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Modeling and Analysis of Single-Plate Shear Connections 
Under Column Loss 

Joseph A. Main, Ph.D., A.M.ASCE1 and Fahim Sadek, Ph.D., M.ASCE2 

Abstract:  This paper presents a computational assessment of the behavior of single-plate shear (“shear 

tab”) connections in gravity frames under column loss scenarios. Two-span beam assemblies without 

floor slabs are considered under push-down loading of the unsupported center column. Both detailed and 

reduced modeling approaches are used in the computational assessment, and comparisons with 

experimental data are presented to establish confidence in the models. The models are used to investigate 

the influence of factors such as end support conditions, span length, connection strength, and post-

ultimate connection behavior on the collapse resistance of gravity framing systems. Rotational capacities 

of single-plate shear connections under column loss scenarios are found to be in some cases less than half 

of the values based on seismic test data, due to the axial extension imposed on the connections in addition 

to rotation. 

CE Database subject headings:  Buildings; Connections; Finite element method; Nonlinear 

analysis; Progressive collapse; Steel structures. 

Introduction 

Computational studies (Sadek et al. 2008, Alashker et al. 2010) have indicated the susceptibility to 

collapse of gravity frames (i.e., frames designed to carry only vertical loads) with single-plate shear  

connections (also known as “shear tab” or “fin plate” connections) under column loss. The composite 

floor slab was found to significantly enhance the capacity of the system relative to that of the bare steel 

framing. However, the capacity of the composite system was still found to be inadequate to sustain 
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gravity loads under sudden column loss. To investigate the collapse resistance of gravity frame systems, 

recent and ongoing experimental studies (Thompson 2009, Oosterhof and Driver 2012, Weigand et al. 

2012) have assessed the behavior of single-plate shear connections under combinations of shear force, 

bending moment, and axial tension representative of column loss scenarios.  

The collapse-resistance of single-plate shear connections depends on a number of factors, 

including span length, connection strength (e.g., number of bolts), and post-ultimate behavior. Sadek et al. 

(2008) and Alashker et al. (2010) considered a bay size of 6.10 m × 9.14 m, where the 6.10 m span is 

somewhat short compared to typical construction. Longer beam spans might be expected to impose 

greater demands on the connections under column loss scenarios, potentially leading to increased 

susceptibility to collapse. Sadek et al. (2008) and Alashker et al. (2010) considered connections governed 

by tear-out failure, characterized by gradual softening in the post-ultimate response. However, tests by 

Thompson (2009) and Weigand et al. (2012) exhibited sudden fracture, associated with bolt shear rupture 

or brittle plate rupture, resulting in a loss of both axial and shear capacity at a smaller rotation than would 

be sustained due to gradual softening. Models that accurately capture the influences of these factors are 

important for assessing the capacity of gravity framing systems under column loss. 

Motivated by these considerations, this paper presents modeling and analysis of two-span beam 

assemblies with single-plate shear connections under “push-down” loading, as illustrated in Fig. 1. Two 

finite element modeling approaches for the connections are presented: (1) detailed modeling, which uses 

solid elements, plasticity models, and contact algorithms, and (2) reduced modeling (also known as a 

“component-based” or “macromodel-based” approach), which uses assemblies of beam and nonlinear 

spring elements. A number of previous studies have used computational modeling to study the behavior 

of single-plate connections. Sarraj (2007) developed both detailed and reduced models to study the 

behavior of single-plate connections under fire-induced heating. Sadek et al. (2008) presented empirical 

equations for reduced modeling of single-plate connections under column loss and compared detailed and 

reduced model results. Daneshvar and Driver (2011) compared detailed model results with experimental 
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results from Thompson (2009). Yim and Krauthammer (2012) presented detailed and reduced models to 

represent the moment-rotation behavior of single-plate connections. 

The reduced modeling approach presented in this paper extends the empirical model of Sadek et 

al. (2008) by incorporating vertical shear deformation and failure, connection slippage, inelastic 

unloading behavior, and sudden fracture, as applicable. Both detailed and reduced models are analyzed 

using explicit time integration in LS-DYNA (Hallquist 2007), with displacement-controlled loading 

applied slowly to achieve a quasi-static response. Comparisons of both detailed and reduced models with 

experimental data from Thompson (2009) are presented to develop confidence in the modeling 

approaches. Detailed and reduced models are then used to analyze two-span beam assemblies from the 

gravity framing systems of prototype buildings described in Main and Sadek (2012), and the influences of 

support conditions, span length, connection strength, and post-ultimate behavior on the ultimate load and 

rotational capacities of the assemblies are investigated.  

Detailed Modeling 

The detailed modeling approach for single-plate shear connections, illustrated in Fig. 2, uses solid 

elements to represent the beam, plate, and bolts, with typical element sizes of 1.5 mm for the bolts and 

3 mm for the beam and plate. Contact is defined between the bolts, plate, and beam web to model the 

transfer of forces through the bolted connection, including friction and bolt bearing. A piecewise-linear 

plasticity model (material 24 in LS-DYNA) is used to represent the material behavior of the various steel 

components. In this material model, an effective stress versus effective plastic strain curve is specified, 

along with a plastic strain to failure, at which elements are removed from the model to simulate fracture. 

The material model parameters for each component were developed based on engineering stress-strain 

curves obtained from tensile tests reported in the literature for each type of steel. The engineering stress-

strain curves were converted to true stress vs. plastic strain curves, which were extrapolated linearly 

beyond the point of necking onset. The post-necking modulus and the failure strain were adjusted so that 

engineering stress-strain curves obtained from finite element models of tensile coupons would correspond 
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closely to the coupon test results. Due to mesh-size sensitivity in the modeling of softening behavior, this 

calibration was performed using finite element models of tensile coupons with the same mesh size as 

those used in the models of each connection. 

