Theory and Algorithms for
Weighted Total Least-Squares
Fitting of Lines, Planes, and
Parallel Planes to Support
Tolerancing Standards

We present the theory and algorithms for fitting a line, a plane, two parallel planes (corre-
sponding to a slot or a slab), or many parallel planes in a total (orthogonal) least-squares
sense to coordinate data that is weighted. Each of these problems is reduced to a simple
3 x 3 matrix eigenvalueleigenvector problem or an equivalent singular value decomposi-
tion problem, which can be solved using reliable and readily available commercial soft-
ware. These methods were numerically verified by comparing them with brute-force
minimization searches. We demonstrate the need for such weighted total least-squares fit-
ting in coordinate metrology to support new and emerging tolerancing standards, for
instance, ISO 14405-1:2010. The widespread practice of unweighted fitting works well
enough when point sampling is controlled and can be made uniform (e.g., using a discrete
point contact coordinate measuring machine). However, we show by example that nonuni-
formly sampled points (arising from many new measurement technologies) coupled with
unweighted least-squares fitting can lead to erroneous results. When needed, the algo-
rithms presented also solve the unweighted cases simply by assigning the value one to
each weight. We additionally prove convergence from the discrete to continuous cases of
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least-squares fitting as the point sampling becomes dense. [DOI: 10.1115/1.4024854]

1 Introduction

The need for weighted total (here, orthogonal distance) least-
squares fitting of lines, planes, and parallel planes' comes from at
least two fronts: new tolerancing standards and new coordinate
measuring instrumentation [1]. First, ISO tolerancing standards
such as ISO 14405-1:2010 [2] and the future revisions of ISO
1101 [3], and ISO 14405-3 [4] will allow specifications to be
called out based on a total least-squares criterion (see Table 1). As
will be shown in Sec. 2, these must be interpreted as weighted
total least-squares®, where the weights are the discretely parti-
tioned lengths/areas corresponding to the discretely sampled and
measured points. This will be shown to arise from the definition
of the tolerance specification, which applies to the continuous sur-
face and which, according to the duality principle [5], defines the
measurand in the verification process. The verification process,
generally performed using discrete points, must correspond to the
specification or suffer the appropriate additional uncertainty for
any departure. Thus, there is an immediate need for weighted total
least-squares fitting of lines, planes, and parallel planes.

Verification of slot and slab size specifications requires fitting
two parallel planes. One can also see the need for fitting several
parallel planes, as in the case a door hinge [6], where there are

'The case of fitting parallel lines in two-dimensions is also solved in this paper as
a simple restriction of the parallel planes fit to 2D. The case of fitting parallel lines in
three-dimensions is solved by going from the single line solution to multiple parallel
lines with exactly analogous methods as going from single plane solution to multiple
parallel planes as shown in this paper. The reason this case is not explicitly dealt
with in this paper is due to the lack of immediate application to tolerancing
standards.

’Including the word “weighted” before total least-squares might be thought of as
redundant, but total least-squares is often employed to weigh the coordinates of each
point differently from each other. Here, the points themselves are weighted
differently from each other, so we explicitly say weighted, even though the most
general application of total least-squares allows for all such weights.
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several nominally parallel planes (perpendicular to multiple cylin-
drical surfaces representing holes that are nominally coaxial).
Under such fitting, tolerancing a hinge can be treated as a one-
dimensional tolerancing problem that is by no means trivial.

The second reason for weighted (as opposed to unweighted)
total least-squares fitting arises from newer measuring instrumen-
tation. Discrete point coordinate measuring machines (CMMs)
can be programmed to sample a surface predictably and

Table 1 Examples of ISO tolerancing syntax
Syntax Semantics®
0201 @9 ISO 14405-1: The linear size of the indicated

feature of size, with least-squares association
criterion, shall be within the indicated limits.

A

m—

([ ozca]

= O

ISO 14405-3 (emerging): The angular size of
the indicated feature of size, with least-squares
association criterion, shall be within the
indicated limits.

