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Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two
important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known
about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the
1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously
unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly
from the linear, autonomous, self adjoint, canonical model.

This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by
using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T.
Successful backward continuation from t = T to t = 0, would recover the original sharp image. Visual recognition provides meaningful
evaluation of the degree of success or failure in the reconstructed solutions.

Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and
statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how
an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations
of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes.
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1. Introduction

This paper presents an effective iterative procedure that can be used to solve a wide class of 2D
nonlinear parabolic equations backward in time. However, previously unsuspected difficulties are also
uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly
from the linear, autonomous, self adjoint, canonical model. Instructive 1D examples of ill-behaved
continuations were previously reported in [6].

Continuation backward in time in parabolic equations is a notoriously ill-posed problem with some
intriguing applications. Of major current interest are hydrologic inversion and image deblurring.
Hydrologic inversion seeks to identify sources of groundwater pollution by backtracking contaminant
plumes, [2-5,15,18]. This involves solving the advection dispersion equation (ADE) backward in time,
given the contaminant spatial distribution g(x,y) at the current time T. In image science, images blurred by
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Gaussian point spread functions are a common occurrence. Deblurring Gaussian blur is mathematically
equivalent to solving the heat conduction equation backward in time, [8,9,16]. More recently, in [7] and
references therein, striking enhancements were obtained when time-reversed fractional and/or logarithmic
diffusion equations were applied in blind deconvolution of Hubble space telescope galaxy images, as well
as scanning electron microscope imagery of interest in nanotechnology.

With backward uniqueness assumed to hold, prescribed L? bounds on the solution are often used, along
with smoothness and non-negativity constraints when applicable, to stabilize backward reconstruction
against amplification of input data noise. These and other regularization methods have been extensively
studied in recent years. However, only limited computational experience has generally been accumulated
on backward problems. This is especially true for nonlinear problems in more than one space dimension.
As will be seen below, difficulties may remain, even if regularization has successfully prevented noise
amplification, and produced a solution satisfying prescribed bounds and other constraints.

The Van Cittert method is an iterative procedure for solving linear integral equations of convolution
type, where the kernel is known explicitly and has a positive Fourier transform. The method originated in
spectroscopy in the 1930’s [19], and has been used in image restoration, [11,14]. In this paper, the Van
Cittert iteration is adapted into a useful tool for exploring a large class of nonlinear backward parabolic
equations, for which the solution operator is neither linear nor known explicitly.

A productive setting for studying 2D backward parabolic continuation lies in the field of image
restoration. One can create fictitious blurred image data, by using a given sharp image as the initial value in
the nonlinear parabolic equation to be studied, and selecting the corresponding solution at some positive
time T. Successful backward continuation from t = T to t = 0, would recover the original sharp image. An
important advantage is that visual recognition can provide useful evaluation of the degree of success or
failure in the reconstructed solution. This can then be translated into the original engineering context,
unrelated to imaging, where backward continuation in that particular equation is of interest.

There may be deeper analytical reasons for pursuing such a program of study. Brownian motion is
pervasive in many branches of science, including image science, and Gaussian blurs and the heat equation
appear quite naturally in image analysis. In [7], more sophisticated blurs were contemplated, associated
with Brownian motion taking place in specific randomized time, and expressed in terms of parabolic
pseudodifferential equations, [10,20]. Such subordinated stochastic processes are of great current interest.
The successful application of these notions in blind deblurring of the valuable scientific imagery discussed
in [7], was unanticipated and noteworthy.

In the present paper, the nonlinear partial differential equations used to form the blurred images in Sec.
6, were chosen primarily for mathematical reasons, and may not simulate any currently known physical
blur. Surprisingly, these images appear realistic, albeit with subtle differences from familiar blurred
imagery. Such images may be viewed as expressing visually, the results of novel stochastic processes that
are nonlinear generalizations of Brownian motion. A wide variety of nonlinearities may be explored.
Sophisticated computational simulations, using high precision numerics on high resolution imagery, may
yield fruitful insights into the behavior of this class of random processes. Finally, future imaging
applications could well involve similar nonlinear parabolic blurs, and such exploration can help identify
potential image processing roadblocks that would need to be circumvented.