For the ASTM A325 high-strength bolts, the material model parameters were based on a typical 

engineering stress-strain curve from coupon testing reported in Kulak et al. (1986) and shown in Fig. 3(b) 

(labeled “coupon test”). The corresponding true stress-strain curve evaluated from the coupon test data is 

shown in Fig. 3(a). Note that the true stress-strain curve exhibits a drop in stress at a plastic strain of 

about 8 %, which corresponds to the onset of necking; extrapolation was needed beyond this point 

because the coupon data are not representative of the true stress in the neck region of the coupon. The 

extrapolated true stress-strain curve, labeled “model” in Fig. 3(a), was implemented in a solid-element 

model of a tensile coupon with a gage length of 50 mm, shown in the inset of Fig. 3(b). The engineering 

stress-strain curve computed from the coupon model is shown in Fig. 3(b) along with the coupon test 

results. The good comparison of the computed and experimental stress-strain curves in Fig. 3(b) shows 

that the piecewise linear plasticity model with element erosion accurately captures softening behavior 

after the onset of necking and fracture at the appropriate elongation. A similar procedure to that illustrated 

in Fig. 3 was used to calibrate the plasticity model for the A36 and A992 steel materials used for the plate 

and wide-flange components, respectively, with values of yield strength, tensile strength, and percent 

elongation corresponding to the minimum values in the ASTM specifications (Fig. 4).  

To develop confidence in the detailed modeling approach, model predictions were compared with 

available experimental data from connections with a single bolt, including double-shear tests (Wallaert 

and Fisher 1965), a test of bolt bearing on a single plate (Rex and Easterling 2003), and a single-shear test 

(Richard et al. 1980). These comparisons, presented in Main and Sadek (2012), showed that detailed 

models are able to capture both bolt shear deformations and bearing-induced plate deformations, 

including the combination of these mechanisms that contributes to the overall deformation in single-plate 

shear connections. 
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Reduced Modeling 

The reduced modeling approach for single-plate shear connections, illustrated in Fig. 5, uses biaxial 

springs, one for each bolt row in the connection, with distinct load-deformation curves to represent 

yielding and failure (1) along the beam axis and (2) in vertical shear. The biaxial springs are implemented 

using a zero-length discrete beam element formulation (beam type 6 with material 119 in LS-DYNA). To 

maintain the proper connection geometry, rigid links connect the ends of the spring elements to nodes 

along the beam and column centerlines.  

Alternate axial load-deformation relationships are shown in Fig. 6, in which forces and 

deformations along the beam axis are plotted on the vertical and horizontal axes, respectively. Positive 

values of deformation (corresponding to tensile forces) denote displacements away from the column. Note 

that both tensile and compressive forces in a connection spring (or bolt row) are developed through shear 

forces in the bolt itself. Fig. 6(a) shows a load-deformation relationship of the form proposed by Sadek et 

al. (2008) for axial behavior controlled by bolt tear out, which exhibits a gradual drop in resistance after 

the ultimate load in tension (tu) is reached and no drop in resistance after the ultimate load in compression 

(cu) is reached. The load-deformation relationship in Fig. 6(b) exhibits a steeper drop in resistance after 

the ultimate load is reached in both tension and compression and is applicable for axial behavior 

controlled by bolt shear failure. As is discussed subsequently, it is recommended that a load-deformation 

relationship of the form in Fig. 6(b) be conservatively assumed in the analysis of single-plate shear 

connections. 

In both cases, the initial stiffness k of the connection spring is estimated based on a linear 

regression of rotational stiffness data from seismic testing. The initial rotational stiffness of a single-plate 

shear connection, here denoted κ, is given in Eq. (5-19) of FEMA 355D (FEMA 2000): 

 124 550( 142 mm)      (kN mm/rad)bgdκ = − ⋅  (1) 
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where dbg = s(N − 1) is the depth of the bolt group, s = 76.2 mm is the vertical spacing between bolts, and 

N is the number of bolts. The initial translational stiffness of a spring element representing a single bolt 

row, denoted k, can then be estimated as: 

 2
i

i

k
y

κ
=
∑

 (2) 

where yi is the vertical distance of the ith bolt row from the center of the bolt group. 

The yield and ultimate capacities of each spring in tension (ty and tu, respectively) and in 

compression (cy and cu, respectively) are calculated based on the governing failure mode of the 

connection under axial loading, using equations in the AISC Specification (AISC 2010) with a resistance 

factor of φ = 1. Minimum specified values of yield strength Fy and ultimate strength Fu for each type of 

steel are used in these equations. Axial connection capacities are divided by the number of bolts to obtain 

the capacity of a single bolt row. While other failure modes may potentially govern (e.g., fillet weld 

failure or block shear failure), the governing failure modes for the single-plate shear connections in this 

study are bearing failure at bolt holes (AISC 2010, Section J3.10) and bolt shear failure (AISC 2010, 

Section J3.6). Equations for the yield and ultimate capacities in these limit states are listed in Table 1, in 

which t is the thickness of the connected material (beam web or plate), Lc is the clear distance between the 

edge of the bolt hole and the edge of the connected material, and d and Ab are the diameter and cross-

sectional area of the bolt, respectively (see AISC 2010). The ultimate strength of the bolt in shear is 

denoted Fv . Values of Fv listed in the footnote of Table 1 were obtained by dividing the values reported in 