ISO 1101 (emerging): The root-mean-square
parameter of any extracted (actual) surface,
measured from the total least-squares associated
plane, shall be less than or equal to 0.03 mm.

ISO 1101 (emerging): The root-mean-square
parameter of the extracted (actual) median plane
of the indicated feature of size, measured from
the total least-squares associated plane, shall be
less than or equal to 0.02 mm.

ISO 1101 (emerging): The root-mean-square
parameter of the extracted (actual) median axis
of the indicated feature of size, measured from
the total least-squares associated line, shall be
less than or equal to 0.01 mm.

“These statements of semantics are composed from different statements in ISO
14405-1:2010 and the emerging ISO 1101. These are not the formal statements
of explanation associated with the drawings in the official ISO standards.
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Fig. 1

Point sampling density adversely affecting the least-
squares fit

uniformly. That is, before any CMM probing occurs, the number
of points and their approximate sampling pattern can already be
known, and the operator generally chooses the points. This luxury
allows for more or less even sampling of surfaces that are then
associated with ideal form geometries based on an unweighted
total least-squares fitting criterion.

But the introduction of newer measurement technologies takes
away such a priori knowledge. An operator using—for example—
an articulating arm CMM with a handheld laser scanner does not
know how many points will be collected or, to a certain extent,
how uniform the sampling will be (even considering deliberate
attempts by the operator). The ramifications of this are important.
Consider the problem of fitting two parallel planes to a slot—a
task that can arise from a tolerance specification according to ISO
14405-1, which can specifically indicate a least-squares criterion.
In this example, we suppose that the actual planar surfaces are not
quite parallel. Figure 1 shows the effect that variations in sam-
pling can have on the fit. In the figure, the unweighted least-
squares parallel planes are shown by the dashed lines when fit to
points having uniform sampling (left) and nonuniform sampling
(right) (in this figure, the sampled points happen to lie exactly on
the surface, but this does not affect the idea conveyed).

As Fig. 1 shows, when the sampling is uniform all over, the
orientation of the fit planes matches what is expected and desired,
namely the orientation matches what one would get in the contin-
uous case. But when the sampling is not uniform all over, and the
number of points on one planar surface is much higher than on
the other, the orientation of the fit planes is skewed, an effect
that deviates from the continuous case. The use of weighted least-
squares (where the weights correspond to the length or area
around each point) avoids this effect of sampling.

Note that this problem still exists when greater numbers of
points are taken, provided the relative disparity remains between
the numbers of points sampled on the two surfaces. And this case
is realistic, as optically based scanners can gather much more data
on one surface than another based on various things such as dis-
tance, sampling time, lighting, and surface reflectivity.

An easily grasped example is the use of a 3D laser scanner that
collects points on two nominally parallel planar surfaces of the
same nominal size. If one surface is a distance of 2m from the
instrument while the other is 10 m from the instrument, the inverse
square law would have us expect there to be 25 times as many
points collected on the closer surface than the farther one (apart
from special handling). An unweighted least-squares parallel
planes fit would be almost entirely determined by the orientation
of the closer plane. This could be remedied by the algorithms pre-
sented in this paper, if the points on the closer surface were given
weights 1/25 (or whatever the actual ratio of points turned out to
be) of the weights given to the points on the farther surface.

The problem can exist even when fitting a single plane to points
taken on one surface, if one patch is sampled more densely than
the rest of the surface. The characteristics of that patch would
have undue influence on the fit when using an unweighted least-
squares algorithm.

While in this paper, we will often associate the weights with
the length/area of the arc/patch of the curve/surface corresponding
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Fig.2 Fitting a plane to a surface patch

to each point, the scope of this document does not include specific
algorithms for calculating the weights, which is an interesting
topic in itself. Further, making use of weights may be desired for
other reasons such as sampled points with differing uncertainties
or even specific coordinates with differing uncertainties. We also
note that the case of unweighted least-squares fitting of a line
or single plane has been well documented, for example in
Refs. [7-11]. While not in the context of metrology, a general pre-
sentation of total least-squares is given in Refs. [12,13]. An itera-
tive search algorithm for total least-squares line fitting is given in
Ref. [14], where in their 2D problem, different weights are given
to the individual coordinates of each point, based on the uncertain-
ties of those coordinates.

