) (18b)

were chosen, Eq. (18a) for central excitation and Eq.
(18b) for noncentral, where A and Q are free parame-
ters. The A and parameters could be determined by
overfilled loss measurement and by the use of Eq. (7) to

T1 1 y=.992-.2055xl *6

T12 y=.0022+.0912x 4 9

T2 1 y=.0369+.095x -

T22 y=.9159-.2603x -
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P= J dRp0 (R)m(R)soj(R),

= J dRp'(R)m(R),oj(R).

where the P1,h are the elements of the matrix defined in
Eq. (12).

As stated above, the measurements were all carried
out for a single connector in various states of connec-
tion. The idea behind this was that each time the
connector was pulled apart and reconnected, the dif-
ference between this reconnection and the original
connection would be as different as the differences
between two different connectors in similar states of
connection. This assumption has not been studied in
any detail, but hopefully is true for well assembled
connectors.

An interesting point that can be surmised from the
study of either Fig. 2 or Table I is that the standard
deviations of the elements are more or less indepen-
dent of their mean values. That is to say that the
relative uncertainties in the T12 and T21 elements are
much greater than in the diagonal elements. This is
not too surprising if one studies Eq. (14) for the T
matrix. All the values of the powers, both big and
small, go into the calculation of the T matrix elements.
Therefore the relative error will be relative to the larg-
est power value. One could assume that this is the
cause of some of the seemingly unphysical negative
values of the T12 elements pictured in Fig. 2. Howev-
er, as will be seen later in this paper, negative values of
matrix elements need not arise only due to noise, but
can also be caused by the choice of launches them-
selves, and negative values could even arise in the
absence of noise. This point will be discussed later in
this work.

IV. Theory

What we wish to do here is to establish relationships
between the transfer function and the transfer matrix
for purposes of elucidating the actual meaning of the
measured results. Here, the point of view that the
transfer function is the mathematical object which
represents the test component will be taken. This
seems to be a rational point of view to take if it is to be
tacitly assumed that the mode continuum approxima-
tion applies. Therefore, the equation which defines
the effect of a component is Eq. (15). To find a matrix
corresponding to the operator T of Eq. (16), one needs
to choose an orthogonal basis of functions spk(R). If
one does this, one finds that

Tjk = I dRpj(R)Aok(R), (20)

where

Ek = J dRP 2(R),

with the power vectors of Eq. (11) now given by

(21)

Whereas in Eqs. (9)-(11) it was assumed that the
power vectors could be chosen of an arbitrary length n,
here it is evident that the power vectors are infinite
dimensional as it takes an infinite number of functions
p(R) to span the space 0< R • 1. To hook up with the
2 X 2 representation, however, one could choose

___ f I ~R,~ 2ir

a2 j+l cosIR ) R-

Ijs1 n 2 / R,
a2j+ sin R- I -

O <R <Rc =0,1,2..., (23a)

1 FbR cos(R1 +Rc) 21
b2j sin(R- 1 c) 1 R.

(23b)

which is just a double Fourier series, one on [0,RC] and
one on [R,1]. The first terms of p1(R) and p2(R)
would just be rectangle functions which have value
unity on the two intervals, respectively. Therefore,
the values of Tjk for j,k = 1,2, and the first two elements
of the power vectors would be exactly those which
would be defined for a 2 X 2 case from Eqs. (9)-(11).
Unfortunately, there are still a countable infinity of
terms left over. To clarify what these other terms do,
one picks a set of n excitations. One can then choose
input and output matrices as per Eq. (12). These
matrices will now have dimension - X n. Clearly, Eq.
(14) will still hold except that now the transfer matrix
will have dimensions of X -. If one had the correct
power matrices, one could perform the operations of
Eq. (14) and then truncate to n X n to obtain a transfer
matrix we will denote by r1 , meaning the exact T.
However, in practice one does not determine the exact
power matrices but uses truncated n X n versions poT

and piT to determine the measured transfer matrix
T-. This operation is not the same as calculating
directly, as can be noted by writing

(24)V(m) = poT(piT)-l = r + Tipi+(pitl)-,

where T+ is the transfer matrix with the first n col-
umns replaced by zero vectors and Pi+ is the excitation
matrix with its first n rows replaced by zeros, a situa-
tion illustrated in Fig. 3.

A major point of the above argument is that the
truncation of the power matrices causes an added er-
ror. The only way this error can be made to go away is
if the Pi+ is identically zero. Recalling Eq. (22), this
could only be the case if

| dRpL(R)m(R)Soj(R) = 0, V j > n, and pi(R), (25)
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that is, if all the n excitations were orthogonal to all the
basis functions. Recalling the double Fourier series
example of Eq. (23) as applied to a 2 X 2 case, the two
excitations would have to be perfectly flat modal dis-
tributions, the first flat between 0 and R, and the
second flat from R, to 1. This is what is meant by
independent excitations. They cannot overlap and
must be orthogonal to all higher order terms. Unfor-
tunately, the diffraction limit precludes us from actu-
ally generating such launches.