Table 5.1 of the Research Council on Structural Connections Specification (RCSC 2004) by a factor of 

0.80 to eliminate the reduction in strength that accounts for non-uniform shear force distribution, since for 

axial loading the connections under consideration have only one bolt in the line of force. The factor of 

0.75 in the expression for the bolt shear yield capacity is the approximate ratio of the yield strength to the 

ultimate strength of the bolts. 
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The spring displacement corresponding to the ultimate load, denoted δu, is estimated using Eq. (5-

17a) in FEMA 355D (FEMA 2000), which gives the plastic rotational capacity of simple shear 

connections designed using the AISC Specifications, and with adequate clearance between beam flanges 

from column to prevent binding. Adding an estimated elastic rotation of 0.02 rad to Eq. (5-17a) from 

FEMA 355D gives the following estimated total rotational capacity (in rad): 

 0.17 0.00014     (  in mm)max bg bgd dθ = −  (3) 

Since the tests in FEMA 355D (FEMA 2000) subjected the connections to rotation with no axial 

extension, the deformation at ultimate load for a connection spring element can be estimated as 

u max maxyδ θ= , where ymax = dbg ∕ 2 represents the distance from the center of the bolt group to the most 

distant bolt. Substituting Eq. (3) for maxθ  yields the following expression for uδ : 

 20.085 0.00007      (  in mm)u bg bg bgd d dδ = −  (4) 

Note that while θmax decreases with dbg, uδ  actually increases with dbg, from uδ  = 11.3 mm for 

dbg = 152.4 mm (a 3-bolt connection) to uδ  = 19.3 mm for dbg = 304.8 mm (a 5-bolt connection). The 

increase of uδ  with dbg, follows directly from Eq. (3), which represents a fit to experimental data. The 

experimental data thus indicate that deeper connections can accommodate larger deformations prior to 

failure. 

For axial behavior characterized by gradual softening due to tear-out failure [Fig. 6(a)], the failure 

displacement of the spring in tension (δ f,t) is selected as the horizontal distance from the bolt centerline to 

the edge of the plate or beam web, noting that no resistance can be provided once the bolt has passed 

beyond the edge of the plate or beam web. Computational simulations of bolt tear-out failure (Main and 

Sadek 2012, Section 3.1.3) have confirmed that this is a good estimate of the displacement at which the 

tear-out resistance reaches zero. No softening or element deletion is considered for bearing failure in 

compression. For axial behavior characterized by sudden fracture [Fig. 6(b)], a steeper drop in resistance 

after the ultimate load is considered, and the failure displacements of the spring in tension and 
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compression (δ f,t and δ f,c, respectively) are set equal to 1.15δu, where the coefficient 1.15 was selected to 

avoid transient “ringing” that results from using a steeper drop in resistance in the explicit dynamic 

analysis. In the case of load reversal (e.g., if initial compressive forces in a connection spring due to 

flexural action later change to tensile forces due to catenary action), unloading follows a quadratic curve 

with no permanent offset (see Fig. 6) to represent the hysteresis associated with bolt shearing and bolt 

hole elongation. The unloading behavior does not have a significant effect for the prototype beam spans 

of 5.97 m or more considered subsequently. However, in comparisons with the experimental data 

described in the following section, with a beam chord length of only 1.97 m, compressive yielding 

occurred in the initial flexural response, and quadratic unloading was found to give better agreement with 

the data than linear unloading with the initial stiffness k.  

The vertical shear behavior of each connection spring is represented using a load-deformation 

relationship of the form in Fig. 6(b), with symmetric behavior for upward and downward displacement. 

The yield and ultimate capacities of each spring (vy and vu, respectively) are obtained by dividing the 

vertical yield and ultimate capacities of the connection, calculated using equations in the AISC 

Specification (AISC 2010) with φ = 1, by the number of bolts. The initial stiffness k and the displacement 

at the ultimate load, δu, are assumed to be the same in the vertical and axial directions, given by Eqs. (2) 

and (4), respectively, an approximation that was found to be reasonable based on numerical simulations 

(see Main and Sadek 2012). The failure displacement in vertical shear (δf,v) is set to 1.15δu regardless of 

the governing failure mode, conservatively assuming a rapid drop after the ultimate load in vertical shear. 

Interaction of the axial and shear failure modes is handled by deleting the connection spring from the 

model if the following inequality is satisfied: 

 
2 2
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where δi denotes the axial deformation and δv,i denotes the shear deformation of the ith connection spring 

element. Compressive failure is considered using a corresponding inequality, in which δ f,t is replaced by 
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δ f,c. Note that while the ultimate capacities in axial tension, axial compression, and vertical shear may 

differ depending upon the governing failure modes, these criteria allow for failure of each biaxial 

connection spring due to any of the applicable failure modes. Failure of the connection occurs by 

successive failure of each spring element. 

Comparison with Experimental Measurements 

Thompson (2009) tested two-span beam assemblies with single-plate shear connections in the basic 

configuration illustrated in Fig. 1, but with pin connections at the exterior ends of the beams. A fairly 

short beam with a chord length of L = 1.89 m was used in these tests, where the chord length L denotes 

the horizontal distance between bolt centerlines. Half of the symmetrical test configuration is illustrated in 

Fig. 7, which shows a detailed model of an assembly with five bolts per connection. Three different 

connection sizes were considered, having three bolts, four bolts, and five bolts per connection. The bolt 

diameter, plate thickness, and other properties shown in Fig. 7 were the same for all connection sizes, 

except that the plate depth was 229 mm, 305 mm, and 381 mm for the 3-bolt, 4-bolt, and 5-bolt 

connections, respectively. In all cases the center of the top bolt was located 76.2 mm below the top of the 

beam. Three tests for each connection size were conducted for a total of nine tests. The same beams were 

used in all tests, with doubler plates welded to the beam webs in the connection regions to prevent 

bearing-induced deformations around the bolt holes in the beam web.  