2. Stability and Backward Uniqueness

Backward parabolic equations and other ill-posed problems are discussed in [1,12,13,17], and the
references therein. In general, a backward solution may exist only for highly restricted data satisfying
certain smoothness and other requirements that are not easily characterized. Typically, when a solution
exists, it is unique. However, backward solutions depend discontinuously on the data for which they exist,
and slight changes in these data can result in very large, if not explosive, changes in the corresponding
solutions. In practice, at a given positive time, the precise data needed for the existence of a particular
backward solution are seldom available, and one must use approximate values. Hence, backward stability
estimates are of vital interest.
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Let Q be a bounded domain in R" with smooth boundary oQ. Let L be a linear or nonlinear elliptic
operator in Q , acting on smoothly differentiable functions satisfying homogeneous Dirichlet or Neumannn
conditions on 8Q. Let L be such that the forward initial value problem w, = Lw,t >0, w(0) = f, is well-
posed in L*(Q) . Let w'(x,t) and w?(x,t) be any two solutions, and let F(t) =|| w'(.,t)—w?(.t) |,
0<t<T.

Using logarithmic convexity techniques, [1,12,17], the folowing inequality can be established for a wide
class of parabolic equations w, = Lw/,

FO) <{FOY“{FM¥",  0<t<T. 1)
Here, the Holder exponent u(t) satisfies 0 < u(t) <1, with x(t) >0,t >0, x(T) =1, £(0) =0, and
u(t) 4 0 monotonically as t 4 0. If we restrict consideration to solutions w(x,t) satisfying a prescribed
boundat t=0,i.e., ||w(,0)|,<M ,then F(t) in Eq. (1) can be made small at a given t > 0, by making
F(T) sufficiently small.
This stabilized backward parabolic problem for L may be stated as follows. Given f (x) e L*(Q) and
M,d >0, with § < M, find all solutions of
w, = Lw, 0<t<T, 2)
such that

[w(.T)=f <6, [w(.0)[,<M. ©)

It is assumed that f(x), 5, and M are compatible with the existence of solutions. Here, f(x) is presumed
to be a sufficiently close L? approximation to the exact values w(x,T) at t =T , of a solution w(x,t) of Eq.
(2), believed to satisfy || w(.,0) |,<M . If w'(x,t) and w’(x,t) are any two solutions of Egs. (2) and (3),
the following stability inequality follows from Eq. (1)

| W, t) =W (., t) ||,< 2M #0540 0<t<T. 4)

2.1 Backward Uniqueness

The inequality Eq. (4) implies backward uniqueness. If 5 =0, then ||w'(.,t)—w?(.,t) |,= 0 for every
0<t<T,since u(t)>0 for t >0.By continuity, ||w'(,,t)—w’(.,t)|,=0 on 0<t<T . Asshown in
[13], backward uniqueness also holds true for the Navier-Stokes equations. This result was obtained by
establishing an appropriate stability inequality, similar to Eq. (1), for these equations.

3. Backward Continuity and the Holder Exponent x(t)

In many engineering or applied science contexts, only educated guesses would generally be available to
estimate & and M, rather than exact values. Typically, the L? relative error

W T)= £l HWCTY < S|l £ 1l =5} = o7 L, ®)
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might be expected to be on the order of 1% or thereabouts. Since the given data f(x) may simultaneously
approximate several distinct solutions wP (x,t) of Eq. (2) at time T, there are, in general, infinitely many
possible solutions of Egs. (2) and (3). If § is small, it is generally assumed that any two such solutions
would differ only slightly. The extent to which this expectation is justified depends on the decay behavior
in the Holder exponent x(t) as illustrated in Fig. 1. In the best possible case, that of a linear self adjoint
elliptic operator L with time-independent coefficients, we have u(t) =t/T , so that x(t) decays linearly to
zero as continuation progresses from t =T to t=0.At t =T/2, we have ux(T/2)=1/2,and

| WH(., T/2) — w2 (., T/2) ||, < 2+/M & . This indicates a loss of acccuracy from O(5) to O(+/8) , while still
only half way to t =0 . More typically, x(t) issublinear int, possibly with rapid exponential decay. This
can lead to much more severe loss of accuracy as reconstruction progresses to t = 0. Such rapid decay of
4 to zero can be brought about by various factors, including nonlinearity, non self adjointness, diffusion
coefficients that grow rapidly with time, or adverse spectral properties in the elliptic operator L. In all
cases, Eq. (4) does not guarantee any accuracy at t = 0, but only provides the redundant information

| wH(.,0)—w?(.,0) [,<2M .