Now that it has been determined what is meant by
the term independent launches, it is time to try to
assess how serious it is that such launches cannot quite
be generated. For simplicity, we consider only a 2 X 2
case. Clearly, the power exiting a component can be
expressed in the form

=Po+P2= T11P1 +T12P2 +T 21 1 + T 22 2 (26)

A second expression for the power can be found by
writing Eq. (7) in the form

P0 = J dR J dR'T(RR')m(R')p 1 (R')

+ dR dR'T(R,R')m(R')p(R'), (27)

+ J dR JIR dR'T(R,R')m(R')p'(R')

Ic I

+ J dR J dR'T(R,R')m(R')p'(R').

Now, as it has been previously stated, it is not clear how
to perform the discretization of T(R,R'). A possible
way is to identify each of the four terms of Eq. (27) with
each of the four terms of Eq. (26). Although such a
decomposition is not unique, it seems plausible and
indeed, in the limit where one can generate arbitrary
(possibly unphysical) launches, one can show that such
a decomposition could actually be justified. Perform-
ing the decomposition, and using Eqs. (11) to express
the incident power vectors, one obtains the following
relations:

dR J dR'T(R,R')m(R')p(R')

dR'(R')(R')pi(R')

R 1
I dR dR'T(R,R')m(R')p(R')

T12- I

X,' dR'm(R')pi(R')

RR

J dR J dR'T(R,R')m(R')p (R')

T21=' 

JdRWmR')p'(R')

f' dRfA dR'T(R,R')m(R')p'(R')

T22 = 

|dR'm(R')p'(R')

PO

1 - N

I oT

N
N+1

Ip+

T

N
N+1

1 - *. N N+1 - °°

e +
T T

Pi
1

I iT

N
N4+1

x 

poT = Tep iT + T+ P+

Tn) P T(p iT)

= T e + T +pi+(p iT) 1

Fig. 3. Schematic depiction defining the various matrices used in
Eq. (24).

From Eq. (28) it is clear that the measured transfer
matrix is simply a weighted average of the transfer
function, where the weighting is given by the incident
modal distribution. In practice, however, several
launches are needed; it is not clear what information
(28) gives us. Only in the flat launch limit, where the
two launches are completely flat and nonoverlapping,
will the above equations separate and T and T21 can
be determined from one launch and T12 and T22 deter-
mined from the other. In the case that the two
launches are not independent, it can be shown that

_Tll)klk2-T(2) + [T(1) -V,)]k

klk2-1

V2) k I -k T 2) + [j2,) T()]k

m2 = k1 k2 -1

T21 )klk2 - T221) + [19) - lk
21- k 1 k 2 -1

n T 222)klk2 - 22) + [T221) -T2ll)]
22= k 1k 2 - 1

(28a)

(29a)

(29b)

(29c)

(29d)

(28b) where the superscript m refers to measured, the super-
script 1(2) refers to the transfer matrix value deter-
mined from launch 1(2), and k and k2 are as they were
defined in conjunction with Table I, in Eq. (19). As

(28c) we've seen various times before, if the launches become
flat and independent, i.e., if k and k2 -, the mea-
sured matrix becomes the truncated version of the
exact. Otherwise, there will be a tendency for T(m) and
T~?m to have very distorted values due to the fact that

(28d) T ) and T(2) tend to be much larger than the off-
diagonal terms, yet they show up as error terms in Eqs.
28(b) and (c).
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V. Comparison with Experiment

It would be of great value to verify the result of Eq.
(28). To do this, however, it is required that one know
the transfer function. In this section of this paper, a
form of the transfer function is presented and a two-
parameter coupling function is proposed to close the
model. As will be seen, the two coupling parameters
can be determined from experimental data. This al-
lows one to use the transfer function to derive various
forms of the transfer matrix, such as the ones used in
Eq. (20).