The remainder of this paper is organized as follows. Section 2
poses the problem in the continuous cases and shows why this
lends itself to weighted fitting in the discrete cases. Section 3
gives solutions to the continuous cases. Section 4 gives the algo-
rithms for discrete cases separate from any proofs for convenient
access of the reader. Section 5 contains proofs the discrete-case
algorithms presented. Section 6 gives MATLAB® code of the algo-
rithms along with results of numerical testing. Section 7 contains
the proof that the results from the discrete algorithms converge to
their continuous counterparts as the points become dense, and
Sec. 8 gives some concluding remarks.

2 Definitions in Continuous Cases and Their
Discrete Approximations

As described in Ref. [15], to fit a total least-squares plane to a
surface patch in space, we pose the following optimization prob-
lem (with reference to Fig. 2):

2.1 TisqPlane. Given a bounded surface S, find the plane P
that minimizes [;d*(p, P)ds

Here d(p, P) denotes the signed perpendicular distance (hence,
the qualification “total” for the least-squares fitting) of a point p
on surface patch S from the plane P that will be fitted. Once such
a plane P has been found, the root-mean-square (rms) parameter
for the bounded surface S is given by

ey

We note that f ds is the area of the surface patch. If the surface
consists of several patches, then the integrals can be evaluated
over each patch and then summed.

*Certain commercial software packages are identified in this paper in order to
specify the experimental procedures and code adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the software tools
identified are necessarily the best available for the purpose.
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P,

Fig. 3 Fitting two parallel planes
c
ds
4

dp,L)

/

Fig. 4 Fitting a line to a curve

The objective function in TlsqPlane cannot, in general, be eval-
uated in closed form. So we resort to numerical integration over
the surface S. We can sample points on a surface patch after divid-
ing up the patch into discrete areas AA; and approximate the
objective function as

N
| 0.y~ Y {0} Aa, @

i=1

where p; are the N sampled points, one in each subdivision. Thus,
we are led to minimizing >>Y | [{d*(p;,P)} - AA;] over the pa-
rameters of the plane P for TlsqPlane, where AA;’s are treated as
the weights.

When we need to fit two or more parallel planes, the problem can
be formulated as follows. For simplicity, we will present the case of
fitting two parallel planes (with corresponding illustration in Fig. 3):

2.2 TisqParallelPlanes. Given two bounded surfaces S; and
S5, find two parallel planes P; and P, that minimize
J:Sl dz(p’Pl)ds + fsz dz(p,Pz)ds

Once such parallel planes P; and P, have been found, the dis-
tance between them is the linear size (that has been defined with
the least-squares criterion) in ISO 14405-1:2010. The definition
can be extended to any arbitrary number of parallel planes. A dis-
crete approximation to the TlsqParallelPlanes problem can be
defined as we did for the TlsqPlane problem.

For fitting a line, see Fig. 4.

TlsqLine. Given a bounded space curve C, find the line L that
minimizes .. d*(p,L)ds

We can sample points on C after dividing up the curve into dis-
crete segments AC; and approximate the objective function as

JC dz(va)ds ~ Zivzl [dz(ph[‘)] : AC,'.

3 Solutions for Continuous Cases

We begin by solving the continuous cases; the discrete cases
follow from these in a straightforward manner. First, we give the
relevant distance formulas.