3.1 Exponentially Decaying Hélder Exponent

The following is a simple example of a parabolic equation with exponentially decaying x(t) . With
constant ¢ > 0, consider the heat conduction problem

w, = exp(ct)w,

pe s

0<x<mt>0,w/(0,t)=w, (7t)=0,t2>0, (6)

Behavior of Holder exponent in backward problems

1
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Fig. 1. Behavior of Holder exponent w(t) in inequality (4) reflects rate at which the forward evolution equation w, = Lw has
forgotten the past, as t increases from t = 0 to t = T = 1. Deviations away from a linear, time-independent, self adjoint spatial
differential operator L, can lead to exponential decay in u(t),t 4 0, and affect backward reconstruction from t = T.
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with initial values w(x,0) = cos x, 0 < x < z. This has the unique solution
w(x,t) = exp{(1—e")/c}cos X, t > 0. @)

With fixed T >0, let u(t) ={1-exp(ct)/{1-exp(cT)},0<t<T. Then
w0 L=l w(., 0) [ w(. T) ;¥ 0<t<T. ®)

In this linear self adjoint problem with growing time-dependent diffusion coefficient, u(t) decays
exponentially to zero as t 4 0, with faster decay the larger the value of ¢ >0 in Eq. (6). Here, even low
frequency information may be unrecoverable backward in time, despite highly accurate data attime T > 0.
Thus, if ¢ =5, the smooth and non-negative solution w'(x,t) =1.0+exp{(1-e")/c}cos x, 0 <t <1, cannot
be recovered from given T =1 continuation data f(x)=1.0, even though f(x) approximates w'(x,1) to
within 1.0x107, pointwise.

3.2 Effective Backward Non-Uniqueness in Non Self Adjoint Problem

Reconstructing the correct backward solution from reasonably accurate data at some T > 0, can be a
major challenge even with slowly varying diffusion coefficients. The following counterexample was
discovered computationally, using the parabolic solver methodology described in [6]. It involves a linear
non self adjoint equation with variable coefficients, non-negative initial values, and non-negative solution.
With a =« =0.05,0 =0.025, consider

w, = afe” w, | +{sin(dzx)}w,, ~1<x <1, 0<t<10,

©)
w(x,0) = e*sin?(37x), —1<x <1, w(-1,t) =w(1,t) =0, t>0.

Let w (x) , shown as the red trace in Fig. 2, denote the initial data in Eq. (9), and let w" (x,t) be the
corresponding solution. An accurate approximation to w™ (x,1) can be obtained numerically by
integrating up to time t =1. That approximation, denoted by f (x), is shown as the black trace in Fig. 2.
The green trace in Fig. 2, wy™"(x) , represents entirely different initial values in Eq. (9). However, the
corresponding solution at t =1, w¥*"(x,1), can also be well-approximated by the black trace f(x).
Indeed, w*"(x,1) agrees with f(x) to within 1.4x10° pointwise, with an L? relative error of 0.023% .
Also, ||wg? |l,=3.3, while || wg™" ||,= 2.4. Therefore, both solutions w™ (x,t) and w%*"(x,t) satisfy

| w(., 1)~ f [,,<5 <0.00023]| f [,, || W(,0)[,<M =33, (10)

Evidently, quite distinct initial values at t =0 can produce almost identical solutionsat t =1. Thisis a
good example of effective backward non uniqueness. Indeed, if wi™ (x) is the true solution in this
example, the false solution wg™" (x) would seem to be the more likely initial value, given the black t =1
trace in Fig. 2. In ill-posed inverse problem computations, smoothness and non negativity of solutions are
considered beneficial regularizing constraints. Here, both traces are smooth and non negative, satisfy the
reasonable L? bounds in Eq. (10), and yet the ambiguity remains.
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Effective backward non-uniqueness in non self adjoint problem

11

- -
5 l t=0 E
= S

| t=1

Either red or green initial values at t=0, terminate on black curve at
t=1 to within 0.0014 pointwise, and an L2 relative error of 0.023%.

Fig. 2. lll behavior in non self adjoint problem. Accurate data f (x) (black curve), approximates two distinct solutions
W™ (x,1), W™ (x,t), attimet =1, with an L? relative error of 0.023 %, and a pointwise accuracy of 1.4x107 . These solutions
originate from the vastly different initial values w® (x) , and wg™"(x) .

4. 2D Nonlinear Parabolic Equations and the Solution Operator A’

The computational experiments discussed below involve four images and two parabolic equations.
Numerous other equations can be considered, and a large variety of unexpected phenomena are yet to be
uncovered. Let Q be the unit square 0< x,y <1 inthe (x,y) plane. With fixed T >0, and homogeneous
Neumann boundary conditions on 6Q, the following initial value problem will be studied,

w, = 7r(w)V.{q(x, y,t)Vw}+aww, , +b(wcos*w)w,, Qx(0,T),

(11)
w(x, y,0) = g(x,y).
Here y =8.5x10™, a,b, are non negative constants to be prescribed, and
r(w) = exp(0.025w),
(12)

q(x, y,t) = exp(10t)(1+5e* sinzx) >1,  Qx(0,T).