In a component such as the connector or splice, it
seems quite safe to assume that the dominant loss
mechanism will be mode coupling as the components
are not long enough for there to be significant absorp-
tion or Rayleigh scattering. In this mode coupling
case, there are only three things that can happen to the
power in a mode. It can remain in that mode, it can be
diminished by coupling out of that mode, or it can be
augmented by coupling from other modes. With these
considerations, one can see that the most general form
a mode coupling driven transfer function can take is

T(R,R') = [1 - f dR"m(R")a(R",R')]B(R - R')

+ m(R)a(R,R'),

z

1.0 -

0.8 -

0.6 -

0.4-

02-

0.0

-0.2

1.0-

0.8 -

0.6-

0.4

I 0.2-

0.0-

(30)
-0.

where a(R,R') is the coupling function. As coupling
can be caused by a multitude of effects, it seems rea-
sonable to assume that the coupling function could
take the form of a Gaussian of the form

0 .0s .1

Overfilled loss

.s , .' , .s 
0 .05 .1 .25 .5

Oveoflilled loss

a(R,R') = 1/2ao exp(-IR2 - R'21/2T), (31)

where ao and r are fitting parameters. It is clear that
the form of Eq. (31) cannot be good for all components
or for that matter applicable for all values of R and R'.
For example, power coupled from an R' to a value of R
> 1 cannot be coupled back down as it is lost to the
system. That power at R > 1 is lost to the system is
taken into account by the limits on the integrals in Eqs.
(7) and (15), the form of the coupling function that
would allow down-coupling from R > 1 values. For
small loss, this is probably acceptable, but there are
limitations. These limitations are not in the form of
Eq. (29) but of Eq. (30), and therefore there is always
hope that a fix-up of Eq. (30) could improve the accu-
racy of the approach or allow the approach to be ap-
plied to a variety of different components. This will
be left for future work.

Figures 4-6 illustrate some of the predictions of the
transfer function of Eqs. (30) and (31). Figure 4 shows
predictions of Eq. (29) for fixed k1 and k2 as a function
of loss for fixed values of r. These plots should corre-
spond to the data displayed in Fig. 2. Direct compari-
son is difficult, as the data of Fig. 2 was taken for
various launch conditions. The trend of the data and
that of the predictions of Fig. 4 are seen to be the same.
The on-diagonal elements gradually fall off, while the
off-diagonal elements increase. An interesting point
is that the measured off-diagonal elements in some
cases take on negative values, while the simulated ele-
ments, although following the same trend, follow a
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., s . .7s 5 

Ov(tiled losS

Fig. 4. Elements of transfer matrices predicted by Eq. (29) using
the transfer function of Eq. (30) in Eq. (28), for the launch combina-

tion of k, = 2.64 and k2 = 2.88, for seven different overfilled loss

values with three different values of r (0.05,0.1,0.2) for each loss

where (a) corresponds to T = 0.05, (b) corresponds toT = 0.1, and (c)
corresponds to T = 0.2.

smoother trajectory and never go negative. Equation
(29) illustrates that the T21 and T12 need not be posi-
tive definite when they are determined from multiple
launches. However, apparently for the chosen values
these elements are positive. This seems to indicate
that the negatives of Fig. 2 are due to measurement
noise and are not truly negative despite the multiple
launch measurement technique. It is clear, however,
that the matrix elements are much more noise resis-
tant when determined from a transfer function than
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Fig. 5. Plots showing the dependence of matrix elements on launch conditions as predicted by Eq. (29) where abscissa shows the different
combinations, with c and n denoting central and noncentral excitations, respectively, and the number after c or n isthe value of k from Eq. (9),
where (a) and (b) are for central, noncentral combinations and (c) and (d) are for central-central and noncentral-noncentral excitations,

respectively.

when they are directly measured. Another point evi-
dent from comparison of Fig. 4 is that, although the
matrix elements exhibit dependence on -r, the depen-
dence is not dramatic. That is to say, the matrix
elements calculated from a transfer function are stable
to bounded uncertainties in the determination of ao
and i-.

Figures 5 illustrate the dependence of the transfer
matrix elements derived from the transfer function on
the different launches used to measure the transfer
matrix as per Eq. (29). An interesting point noted
from Figs. 5(a) and (b), with mixed central and non-
central launches, is that the jitter on each of the curves
for the matrix elements is about the same regardless of
the average value of the element. The fluctuations are
therefore much more violent for the small T12 and T21
elements. Indeed, the jitter is sufficient to drive T12
negative for various launch conditions. This is indeed
the essence of the problem with the measured transfer
matrices. Indeed, in Fig. 5(c), where different central
excitations are used, T12 can become considerably neg-
ative. In the case of Fig. 5(d), however, where only
noncentral excitation is employed, all the elements
seem more stable and T12 remains essentially zero.
This should not be taken as being indicative of all
noncentral launch combinations, as no attempt was

made in Figs. 5 to systematically trace out of the 2-D
launch space.

Figures 6 illustrate the dependence of the measured
matrix elements on variations in launch conditions.
As it is a very tall task to refind a launch site with
micron or submicron accuracy, it is well expected that
reasonably large variation in the k and k2values of Eq.
(19) can occur. Therefore, the plots of Fig. 6 illustrate
the variation of the matrix elements of Eq. (28) (matrix
elements calculated form a single launch) with the
input modal distribution, as can be characterized by k,
and k2. Although neither of the plots exhibit rapid
fluctuations, both indicate explicitly that for certain
input distributions, elements of the transfer matrix
can be negative.