As illustrated in Fig. 7, the detailed models included only half of each assembly, with appropriate 

boundary conditions on the plane of symmetry through the center column. Modeling of the connection 

regions, including the center column, plate, beam, doubler plates, and bolts, followed the detailed 

modeling approach described previously, using solid elements and contact with friction. The test 

specimens used standard hole sizes for all bolts, for which the hole diameter is 1.6 mm larger than the bolt 

diameter. This gap was represented accurately in the solid element mesh, with the bolts initially centered 

in the holes and zero initial tension, allowing some slippage before bolt bearing is engaged. The beam 

span between connections, where stresses remain in the elastic range, was modeled using shell elements, 
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with nodal constraints linking the degrees of freedom of the solid and shell elements at their interface, 

indicated in Fig. 7. Because tensile test data were not available for the steel components used in these 

tests, representative stress-strain curves and failure strain values were used for the various types of steel, 

calibrated as described previously (Figs. 5 and 6).  

Reduced models of the assemblies were also developed, following the approach outlined 

previously. As with the detailed model, only half of each assembly was modeled, with appropriate 

boundary conditions on the plane of symmetry. Axial load-deformation relationships used for the 

connection springs in the reduced model are shown in Fig. 8. The ultimate capacity was found to be 

governed by bolt shear failure in both tension and compression, and consequently, a sudden drop in 

resistance after the ultimate load is assumed, as in Fig. 6(b). The curves in Fig. 8 have zero load until a 

deformation of 1.6 mm in both tension and compression, in order to represent the initial gaps between the 

bolt shanks and the bolt holes, which allow some slippage to occur before bolt bearing is engaged. 

Including this initial gap is consistent with the detailed model and yields better agreement with the 

experimental data than if the gap is neglected. Initial gaps were included only in the axial load-

deformation relationship, not in the vertical shear load-deformation relationship. Following the initial flat 

portion, the load increases with stiffness k from Eq. (2) and, after yielding, reaches the ultimate load at a 

deformation of δu from Eq. (4). The load-deformation relationships differ depending on the number of 

bolts in the connection, since both k and δu depend on db, the depth of the bolt group. A “gap element” 

was also introduced at the exterior pin support, allowing slippage of 1.6 mm before forces are developed. 

While bolt slippage has a relatively small effect for the prototype spans considered subsequently, its effect 

is more significant for the very short span length used in the experiments, because of the substantial 

compressive displacements imposed on the upper bolt rows in the initial flexural response. The inclusion 

of initial gaps thus influences the extent of compressive yielding and the subsequent unloading, which 

directly affects the development of axial forces in the beams.  
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Fig. 9 shows comparisons of experimental measurements with detailed and reduced model 

computations of (a) the vertical load P and (b) the beam axial force T versus the vertical displacement of 

the center column for the two-span beam assemblies with 4-bolt connections. Tests numbered 1, 2, and 3 

in Fig. 9 correspond to tests 4ST1, 4ST2, and 4ST3 in Thompson (2009). The measured axial force T is 

an average of the axial forces measured in the two beam spans. Fig. 9 shows fairly good correspondence 

between the computational results and the experimental measurements, given the variability in the 

experimental data. Both the detailed and reduced models were able to capture the following primary 

stages in the response of the assemblies: (1) connection slippage, in which both the vertical load and the 

beam axial forces remain small before bolt bearing is engaged, (2) flexural action, in which the vertical 

load increases due to the development of bending moments in the single-plate shear connections, while 

the axial forces remain small, and (3) catenary action, in which tensile forces develop in the beams, 

accompanied by further increases in the vertical load until failure occurs. The results in Fig. 9 indicate 

that flexural action contributes significantly even at the initial drop in resistance associated with failure of 

the lowest bolt row. This is particularly evident in the detailed model results, where the peak vertical load 

occurs prior to the initial drop in resistance, even though larger values of axial tension are developed 

subsequently.  

The detailed model computations showed that plastic deformations were concentrated in the bolts 

and in bearing-induced deformations around the bolt holes, as evidenced by the substantial shear 

deformation of about 4 mm shown in Fig. 10(b) for the bottom bolt and the significant elongation of bolt 

holes in the plates shown in Fig. 10(c). Outside of the connection region, the beam remained in the elastic 

range, essentially rotating as a rigid body, as evidenced by the straight-line deflected shape of the 4-bolt 

assembly at the ultimate load, shown in Fig. 10(a). While the failure mode predicted by the detailed and 

reduced models was bolt shear fracture in all cases, the failure mode varied from test to test in the 

experiments, even for nominally identical specimens, being bolt shear failure in some cases, tensile 

rupture of the plate in other cases, and block shear failure of the plate in still other cases. Calculations 
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based on Table 1 indicated an ultimate bearing capacity of the plate in tension only 8 % larger than the 

ultimate bolt shear capacity. The closeness of the calculated ultimate capacities helps to explain this 

observed variability in the failure mode, since typical variations in material strength could shift the failure 

from one component to another. While extensive bearing-induced elongations of the bolt holes were 

observed in all tests, the eventual failure modes were characterized by a steep drop in resistance after the 

ultimate load, which was captured by the detailed and reduced models (Fig. 9). The detailed and reduced 

models also captured the occurrence of successive failures, in which the resistance increased after an 

initial failure until a secondary failure occurred. In most tests, the peak vertical load Pu corresponded to 

the initial failure, as captured by the models, while test 1 of the 4-bolt assembly (Fig. 9) is a case in which 

the peak load corresponded to a secondary failure. 