An equation with different nonlinearities will also be considered. This is
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w, = ys(W)V.{a(x, y, )Vw}+ eyl wiw,, +d (weosW)w,,  Qx(0,T),
(13)

w(x,y,0) = g(x,y),

with » and q(x,y,t) asin Eq. (11), c,d , non negative constants to be prescribed, and
s(w) =1.0+0.00125w°. (14)

Each of Egs. (11), (13), is well posed in L?(Q) . Accordingly, given any initial value w(x, y,0) =
g(x,y) € L*(Q) , a unique solution w(x,y,T) exists at time T, and the solution operator A", where

ATw(x,y,0) =w(x,y,T), (15)

is well-defined on L?(Q) . The nonlinear operator A" is not known explicitly. Rather, A"w(x,y,0) must
be found by solving the appropriate initial value problem Eq. (11), or Eqg. (13), and obtaining the
corresponding solution at time T. Note that w(x, y,T) necessarily belongs to a very restricted class of
smooth functions.

In the image deblurring experiments in Sec. 6, Eq. (11) will be used to blur the sharp MRI brain image
(image A), and the sharp Marylin Monroe image (image D), by using these images as the initial data
g(x, y) . The sharp USS Eisenhower image (image G), and the sharp Sydney Opera House image (image

J), will be blurred using Eq. (13).

5. Continuation Backward in Time and the VVan Cittert Iteration

In its original formulation, given the data f(x) and the explicitly known 1D linear convolution integral
operator S with Fourier transform S(w) > 0, the Van Cittert method solves Sg = f for the unknown
g(x) by means of the iterative procedure

™ () = h" () + A{ f () -S["(x)]}, ~ m=>1. (16)

Here, 4 >0 is a fixed relaxation parameter chosen so that 1— AS (@) > 0, h*(x) = A (), and the
expectation is that h™ — g . In fact, in spectroscopy and image processing applications [11,14], the Van
Cittert method generally produces useful results after finitely many iterations, even though it may not
converge.

We consider using this in the present parabolic context to recover w(x, y,0) = g(x,y) in Egs. (11) and
(13), given approximate values f(x,y) for the true solution w(x,y,T) attime T. This requires solving
ATg(x,y) = f(x,y), using the iterative procedure

™ (x,y) = h" (X, y)+ 2{ f ()= ATh"(x,y)},  m=1, 17)

with some fixed A such that 0< 1 <1, and h'(x,y) = Af(x,y). Clearly, in the present parabolic context,
the Van Cittert iteration is unlikely to converge. Indeed, if h™ — h' in L*(Q) in Eq. (17), then

ATh'(x,y) = f(x,y). However, ATh'(x,y) satisfies restrictive smoothness requirements, and these are not
likely to be met by the approximate data f (x,y). In addition, the nonlinear operator A" in Eq. (17) bears
little resemblance to the linear convolution operator S in Eq. (16). Nevertheless, remarkably, the Van Cittert
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iteration is found to be a valuable tool in a wide variety of 2D nonlinear backward parabolic equations. In
many cases, this procedure generates iterates h™(x, y) such that the L* norm of the residual,
| f —=ATh™ ||, decays quasi-monotonically to a reasonably small value after a finite number N of
iterations, and h" (x,y) is found to be a useful approximation to w(x, y,0) .

As noted in Sec. 3, backward continuation in certain classes of parabolic equations can be especially
challenging. Accordingly, interesting continuation problems may exist where the procedure in Eq. (17)
cannot produce useful results.

5.1 Explicit Finite Difference Scheme for Computing A" w(x, y,0)

A convenient and effective numerical procedure for solving the nonlinear initial value problems in Egs.
(11) and (13), is based on finite differences, using explicit time diffencing and centered space differencing.
This leads to modest O(At +(AX)” + (Ay)z) accuracy. However, the necessary stability condition on At
for explicit schemes, improves that accuracy to O((Ax)2 + (Ay)z). Higher precision numerics, together
with higher resolution imagery, will be considered in subsequent reports. This paper deals with 8 bit gray
scale 256x 256 pixel images, with pixel values ranging between 0 and 255. With Ax = Ay =1/256,

At =3.0x107", the following difference approximation is used to march the discrete mesh function
W" =W (jAx,kAy, nAt) in Eqg. (11), 400 time steps At forward in time, up to time T =1.2x10™*,

W™ =W" + AtyRW")V.A{Q"VW "} +aW "W,
+b(W"cosW"W,",  n=0,399,

W? = g(x,y). (18)

Homogeneous Neumann conditions are applied on the boundary of the unit square. The same mesh
parameters and finite differencing are used for blurring with Eq. (13). In this notation, W° denotes the
original sharp image g(x,y) , while W*® is the nonlinearly blurred image f(x,y), using either Eq. (11) or
Eq. (13). Define the discrete nonlinear parabolic blurring operator A} by

AW =W, (19)

This nonlinear operator is defined on any 8 bit gray scale 256 x 256 pixel image g(x,y) . Applying A} to
that image simply means applying the above explicit scheme for 400 time steps to W°, and acquiring the
resulting array f(x,y) =W *®. We stress that the blurred image f(x,y) so obtained is only an
approximation to the true solution w(x,y,T) in Eqg. (11) or Eg. (13).