Journal of Computing and Information Science in Engineering

If a plane is defined by a point on the plane x = (x, y, z) and the
direction cosines of the normal to the plane (i.e., the unit vector
normal to the plane) a = (a, b, c¢), then the signed orthogonal dis-
tance from a point x; = (x;, y;, z;) to the plane is given by:

di=a-(xi—x)=alx; —x)+bly;—y)+c(zi —2)

If a line is defined by a point on the line x =(x, y, z) and the
direction cosines of the line (i.e., the unit vector in the direction of
the line) @ =(a, b, c), then the orthogonal distance from a point
x; = (x;, y;, z;) to the line is given by:

di = |a x (x; — x)|
Written in detail:

d; =\ u* +v? +w?, where
u=cly—y)—b(zi—z)
v=a(z; —z) — c(x; — x)
w=>b(x;—x)—alyi—y)

However, it is also equal to the Pythagorean expression below,
which is less numerically stable but more convenient for use in
proofs:

di = \/|xi —x*—(a- (x; — x))*
or written another way,
. N2
(d}me)Zz |xi _ x|27 (dlplane>

Note: In this paper d; can refer to the distance from the ith data
point to either a plane or line, with the context making clear
which. In cases when clarification is needed, di™ and d@"" are
used to remove ambiguity, as in the equation above.

We now present two theorems solving the continuous case
least-squares fitting problems, along with a few helpful lemmas.

LemMA 1. Assume that we are given a bounded, piecewise con-
tinuous surface, S of finite area, and an orientation, a. Then the
total least-squares plane constrained to have normal a must pass
through the centroid, ¥ = (X,y,Z), where X = js xds/fs ds,
y = [yds/|sds, and 7 = [ zds/ [ ds. Any plane having normal a
but not passing through the centroid has a sum-of-squares objec-
tive function value strictly greater than the plane passing through
the centroid.

Proof. The equation of any plane having normal a can be writ-
ten as a - x —d =0, where d is the signed distance from the plane
to the origin. The orthogonal distance from any arbitrary point p
to this plane is @ - p — d. Thus, the objective function for any plane
of orientation a is given by F(d) = [, [a-p — d|’ds.

Taking the first and second derivatives yields:

F'(d) = -2 L [a-p — d]ds,and

F'(d) = ZJ ds >0
s
The fact that the second derivative is a positive constant implies
that the function is strictly convex and has a unique minimum if
and where its first derivative vanishes. This occurs when
Jg @ p — d]ds = 0. Distributing the integral and solving for d yields

JS la-plds _ Lpds =

7a~ :a.x
st ‘[a’s
s s

But this means that that the distance from x (the centroid) to the
plane, which is @ - ¥ — d, is equal to zero, implying that the cent-
roid must lie on the total least-squares plane constrained to have
normal a. Furthermore, the objective function is strictly convex,

d=
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meaning any other plane not passing through the centroid must
have a greater objective function value.

THEOREM 1. Assume that we are given K > 1 surfaces, Sy, S, ...,
Si, where each surface is bounded, piecewise continuous, of finite
area, and each S; having centroid X; = (X;,y;,%;). Then a set of K

) L’ (x — x;)%ds

parallel planes of total least-squares can be computed as the
planes passing through the respective centroids of the surfaces
and all sharing the same orientation defined by the eigenvector
corresponding to the smallest eigenvalue of the 3 x 3 matrix (writ-
ten as a sum of matrices):

Ll (x = x)(y — yi)ds L (x —x)(z — 7)ds

(x — %) (y — ¥i)ds L (y — y:)ds

i

L, (v = 50)(z — z)ds

L’ (x— %)(z — 2)ds (LI (5 — 1) (= — 2)ds .L, (z — 5)%ds

Proof. For the sake of simplicity of notation and ease for the
reader, we demonstrate the proof for the case of K =2. Using sim-
pler notation then, we assume two surfaces, S4 and Sp.