Figures 7 illustrate the more realistic case of two
launch transfer matrix determinations. Here what is
plotted are the elements of the transfer matrix, as
predicted by Eq. (29), as a function of k (k2) for a fixed
value of k2 (kD). Here, no negative values of transfer
matrix elements are observed, unlike the cases depict-
ed in Figs. 6. In the above examples, it has been
assumed that the transfer function can somehow be
determined.

Indeed, procedure for determining the o and of
Eq. (31) from experiment can be carried out as follows.
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Fig. 6. Plots showing the variation of matrix elements derived from

a transfer function with launch condition for (a) a transfer function
found from a central excitation and (b) a transfer function found

from a noncentral excitation.

First, one notes that the loss L for overfilled excitation
can be expressed as

L = 2a0 V2T2 (1 + 2i-){1 - 2T{1 - exp(- 2 )]} (32)

where Eqs. (26) and (28) have been used to obtain Eq.
(32). Equation (31) serves as the first of two equations
needed to uniquely determine ao and T. A second
relation can be obtained by using Eq. (16) in Eq. (6)
with the form adopted from Eqs. (30) and (31). What
this gives is an expression for the near field intensity
exiting a component, given a known input. As o and T

are characteristics of the component and not of the
launch, it should not matter which launch is employed.
Indeed, further discussion as well as experimental veri-
fication of this point are given in another work.'0 The
point here is that, if a near field intensity distribution
has been stored for any launch condition, Eq. (31)
together with a fitting procedure may be used to deter-
mine ao and -T. A way to do this is to use Eq. (32) to
eliminate ao from Eq. (31) and then fit with T. Indeed,
this has been done for the experimental cases of Fig. 2.
The results are summarized in Table II. Here mea-
sured data are listed in the first row, matrices are

1.00e+0 

8.00e^1 

u 6.000-1 -

I- 4.00e- -

2.00e-1 -

(b)

-w- T1I
- T12

-- T21
4- T22

9 71n-20 1 .

k2

Fig. 7. Plots showing the dependence of the matrix elements for
variations in launch conditions where in (a) k, = 2.64 is fixed and k2

is the abscissa and in (b) k2 = 2.88 is fixed and k 1 is allowed to vary.

predicted using the form of Eq. (29) in the second, and
the matrices are predicted from Eq. (28) for the central
k in the third column and for the noncentral k in the
fourth column. The fit seems satisfactory and there
does not seem to be any systematic skew in the predict-
ed matrices with respect to the experimental data.

VI. Conclusions

The launch dependence of the transfer matrix is a
serious measurement problem. The results presented
in this work show that the problem is a fundamental
one. The use of a transfer function with experimental-
ly determined parameters seems to be a preferable
method of generating a meaningful characterization of
a component. The transfer function technique, how-
ever, requires that a form for a coupling function be
proposed and verified. Further discussion of the here-
in proposed couling function will be given elsewhere.' 0
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Fig. 3. Integrated circuit photomask pattern is used to make poly-
crystalline silicon strips of various widths and, therefore, of various
electrical resistances and infrared characteristics. The strips are
used as glow-bar resistors to calibrate infrared sensing instruments.

power dissipation. (Measurements have shown that the current vs
voltage curve is fairly linear.)

A device can be made or used alone or as part of a flat panel or
complicated multielement array of reference sources. A device or
array is fabricated as follows:
1. A silicon substrate is oxidized to a depth of 10,000 A.
2. A film of polycrystalline silicon 8000-10,000 A thick is deposited
on the oxide.
3. The polycrystalline silicon is doped with boron to obtain a resis-
tance of 50-100 Q/o3.
4. The polycrystalline silicon is etched to form the pattern of resis-
tor strips and contact areas (e.g., as shown in the upper part of Fig. 3).
5. The oxide is stripped from the exposed areas of the wafer and
from under the beam(s), leaving only the oxide under the contact
areas.
6. A thin film of aluminum is evaporated onto the entire water.
7. The pattern of contact pads is masked, and the aluminum is
etched to leave only the portion in the contact areas.
8. The aluminum is alloyed to form the contacts.
A typical completed device is shown in the lower part of Fig. 3.

The self-passivating nature of the polycrystalline silicon adds to
the reliability of the devices. The maximum operating temperature
is over 1000 K, compared with the maximum of 600 K in prior
devices. The power dissipation is only one-fourth that of the prior
devices.

This work was done by G. Lamb, M. Jhabvala, and A. Burgess of
Goddard Space Flight Center. Refer to GSC-13085.
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