Image diagnostic statistical information will use the discrete L', L*, and total variation norms, defined

by

| f ||p={(256)2 Z | f(xj,yk)l”} . p=L2 (20)
and
I8 I =l VE 1= @56)° 3 (€0, v ¥ +LE 06, 00F ) (21)
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where
4%y, = (256) (£ (X000 ¥ = F (%5 %))
P09 = 286) (1.0 ¥iea) = F 0, 94)): (22)

In addition, the peak signal to noise ratio (PSNR), will be used as an image quality metric. If g(x,y)
is the original sharp image, and f(x,y) is any degraded version of g(x,y), this is defined by

PSNR = —20l0g,{| f —g ||, /255}. (23)

6. Nonlinear Blurring and Deblurring Experiments

Very little seems to be currently known regarding backward in time continuation in multidimensional
nonlinear parabolic equations, and the experiments described below, involving relatively simple
nonlinearities, already represent uncharted waters. An important advantage of the Van Cittert method is the
‘self regularizing’ property of the iterative process, whereby low frequency information is reconstructed in
the first few iterations, while many more iterations are needed to acquire high frequency information.
Several other iterative restoration methods have this property. As a consequence, useful information can
often be retrieved by stopping the iterative process before amplification of high frequency noise
overwhelms the reconstruction.

The results developed in Sec. 3, concerning backward stability and the Holder exponent x(t) , will
inform the subsequent discussion. While backward uniqueness is characteristic of a large class of linear and
nonlinear parabolic equations, the major practical difficulty lies in recovering the correct solution from the
limited precision available in the given continuation data. Deblurring nonlinearly blurred imagery involves
the recovery of fairly complex initial data at time t =0, by nonlinear backward continuation of imprecise
dataat some T >0 . In fact, as is typically the case in applications, the accuracy in the blurred image data

f(x,y) =W* in Eq. (18), as an approximation to the elusive true solution w(x,y,T) in Eq. (11) or Eq.
(13), is actually unknown.

In addition, Egs. (11) and (13) are strongly nonlinear through the functions r(w) and s(w), with
w(x, y,t) ranging between 0 and 255. Moreover, there is the space and time dependent function q(x, y,t),
and the terms in ww, and ww, . Such equations deviate strongly from the autonomous, linear, self adjoint
case, for which substantial computational experience exists. While a stability inequality such as Eq. (4) can
be derived for each of Egs. (11) and (13), the resulting functional form for the Holder exponent p(t) is
unlikely to be precise. In summary, neither § nor u(t) are likely to be known in the stability estimate
| W, t) =W (., t) [|,< 2M #0540 0 <t <T, for either of Egs. (11) or (13).

The results in Figs. 1 and 2, together with the examples in [6], indicate that only a modest degree of
success can be expected in backward continuation in Egs. (11) and (13). In the present paper, knowledge of
the original sharp image can be used to gauge the usefulness of the deblurred image produced by backward
continuation. However, in applications unrelated to imaging, using field data of unknown precision, the
degree of success or failure in nonlinear backward continuation may not be as easily ascertained. As shown
in [6], there is the possibility of producing a smooth, physically plausible, yet false reconstruction.
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6.1 MRI Brain Image

In Fig. 3, the original sharp MRI brain image (A) is blurred to form image (B), by applying the finite
difference scheme in Eq. (18) to the parabolic equation Eq. (11), with coefficients a =b = 0. A different
blurred image is then obtained, image (C), by repeating this process with coefficients a =1.25,b =0.6 .
Images (B) and (C) appear very similar in quality, and, from Table 1, both these images have almost the
same values for || f ||| f |l,, and || Vf |, . In particular, || Vf |, has been reduced by almost a factor of two
from its original value in image (A), reflecting substantial blurring. The PSNR value in image (C) is
noticeably smaller than in image (B), indicating greater degradation in image (C). However, since the
PSNR metric requires knowledge of the original sharp image, in practice, such increased degradation in
image (C) would not be known to a user. In fact, both images (B) and (C) appear to have been blurred,
more or less equally, by convolution with a type of Gaussian-like point spread function.