If two parallel planes have normal orientation @ and pass
through the points x4 and xp, then the objective function to be
minimized is

F(a,x4,xp) = L la-(p— xA)]zds—f— L [a-(p— xB)]zds

Since x4 occurs in the first integral only, and xp occurs in the
second integral only, then for any fixed orientation a we see that
the minimization problem can be separated into two minimization
problems as:

min min min
F(xa,xp)| = F(x,
XA’XB[ (xa,x5)] 4 [F(xa)] + g

[F(x5)] &)

da
OF

VF = |—
ob

g—i JS,‘ [a~(p—iA)}(z—ZA)ds+J

OF LA [a-(p*iA)](x,xA)ds+j

|

This means that Lemma 1 can be applied to each minimiza-
tion on the right hand side of Eq. (3) indicating to us that
when fitting parallel planes, each least-squares plane passes
through the centroid of its respective surface. We denote these
centroids as X4, and xp, respectively. Knowing this, the objec-
tive function to be minimized can be written as a function of
a alone:

Fla) = J la- (p— 54)ds+ j la- (p— %5)ds

To solve the orientation problem, we use the method
of Lagrange multipliers. The minimum of F(a) subject to
G(a) =0 (where G(a) = lal® — 1) occurs when VF = AVG. In this
case,

. [a- (p—xp)|(x — Xp)ds

—2 j [a-(p—@)](y—yu)dsﬁ la- (p— %8)](y — 35)ds
Sa Sp

. [a-(p—xp)|(z —Zp)ds

Let L denote the 3 x 3 matrix (written as a sum of two matrices for reasons of space):

LA (x — %4)°ds

L,, (r=a)—wds [ (=g

Sa

j (= x) - wds |

(x —Xa)(z — za)ds
Sa

Js, 0 =ya)(z = Za)ds

J (x — Xp)(z — Z4)ds J (v — 34)(z — Zp)ds J (z —24)%ds
Sa Sa Sa

.LB & = Ta)'ds LB (x = %) (y — yo)ds LB (x — %)(z — Za)ds
+ J.SB (x = xp)(y — yp)ds J.SB (vy—ys)’ds J‘SB (v — ¥8)(z — 2p)ds

LB (x —xp)(z — Zp)ds LB (y —¥8)(z — Zp)ds LB (z — 2)ds

Then the orientation of the least-squares planes arising from
VF = AVG can be written as the elegant eigen-problem:

[f -

We now need to select the correct eigenvector. The normal
equations can be written as follows:

031008-4 / Vol. 13, SEPTEMBER 2013

[a-(p—%a)](x — Xa)ds + J [a-(p—xp)|(x —Xp)ds = Ja

Sa Sp

LA la-(p—x4)](y — ya)ds +J la-

Sp

(p —x)](y — yp)ds = 4b

JS [a . (p — .fA)KZ — ZA)dS + J [a . (p — .fB)](Z — ZB)dS =Jc

Sp
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Multiplying these equations by a, b, and ¢, respectively, then sum-
ming the equations gives

Jqh~@—iﬂﬁh+[gw~@—fgﬁh:2aﬁ:2 @

But the sum on the left is just the objective function, F(a), hence
the correct eigenvector for the solution corresponds to the smallest
eigenvalue (since F(a) = A, and since we seek to minimize F). [ ]

LemMA 2. Assume that we are given a bounded, piecewise
continuous space curve, C, of finite length. Then the point
that minimizes the sum-of-squares objective function, F(xy)
=[.lp- xo|%ds is the centroid, ¥ = (X,y,Z), where X = J-xds/
Jods, y = [.yds/|.ds, and z = |, zds/ |, ds. Any point that is not
the centroid has a sum-of-squares objective function value strictly
greater than that of the centroid.

Proof. Setting VF =0 yields [.(x—xo)ds = [.(y— yo)ds

= J.(z—z)ds=0. Solving for (xo, Yo, o) gives
(Joxds/ [-ds, [ yds/|.ds, |- zds/ |- ds), which is simply .
[ds 0 0
The Hessian matrix of F is 2|0 jc ds 0 , which is

0 0 JC ds
immediately seen as positive definite, implying that the objective
function is strictly convex and that the centroid is the unique point
that minimizes F. ]

Lemma 3. Assume that we are given a bounded, piecewise
continuous space curve, C, of finite length, and an orientation,
a. Then the total least-squares line constrained to have direction
a must pass through the centroid, X = (X,y,Z), where
X = [.xds/|.ds,y = |.yds/|.ds, and 7 = |.zds/|.ds. Any line
having direction a but not passing through the centroid has a
sum-of-squares objective function value strictly greater than the
line passing through the centroid.