Quantitative comparisons of the computed and measured values of the ultimate vertical load Pu 

are presented in Table 2, which includes comparisons for the 4-bolt assembly based on results in Fig. 12, 

in addition to comparisons for the 3-bolt and 5-bolt assemblies based on similar results presented in Main 

and Sadek (2012). Table 2 shows that the detailed model results are within 15 % of the mean measured 

values, and the reduced model predictions are within 21 %, while the coefficient of variation in the 

measured values is as large as 20 %. This indicates that the deviations of the model predictions from the 

experimental measurements are comparable to the variability in the experimental measurements. The 

detailed models consistently underestimate Pu, while the reduced model overestimates Pu in one case by 

10.6 %. Table 3 shows similar comparisons of the rotation at the ultimate load, θu, in which somewhat 

larger discrepancies are observed, with the computed rotations always being less than the experimental 

values. Note that the measured rotation values in Table 3, as well as those along the upper axes in Fig. 9, 

are about 5 % larger than the values reported by Thompson (2009). This is because the rotations in this 

study were calculated using the chord length of L = 1.89 m between bolt centerlines, for consistency with 

analytical models developed in Main and Sadek (2012), while Thompson (2009) used a length of 1.99 m 

from the exterior pin support to the face of the center column.  
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A number of factors likely contributed to the observed discrepancies between the experimental 

and computational results presented in Fig. 9 and in Tables 2 and 3. Flexibility of the reaction frame, 

which was not included in the models, may have contributed to the consistently larger rotations observed 

in the experiments as compared to the models (see Table 3). It is noted that Daneshvar and Driver (2011) 

achieved improved agreement between their detailed model predictions and the experimental 

measurements of Thompson (2009) by introducing axial springs at the exterior pin connections to 

represent the unknown flexibility of the reaction frame. The use of minimum specified strength values in 

the models (because measured material properties were unavailable), is another contributing factor, which 

would generally cause the models to underestimate the resistance of the connections. Differences between 

the detailed and reduced models result from the combined effect of the various approximations 

incorporated in the reduced models, including the use of Eq. (4), based on a fit to cyclic test data with 

inherent scatter, to estimate the deformation capacity of each bolt row.  

Analysis of Shear Connections in Prototype Buildings 

Table 4 summarizes the characteristics of gravity frames from two prototype steel frame buildings 

described in Main and Sadek (2012), which were developed to examine the influence of span length on 

disproportionate collapse resistance. The detailed design of the prototype buildings was carried out by a 

consulting engineering firm (Liang et al. 2006), with guidance and review by a panel of experts. Lateral 

loads are resisted by exterior moment frames, while all interior frames were designed to support gravity 

loads only. Beams and girders in the gravity frames were designed assuming fully composite action with 

the concrete slab, while it is noted that partially composite design is common in practice. ASTM A992 

structural steel is used in the beams and columns, and beams in the gravity frames are connected to the 

columns using single-plate shear connections, illustrated in Fig. 11. In all connections, the center of the 

top bolt is placed 76.2 mm below the top of the beam, which is consistent with previous tests of single-

plate shear connections (e.g., Liu and Astaneh-Asl 2004, Thompson 2009).  
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Influence of End Supports 

Figs. 12 and 13 show comparisons of detailed and reduced model results computed for a two-span beam 

assembly with chord lengths of L = 5.97 m, corresponding to a N-S beam from building A. The results in 

Fig. 12 were computed with pin supports at the exterior ends of the beams, as in the tests by Thompson 

(2009), while the results in Fig. 13 were computed with two shear connections per span, as in the 

prototype structure. In all models, symmetry was exploited by analyzing only a single beam span. In the 

detailed models, shown in the insets of Figs. 12 and 13, the connection regions are represented using 

finely meshed solid elements, while the remainder of the beam span, where deformations are expected to 

be small, is represented using fairly coarse shell elements. Constraints are used to tie the edges of the shell 

elements to nodes of the solid elements at their interface. The A325 bolts are modeled using the stress-

strain curve illustrated in Fig. 3, while the A36 steel plate and the A992 steel beam are modeled using the 

stress-strain curves in Fig. 4. For the detailed model with exterior pin supports (Fig. 12), an elastic 

material model is used for the shell elements surrounding the pin support, to preclude plastic deformations 

at that location. In the reduced models, calculations of yield and ultimate capacities based on Table 1 

indicate axial behavior controlled by bearing and tear-out failure of the beam web, and a load-deformation 

relationship characterized by gradual softening [Fig. 6(a)] is used for the nonlinear connection springs. 

Figs. 12 and 13 show good correspondence between the detailed and reduced model predictions, 

with differences of 4 % or less between the predictions of the peak vertical load and peak axial force. 

Both Figs. 12 and 13 show that the vertical load and axial force from the detailed model do not begin to 

increase significantly until the vertical column displacement exceeds about 80 mm. This occurs because 

the diameter of the bolt holes was modeled as 1.6 mm larger than the bolt diameter, while no pre-tension 

was applied to the bolts to introduce frictional clamping, so that some sliding occurs before the bolts 

come into bearing. This initial slippage was not included in the reduced models, in contrast with Fig. 8, so 

the reduced models show steeper increases in the vertical load and axial force initially. In spite of these 

initial discrepancies, the peak values of the vertical load and axial force agree quite closely. 
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Comparing Fig. 12 and Fig. 13 shows that the ultimate vertical load is about 30 % larger for the 

case with two shear connections per span (Fig. 13), while the peak axial force is about the same in both 

cases. The rotation at the ultimate vertical load is also about 30 % larger in Fig. 13, due to the additional 

axial deformation capacity provided by the exterior shear connections. Noting that the vertical component 

of the beam axial forces is given by 2T sinθ, it follows that the same axial force occurring at a larger 

rotation results in a larger vertical load. It is thus observed that the greater axial deformation capacity 

provided by two shear connections per span results in substantial increases in both the ultimate load and 

the corresponding rotational capacity. 