Figure 4 displays the results of backward in time continuation in Eq. (11), using the Van Cittert
iteration in Eq. (17), with A} asin Eq. (19), and 4 =0.5. Remarkably, despite the strongly nonlinear
blurring in image (B) through the function r(w) in Eq. (12), useful deblurring of that image is obtained
after 100 iterations. From Table 2, we see that the values of || f || and || f ||, in the deblurred image (B),
are very close to their original values in image (A), while || Vf ||| has recovered almost 90 % of its original
value. Also, deblurring in image (B) has increased the PSNR from 25 to 34.

NONLINEAR PARABOLIC BLURRING OF SHARP MRI BRAIN IMAGE
(A) Original sharp image B) Blur with a=b=0 C) Blur with a=1.25, b=0.6

Fig. 3. Nonlinear parabolic blurring of sharp MRI brain image g(x,y), by using it as initial values in Eq. (11) with two different sets of
values for the constants a,b.

Table 1. Behavior using Eq. (11) in nonlinear blurring in Fig. 3.

Image f(x, y) Parameters a, b RN Il 1, [IVE [, PSNR
Sharp image A Not blurred 59 86 3360 0
Blurred image B a=0,b=0 55 78 1740 25
Blurred image C a=125b=0.6 55 78 1770 20
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NONLINEAR DEBLURRING OF MRI BRAIN IMAGE
(B) Blur with a=b=0 After 100 VanCittert iterns.

C) Blur with a=1.25, b=0.6 After 10 VanCittert iterns.

Fig. 4. Nonlinearly blurred image (B) was successfully deblurred after 100 iterations. Visually similar image (C), blurred with
additional nonlinearities, could not be deblurred.

Table 2. Behavior using Eq. (11) in nonlinear deblurring in Fig. 4.

Image f(x, y) Parameters a, b Il f Ik Il VT PSNR
Deblurred image B a=0,b=0 59 85 2980 34
Deblurred image C a=125b=0.6 63 96 4680 17
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The results of deblurring image (C), shown in in Fig. 4, are sharply different, and unexpected. After 10
Van Cittert iterations, using a =1.25,b = 0.6, in Eq. (18), most useful information has been lost in the
deblurred image, and this without explosive noise amplification. Indeed, in Table 2, the values for || f ||
and || f ||, after 10 iterations are about 12 % larger than their true values in the original image (A), well
within the range of what might have been prescribed to stabilize continuation. One possible explanation is
that the inclusion of the terms in ww, and ww, in Eq. (11) renders backward stability more precarious,
(see Fig. 1), and the accuracy in the continuation data represented by image (C) is no longer sufficient to
recover the sharp image.

6.2 Marilyn Monroe Image

In view of the unexpected failure in deblurring image (C), the experiments in Figs. 5 and 6 aim at
elucidating the influence of the nonlinear terms involving ww, and ww, , on backward continuation in Eq.
(11). Since the ww, term is modulated by the factor cos’W in Eq. (11), it may not be as destabilizing as the
ww, term. Accordingly, the sharp Marilyn Monroe image (D) is first blurred using Eq.(18) with
a=0,b=0.6, to form the blurred image (E). The process is then repeated with a = 0.83,b = 0.6, to form
image (F). In Fig. 5, image (F) differs noticeably from image (E) qualitatively, yet, as shown in Table 3,
both these images have almost the same values for || f ||,|| f |,, and || Vf ||, . However, image (F) has a
smaller PSNR value. Evidently, the ww, term in Eq. (11) is responsible for the increased degradation in
image (F).

NONLINEAR PARABOLIC BLURRING OF SHARP FACE IMAGE
(D) Original sharp image  (E) Blur with a=0, b=0.6 (F) Blur with a=0.83, b=0.6

Fig. 5. Nonlinear parabolic blurring of sharp Marilyn Monroe image g(x, y), by using it as initial values in Eq. (11) with two different
sets of values for the constants a, b.

Table 3. Behavior using Eqg. (11) in nonlinear blurring in Fig. 5.

Image f (x, y) Parameters a, b IRE I, [IVE Ik PSNR
Sharp image D Not blurred 107 130 3100 0
Blurred image E a=0,b=06 101 122 1580 24
Blurred image F a=0.83,b=0.6 101 122 1550 20
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NONLINEAR DEBLURRING OF FACE IMAGE
(E) Blur with a=0, b=0.6 After 100 VanCittert iterns.

F) Blur with a=0.83, b=0.6

After 20 VanCittert iterns.
PV

Fig. 6. Nonlinearly blurred image (E) was succesfully deblurred after 100 iterations. Visually similar image (F), blurred with
additional nonlinearities, could not be usefully deblurred.