Proof. Suppose not. That is, suppose the least-squares line does
not pass through the centroid, ¥. We construct a plane perpendicu-
lar to the line and passing through x. Call the point where the line
intersects this plane, x* (noting that x* # X). The remainder of the
proof will show that the objective function of the line having
direction a and passing through x* is strictly greater than the
objective function of the parallel line passing through ¥, which
contradicts the original supposition, since the line supposed to
minimize the objective function indeed does not.

The objective function of the supposed least-squares solution is

F(x*) = |, [|p — x| - (dP'a“e(p,x*))z]ds. The objective func-
tion of the parallel line passing through ¥ is F(X) = |, [|p =5

— (d™m(p, f))z]ds. However, since the same constructed plane
with normal a contains both x* and ¥, we see that d”*™(p, ¥)
= d"*(p x*) for all points, p, so F(x*)— F(¥) reduces to
f.|p — x*|*ds— [.|p — %[*ds. But from Lemma 2, we know that
J.lp— x*|ds > J.lp— x|°ds, meaning F(x*) —F(x) >0 and
hence the line passing through x yields a greater objective func-
tion value than the line passing through X¥. This contradicts the
original supposition, proving the lemma. ]
THEOREM 2. Assume that we are given a bounded, piecewise con-
tinuous space curve of finite length, C, having centroid ¥ = (X, y,Z).
Then a line of total least-squares can be computed as the line pass-
ing through the centroid and having the direction of the eigenvector
corresponding to the largest eigenvalue of the 3 X 3 matrix:

J( (x — x)%ds
|| =00 =5

L (x=X)(y — y)ds L (x — %) (z — 2)ds
LU_ﬂ%S L@—ﬂ@—am

J(,- (x = X)(z — 2)ds J (y=y)(z—2)ds L (z — 2)%ds

¢
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Proof. That the least-squares line passes through the centroid
comes straightforwardly from Lemma 3. Knowing this, the objec-
tive function to be minimized can be written as a function of a
alone:

n@:f

c

|x; — x|2ds—J (a- (x; — x))°ds

¢

But the first term does not depend on a, so the function is mini-
mized when the second term is maximized. But the second term is
simply the objective function we had for the plane, which ended
up equaling the eigenvalue as seen in Eq. (4) of the proof of
Theorem 1. Thus, the a that maximizes the objective function
here is found as the eigenvector corresponding to the largest
eigenvalue of the matrix from Theorem 1 (with K= 1) which is
written out above in this theorem. ]

4 Fitting Algorithms

For the convenience of the reader, the algorithms themselves
are presented in this section, unencumbered by their proofs, which
appear later.

4.1 Fitting a Single Plane. Given:

(1) Data points xy,x;,x3,...,Xy, where each x; = (x;,:,2),
and
(2) The corresponding weights, wy, wp, w3, ..

the weights are positive.

.,wy, where all

Then the weighted total least-squares plane is defined as the
plane that minimizes Zf]: , wid?, where d; is the orthogonal dis-
tance from the ith data point to the plane.

The weighted total least-squares plane can be found as follows:

(1) A point on the plane is the weighted centroid, namely
N
£ = (5.5,2) = 2
i1 Vi
(2) The unit vector normal to the plane is the (right) singular
vector corresponding to the smallest singular value in the
singular value decomposition (SVD) of the N x 3 matrix
given by:
VWil —x)  ywin —y)  ywilz —2)
M \/W2(.X2 *)Z) ,/W2(y2 *)7) \/W2(22 *f)

SO =5 RON =) (e — )

The unweighted case (i.e., the equally weighted case) can be
found by making the value of all the weights equal to one; thus,
removing their appearance from the matrix. Scaling all the
weights by the any fixed, positive value does not affect the
solution.