Influence of Span Length 

Both the N-S and the E-W shear connections in building A have three A325 bolts and are nominally 

equivalent (see Table 4), except that the N-S beam has a slightly thicker web than the E-W beam, 

resulting in a bearing capacity in tension that is about 9 % greater. However, the span of the N-S beams is 

6.1 m, while the span of the E-W beams is 9.1 m. Comparing the response of two-span beam assemblies 

from the N-S and E-W gravity frames of building A thus enables an assessment of the influence of span 

length on the behavior of the single-plate shear connections. Reduced models are used in this comparison, 

with load-deformation relationships characterized by gradual softening [Fig. 6(a)]. 

Fig. 14 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against 

the rotation of the beam chord, θ, for the two assemblies with different span lengths. (Dual horizontal 

axes above the plots show the vertical displacement of the center column for the two different span 

lengths). While the peak axial force for the shorter span is only 7 % greater than for the longer span (a 

consequence of the slightly larger bearing capacity of the beam web), the difference in the vertical load 

capacity is significant, with the peak vertical load for the shorter span being 28 % greater than that for the 

longer span. 
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The displacement at ultimate load for the shorter span is about 20 % less than for the longer span. 

However, when beam chord rotations are considered, as indicated below the plots in Fig. 14, the rotation 

at ultimate load for the shorter span is actually about 18 % greater than that for the longer span. The 

rotational capacity is greater for the shorter span because the axial force for a given rotation is smaller, as 

shown in Fig. 14(b). Because the connections eventually fail primarily due to axial extension, the smaller 

axial forces for the shorter span enable the connection to sustain larger rotations prior to failure. Since the 

vertical component of the beam axial forces is given by 2T sinθ, it follows that the same axial force 

occurring at a larger rotation results in a larger vertical load. It is thus observed that the greater rotational 

capacity of the shorter beam spans results in a substantial increase in the ultimate vertical load. 

Influence of Connection Strength 

The E-W gravity frames in buildings A and B have the same bay spacing of 9.1 m, but the E-W shear 

connections in building A have three bolts each, while those in building B have four bolts each. 

Comparing the response of two-span beam assemblies from the E-W gravity frames of buildings A and B 

thus enables an assessment of the influence of the number of bolts, or the connection strength, on the 

behavior of the single-plate shear connections. Reduced models are used in this comparison, with load-

deformation relationships characterized by gradual softening [Fig. 6(a)]. 

Fig. 15 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against 

the vertical displacement of the center column for the two assemblies with different numbers of bolts per 

connection. The peak vertical load for the four-bolt connection is twice as large as that of the three-bolt 

connection, while the peak axial force is 1.8 times larger. It is thus observed that the vertical capacity of 

the assembly with four-bolt connections is substantially larger than that of the assembly with three-bolt 

connections, due primarily to the increased axial capacity of the connections. Note that the axial capacity 

of the four-bolt connection is more than 11∕3 times that of the three-bolt connection because, in addition to 

the larger number of bolts, the four-bolt connection has a thicker beam web (the beam web thickness, 

denoted tw, is indicated in Fig. 15). This changes the failure mode from tear-out through the beam web to 
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tear-out through the plate, resulting in bearing capacities for each bolt that are 45 % larger. The 

displacement (or rotation) at ultimate load is comparable in the two cases, being about 6 % larger for the 

four-bolt connection than for the three-bolt connection. Note that for rotation without axial extension, the 

rotation at the ultimate load would be smaller for the four-bolt connection, according to Eq. (3). The 

influence of axial extension on rotational capacities under column loss is further discussed subsequently.  

Influence of Post-Ultimate Behavior 

To investigate the influence of post-ultimate behavior, two-span beam assemblies from the prototype 

buildings, which were analyzed previously assuming a gradual softening behavior [Fig. 6(a)], were 

analyzed again assuming that sudden fracture occurs when the ultimate load of each bolt row is reached 

[Fig. 6(b)]. The parameters of the reduced connection models in these analyses were the same as those 

used previously, except that the failure displacement in tension was reduced to 1.15δu in all cases. 

Fig. 16 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against 

the vertical displacement of the center column for two-span beam assemblies with the alternate post-

ultimate behaviors. These results correspond to the E-W gravity frames of building B, with a bay spacing 

of 9.1 m and with four A325 bolts per connection. Similar results were obtained for the N-S and E-W 

gravity frames of building A (see Main and Sadek 2012). In all cases the peak vertical load is 

significantly less for sudden fracture than for gradual softening, being 16 % less for the E-W gravity 

frames of building B [Fig. 16(a)] and 23 % less for the N-S gravity frames of building A (not shown). The 

peak axial forces are only slightly less for sudden fracture than for gradual softening, being only 2 % less 

in Fig. 16(b). However, the axial forces are sustained for larger rotations in the case of gradual softening, 

resulting in larger vertical loads since the vertical component of the beam axial forces is given by 2T sinθ. 