Table 4. Behavior using Eqg. (11) in nonlinear deblurring in Fig. 6.

Image f (X, y) Parameters a, b Il f 1L [T (VL PSNR
Deblurred image E a=0,b=06 106 129 2580 29
Deblurred image F a=0.83,b=0.6 112 139 5800 18
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Figure 6 displays the results of deblurring these two images. Again, remarkably, despite the strongly
nonlinear blurring in image (E) through the function r(w), and the inclusion of the ww, term in Eq. (11),
very good results are obtained for that image, after 100 Van Cittert iterations. As shown in Table 4, the
values of || f ||, and || f ||, in the deblurred image (E), are very close to their original values, while || Vf ||

has recovered 83 % of its value in image (D). Also, deblurring in image (E) has increased the PSNR from
24 to 29. These improvements are more modest than were achieved in deblurring the MRI brain image (B).
However, both the ww, and ww, terms in Eq. (11) were excluded in forming the blurred image (B).

As was the case in image (C), deblurring image (F) was unsuccessful. After 20 Van Cittert iterations, using
a=0.83,b=0.6, in Eq. (18), some sharpening has clearly occurred, but the image is marred by artifacts.
Again, there is no high frequency noise amplification in the deblurred image (F), and the values for || f |
and || f ||, after 20 iterations, are about 7 % larger than their true values. Thus, the deblurred image (F)

satisfies such a-priori bounds as might have been placed to stabilize ill-posed continuation. Clearly, the
termin ww, in Eq. (11) emerges as the prime suspect in misbehaved backward continuation.

6.3 USS Eisenhower Image

Computational experiments on the next two images study the results of blurring using Eq. (13), where
the milder term \/wa replaces the troublesome term ww, in Eq. (11). The sharp USS Eisenhower image
(G) is first blurred using Eq. (13) with ¢ =2.5,d = 0.3, to form the blurred image (H). The process is then
repeated with ¢ =2.5,d =1.5, to form image (I). In Fig. 7, image (H) is visually indistinguishable from
image (1). Interestingly, as shown in Table 5, and unlike the previous examples in Figs. 3 and 5, images (H)
and (1) have the same PSNR value, as well as almost the same values for || f ||,|| f |l,, and || Vf |. Inthe

present case, there is no metric available that can be used to predict success or failure in deblurring images
(H) and (1).

NONLINEAR PARABOLIC BLURRING OF SHARP CARRIER IMAGE
(H) Blur with ¢=2.5,d=0.3  (I) Blur with c¢=2.5, d=1.5

(G) Original sharp image

Fig. 7. Nonlinear parabolic blurring of sharp USS Eisenhower image g(x, y), by using it as initial values in Eq. (13) with two different
sets of values for the constants c, d.

Table 5. Behavior using Eq. (13) in nonlinear blurring in Fig. 7.

Image f(x, ) Parameters c, d (Ra [l | VF PSNR
Sharp image G Not blurred 139 153 4760 0
Blurred image H c=25d=03 134 147 1720 20
Blurred image | c=25d=15 134 148 1770 20
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Figure 8 displays the results of deblurring these two images. Despite the strongly nonlinear blurring in
image (H), through the function s(w) and the inclusion of both the \/wa and ww, terms in Eq. (13),
reasonably good results are obtained after 100 Van Cittert iterations. The carrier’s command ‘island’ has
been recovered, along with the two rows of planes on deck. As shown in Table 6, the values of || f || and
I f|l, inthe deblurred image (H), are very close to their original values, while || Vf ||| has recovered 78 %
of its value in image (G). Also, deblurring in image (H) has increased the PSNR from 20 to 23. It is
noteworthy that the 2.5\/mwX term in Eq. (13) did not preclude useful reconstruction in image (H).
Surprisingly, deblurring in image (I) was not successful. There is no high frequency noise amplification in
the deblurred image (I), even after 100 iterations, and the values of || f || and || f ||, are only about 3 %
higher than their true values in image (G), as shown in Table 6. As was the case in the deblurred Marilyn
Monroe image (F), substantial sharpening has occurred in the deblurred image (1), but the sharpened image
is seriously marred by artifacts. Because of the moderating effect of the factor cos®w, it was not anticipated
that the term 1.5w(cos®w)w, in Eq. (13) might be detrimental in image (1), since the term 2.5, w w, was
well-tolerated in image (H), and, previously, the term 0.6w(c052w)wy did not prevent successful deblurring
of the Marilyn Monroe image (E). The capricious behavior in image (1) would appear to justify the term
hazardous continuation used in the title of this paper.