It is thus observed that the connections characterized by gradual softening achieve increased vertical load 

capacity by sustaining comparable levels of axial tension under larger rotations.  
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Rotational Capacities 

Fig. 17 shows beam chord rotations at initial failure from the experiments of Thompson (2009) plotted 

against the depth of the bolt group, dbg, along with the corresponding rotations at initial failure from the 

detailed and reduced models of these tests (see Fig. 9). Initial failure in the reduced models corresponds to 

the rotation at which the bottom bolt reaches its ultimate load, corresponding to a deformation of δu. Also 

plotted in Fig. 17 is the expression for θmax from Eq. (3), which is based on linear regression of data from 

cyclic flexural testing of simple shear connections reported in FEMA 355D (FEMA 2000). Recall that δu, 

defined in Eq. (4), was obtained directly from θmax by assuming pure rotation of the connection about the 

center of the bolt group in the cyclic testing. Fig. 17 shows that the rotations at initial failure are 

significantly less than θmax, being 35 % less for the reduced model of the 5-bolt connection. This indicates 

that the combination of rotation and axial extension due to column loss causes the bottom bolt row to 

reach its ultimate load at a smaller rotation than under pure rotation. 

Fig. 18 shows beam chord rotations at the peak vertical load, from the reduced model results in 

Fig. 15, plotted against the depth of the bolt group, dbg, along with the linear regression equation for θmax 

from Eq. (3). Reduced model results are shown for both gradual softening and sudden fracture (see Fig. 

16), with the rotational capacities being about 16 % less in the latter case. Note that the rotational 

capacities in Fig. 18 are lower than those shown in Fig. 17, because the longer beam span of Fig. 18 

imposes greater deformations on the connections for a given chord rotation θ. Due to differences in the 

kinematics of the assembly with two shear connections per span as compared to the assembly with 

exterior pin supports at beam mid-height (i.e., the exterior pin support prevents axial displacement and 

constrains rotations about the beam mid-height rather than about the center of the bolt group; see Main 

and Sadek 2012), the reduced model results in Fig. 18 (with two shear connections per span) show a 

slight increasing trend of rotational capacity with dbg, in contrast with the decreasing trend shown in Fig. 

17 (with exterior pin supports at beam mid-height). The rotational capacities from the reduced models in 

Fig. 18 are significantly less than predicted by FEMA 355D (FEMA 2000), being as much as 62 % less 
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than maxθ  for the 3-bolt connection with sudden fracture. In the case of pure rotation, the reduced models 

would yield exactly the same rotational capacities as θmax from FEMA 355D, since the deformation 

capacity of each bolt row in Eq. (4) was evaluated directly from θmax in Eq. (3). The results in Fig. 18 thus 

clearly show that the axial extensions imposed under column loss scenarios lead to significant reductions 

in the rotational capacities of the connections.  

Conclusions 

Two alternative modeling approaches were described for analysis of single-plate shear connections under 

column loss: (1) detailed modeling and (2) reduced modeling. The detailed modeling approach used solid 

elements, contact algorithms, and plasticity models calibrated to match stress-strain curves and fracture 

strains from tensile tests. The reduced modeling approach used an assembly of nonlinear spring elements, 

extending the model of Sadek et al. (2008) by incorporating shear failure, connection slippage, inelastic 

unloading behavior, and the possibility of sudden fracture. Both detailed and reduced models were 

compared with experimental data from push-down tests of two-span beam assemblies by Thompson 

(2009), and fairly good agreement was observed, with deviations in the ultimate vertical load being 

comparable to the variability in the measurements themselves. The models were able to capture 

successive stages of the measured responses, including (1) connection slippage, (2) flexural action, and 

(3) catenary action, in which tensile forces developed in the beams and increased until failure occurred. 

The models were then used to investigate the influence of various factors on the behavior of two-

span beam assemblies from prototype gravity framing systems. Comparing assemblies with (1) exterior 

pin supports, as in the tests by Thompson (2009), and (2) two shear connections per span, as in a typical 

gravity framing system, showed that the additional axial deformation capacity provided by exterior shear 

connections produced increases of 30 % in both the ultimate vertical load and the corresponding 

rotational capacity. Comparing assemblies with spans of 6.1 m and 9.1 m, with comparable 3-bolt 

connections, showed the ultimate vertical load to be 28 % greater for the shorter span, due to the smaller 

deformations imposed on the connections for a given rotation. Comparing assemblies with 3-bolt and 4-
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bolt connections, both with 9.1 m spans, showed the ultimate vertical load to be about twice as large with 

the 4-bolt connections, due to primarily to the increased tensile capacity of the connections. The increased 

tensile capacity of the 4-bolt connections was due not only to the additional bolt, but also to an increased 

tear-out capacity per bolt because of the thicker beam web. Comparing assemblies with post-ultimate 

behavior characterized by gradual softening (typical of bolt tear out) and sudden fracture (typical of bolt 

shear rupture) showed the ultimate vertical load to be as much as 23 % less in the case of sudden fracture. 

Based on this significant reduction and the prevalence of sudden fractures observed experimentally 

(Thompson 2009, Weigand et al. 2012), it is recommended that sudden fracture, rather than gradual 

softening, should be assumed in the analysis of single-plate shear connections. Rotational capacities of 

single-plate shear connections under column loss were found to be as much as 62 % less than those based 

on seismic testing of shear connections (FEMA 2000), due to the axial component of extension imposed 

in addition to rotation.  
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Tables 

Table 1. Equations used to calculate yield and ultimate capacities of single bolt rows in tension and compression 

Failure Mode 

Tensile Capacities Compressive Capacities 
ty (yield) tu (ultimate) cy (yield) cu (ultimate) 

Bearing at bolt hole 1.5LctFy ≤ 3.0dtFy  1.5LctFu ≤ 3.0dtFu 3.0dtFy 3.0dtFu 
Bolt shear* 0.75FvAb FvAb 0.75FvAb FvAb 
* Fv = 517 MPa (75 ksi) for ASTM A325 bolts and Fv = 646 MPa (94 ksi) for ASTM A490 bolts, both with threads 
excluded from the shear plane. 



 24 

Table 2. Comparison of model predictions and experimental measurements (Thompson 2009) of ultimate vertical 
load Pu for two-span beam assemblies 

Connection Size 

Detailed Model Reduced Model Experiment 
Pu [Deviation*] Pu [Deviation*] Mean Pu [COV†] 

3 bolts 47.1 kN  [−14.6 %] 43.4 kN [−21.3 %] 55.1 kN [11.3 %] 
4 bolts 65.7 kN [−10.6 %] 74.8 kN [+1.8 %] 73.5 kN [19.5 %] 
5 bolts 90.7 kN [−5.8 %] 106.6 kN [+10.6 %] 96.4 kN [7.1 %] 
* Percentage deviation from mean experimental value 
† Coefficient of Variation = [standard deviation] ∕ [mean] 
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Table 3. Comparison of model predictions and experimental measurements (Thompson 2009) of rotation at 
ultimate load, θu, for two-span beam assemblies 

Connection Size 

Detailed Model Reduced Model Experiment 
θu [Deviation*] θu [Deviation*] Mean θu [COV†] 

3 bolts 0.120 rad  [−13.8 %] 0.103 rad [−26.1 %] 0.139 rad [3.4 %] 
4 bolts 0.087 rad [−21.5 %] 0.093 rad [−16.6 %] 0.111 rad [18.8 %] 
5 bolts 0.066 rad [−24.3 %] 0.082 rad [−5.6 %] 0.087 rad [9.6 %] 
* Percentage deviation from mean experimental value 
† Coefficient of Variation = [standard deviation] ∕ [mean] 
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Table 4. Beam spans, shapes, and number of bolts per connection in gravity frames of prototype buildings 

Building Direction Span Shape Bolts 
A East-West 9.14 m W14×22 3 
 North-South 6.10 m W16×26 3 

B East-West 9.14 m W21×50 4 
 North-South 10.16 m W16×26 3 
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Fig. 1.  Two-span beam assembly under pushdown loading with unsupported center column: 

(a) original configuration; (b) deformed configuration. 
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Fig. 2.  Detailed model of single-plate shear connection showing finite element mesh of (a) 

beam, (b) bolt, and (c) shear tab 

(a) 

(b) (c) 



0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

T
ru

e
 S

tr
e

s
s
 (

M
P

a
)

True Plastic Strain

0

150

300

450

600

750

900

0 0.05 0.1 0.15 0.2 0.25

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 (

M
P

a
)

Engineering Strain

coupon test 

computed  

Finite element mesh of coupon:  

(b) (a) 

coupon test 

model  

Fig. 3.  (a) True stress-strain and (b) engineering stress-strain curves for A325 bolt material 
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Fig. 5.  Reduced model of single-plate shear connection. 
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Fig. 6.  Axial load-deformation relationships for connection springs: (a) gradual softening;  

(b) sudden fracture 
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Fig. 7.  Detailed model of two-span beam assembly tested by Thompson (2009):  

(a) overview; (b) region near exterior pin connection 
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Fig. 10.  Deformations of 4-bolt assembly at ultimate load: (a) overview; (b) section view 

through bottom bolt; (c) connection region (bolts hidden) 
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Fig. 11.  Details of prototype single-plate shear connection 
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Fig. 12.  Comparison of detailed and reduced model results for two-span beam assembly with 

exterior pin supports: (a) vertical load and (b) axial force versus vertical column displacement  
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Fig. 13.  Comparison of detailed and reduced model results for two-span beam assembly with two 

shear connections per span: (a) vertical load and (b) axial force versus vertical column displacement  



0

50

100

150

200

250

300

350

0 0.023 0.046 0.069 0.092 0.115 0.138

B
e
a
m

 A
xi

a
l 

F
o
rc

e
, 

T
(k

N
)

0

10

20

30

40

50

60

0 0.023 0.046 0.069 0.092 0.115 0.138

V
e
rt

ic
a
l 
L

o
a
d
, 

P
(k

N
)

6.1 m span 

(3 bolts) 

9.1 m span 

(3 bolts) 

(b) (a) 

9.1 m span 

(3 bolts) 

6.1 m span 

(3 bolts) 

0 0.069 0.023 0.046 0.092 0.115 0.138 

Rotation of Beam Chord, q  (rad) 

0 600 200 400 800 1000 1200 

Center Column Displacement [9.1 m span], D (mm) 

0 414 138 276 552 690 828 

Center Column Displacement [6.1 m span], D (mm) 

0 600 200 400 800 1000 1200 

Center Column Displacement [9.1 m span], D (mm) 

0 414 138 276 552 690 828 

Center Column Displacement [6.1 m span], D (mm) 

0 0.069 0.023 0.046 0.092 0.115 0.138 

Rotation of Beam Chord, q  (rad) 
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Fig. 17.  Comparison of experimental and computed rotational capacity values with best-fit line 

based on seismic test data (L = 1.89 m, exterior pin supports; solid circles indicate mean experimental 

values and error bars indicate maximum and minimum values from a series of three tests) 
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Fig. 18.  Comparison of computed rotational capacities with best-fit line based on seismic test data 

(9.1 m span, two shear connections per span) 
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