NONLINEAR DEBLURRING OF CARRIER IMAGE
(H) Blur with c=2.5, d=0.3  After 100 VanCittert iterns.

() Blur with ¢=2.5, d=1.5  After 100 VanCittert iterns.

x\%‘\&\ ) {\\

Fig. 8. Nonlinearly blurred image (H) was successfully deblurred after 100 iterations. Visually indistinguishable image (1), blurred
with stronger nonlinearities, could not be usefully deblurred.
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Table 6. Behavior using Eq. (13) in nonlinear deblurring in Fig. 8.

Image f (X, y) Parameters c, d || £k Il fl, I VE L PSNR
Deblurred image H c=25d=03 137 152 3700 23
Deblurred image | c=25d=15 141 157 7700 18

6.4 Sydney Opera House Image

The results in this experiment confirm the unpredictability found in the previous example using Eq.
(13), and justify the title even more strongly. Here, the coefficient d multiplying the W(cosZW)Wy term was
substantially reduced. Again, in Fig. 9, images (K) and (L) are visually and statistically indistinguishable,
with the same PSNR value, and almost the same values for || f ||| f |l,, and || Vf |, . In Fig. 10, image (K)
with ¢ =2.5,d = 0.1, is successfully deblurred, and the PSNR value has increased from 19 to 23. In image
(L), where d = 0.6, there is visible sharpening, with the PSNR increasing from 19 to 21. However, the
sharpened image is again marred by artifacts. There is no high frequency noise amplification, even after
100 iterations, and the values of || f || and || f ||, in the deblurred image (L), are little changed from their
true values in image (J). Again, inexplicably, while the term Z-SMWX in Eq. (13) was tolerated in image
(L), and the term 0.6w(cos’w)w, was acceptable in image (E), this same term 0.6w(cos’w)w, was found
troublesome in image (L).

NONLINEAR PARABOLIC BLURRING OF SHARP SYDNEY IMAGE
(J) Original sharp image (K) Blur with ¢=2.5, d=0.1 (L) Blur with c=2.5, d=0.6

Ly L=

Fig. 9. Nonlinear parabolic blurring of sharp Sydney Opera House image g(x, y), by using it as initial values in Eq. (13) with two
different sets of values for the constants c, d.

Table 7. Behavior using Eqg. (13) in nonlinear blurring in Fig. 9.

Image f (x, y) Parameters c, d IRE I, [IVE Ik PSNR

Sharp image J Not blurred 173 183 4090 0
Blurred image K c=25d=01 166 176 1840 19
Blurred image L c=25d=06 167 176 1880 19
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NONLINEAR DEBLURRING OF SYDNEY IMAGE
(K) Blur with ¢=2.5, d=0.1  After 100 VanCittert iterns.

s S

(L) Blur with ¢c=2.5, d=0.6 = After 100 VanCittert iterns.

W

Fig. 10. Nonlinearly blurred image (K) was successfully deblurred after 100 iterations. Visually indistinguishable image (L), blurred
with stronger nonlinearities, could not be usefully deblurred.

Table 8. Behavior using Eq. (13) in nonlinear deblurring in Fig. 10.

Image f (%, y) Parameters c, d Il f 1L [T [ VE PSNR
Deblurred image K c=25,d=01 171 182 3500 23
Deblurred image L c=25,d=0.6 172 183 4920 21
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7. Concluding Remarks

The successful deblurring of images (B), (E), (H), and (K), indicate the Van Cittert iterative procedure
to be a useful tool for backward in time continuation in an important class of 2D nonlinear parabolic
equations. A wide variety of nonlinear problems remains to be explored. Surprisingly, the simple
nonlinearities in Egs. (11) and (13) involving the terms in ww, and wwy, were found to be potentially
destabilizing, and capable of preventing useful continuation. The practical difficulty of reconstructing the
correct backward solution, using data of limited and unknown precision, was stressed. Other limitations
include the fact that the fundamental stability inequality governing a particular continuation, Eq. (4), can
seldom be obtained with sufficient precision. In particular, the rate at which the Holder exponent (t)
tends to zero as t 4 0, which is of vital interest, is typically unknown. The unsuccessful deblurring in
images (C), (F), (1), and (L), is of major interest. Visually, the amount of blurring in each of these images is
no greater than in the successfully deblurred companion image, and the corresponding values of || Vf ||| are
almost equal in every case. Evidently, how the image was blurred is critical, not just the amount of blur.
These failed continuations suggest that the presence of ww, and ww, terms in Egs. (11) and (13), with
relatively large coefficients, unexpectedly leads to faster decaying Holder exponents x(t), such as is
shown in Fig. 1, and the accuracy in the blurred image data becomes insufficient for useful continuation.
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