There is a close connection between the smallest singular value
and the rms value between the fitted plane and the surface (as
approximated by the sampled points). This rms value is a quantity
of interest in future ISO 1101 revisions. As we will later see in the
proof of Theorem 3, the square of the smallest singular value
equals the objective function—the weighted sum-of-squares of
residuals. If we denote the smallest singular value as ¢, and if the
weights correspond to the discretely partitioned areas about the
sampled points, totaling A, then the (discrete) rms value can be
simply obtained as:

This result can be seen to follow from the fact that the smallest
eigenvalue of M™M (or equivalently the square of the smallest
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singular vector of M) equals the weighted sum-of-squares of dis-
tances from the points to the weighted least-squares plane (which
is seen in the proof of Theorem 3).

4.2 Two Parallel Planes Given:

(1) Two sets of data points xj,Xxp,...,xy and xy.p,
Xn+2,..-Xy+m, Wwhere each x; = (x;,y;,z;), where it is
known a priori which points belong to each plane, and

(2) The corresponding weights, wi, wp, ws, ..., Wy, Where all
the weights are positive.

Then the weighted total least-squares fitting of two parallel
planes (e.g., corresponding to a slot or slab) is defined as the pair
of parallel planes that minimizes Ziv:lM wid?, where d; is the
orthogonal distance from the ith data point to the first plane when
1 <i < N orto the second plane when N +1 <i <N + M.

If two parallel planes are defined by a point on the first plane
Xa = (X4,Y4,24), a point on the second plane xg = (xz,ys,2p),
and the unit vector normal to the parallel planes, a = (a,b,c),
then the weighted total least-squares parallel planes can be found
as follows:

(1) A point on the first plane is the weighted centroid of the

first set of data points, namely, X4 = (¥4,¥4,24)
N
— Z'Tvl Wiki .
Zi:l Wi

(2) A point on the second plane is the weighted centroid of the

second set of data points, namely, Xp = (Xs,Vg,Zp)
N+M

LY

ZV—I\H»] Wi

(3) The unit vector normal to the plane is the singular vector
corresponding to the smallest singular value of the
(N + M) x 3 matrix given by:

[ VWil —xa) VWI(1—5a) VWi(zi—z4) T
VW2 (X2 —Xa) VW2(y2—ya) VW2(22—24)
VW (Xy—X4) VWN (YN —Y4) VWN(zv—24)

VN v 1=X8) /WN 1 (N 1=YB) /WNt1(en 1 —ZB)
VN2 (N2 —XB) /WN2(VN+2—FB) /W2 (Zn+2—ZB)

L/WN 1 (XN —XB )\ /WN - (YN0 —YB) /Wt (2N =25 )

The distance between the two planes can be easily calculated as
la- (x4 —xp)|.

The unweighted case (i.e., the equally weighted case) can be
found by making the value of all the weights equal to one; thus,
removing their appearance from the matrix. Scaling all the
weights (not just the weights for one plane) by the same factor
does not affect the solution.

4.3 Arbitrarily Many Parallel Planes. The solution for two
planes extends to arbitrarily many planes, where every plane
passes through its weighted centroid, and the SVD is performed
on the matrix written out in Theorem 3 in Sec. 5. We find it a
pleasing result that the algorithm for parallel planes is found as
such a straightforward extension of the single plane case.

4.4 Fitting a Line to 3D Coordinates. Given:

(1) Data points xi,X;,x3, ...,xXy, where each x; = (x;,y:,2),
and
(2) The corresponding weights, wy, wp, w3, ..

the weights are positive.

.,wy, where all
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The weighted total least-squares line can be found as follows:

(1) A point on the line is the weighted centroid, namely
N

%= (%,y,7) = &
( ' Ys ) ZLI Wi
(2) The unit vector direction of the line is the (right) singular
vector corresponding to the largest singular value in the
singular-value decomposition (SVD) of the N x 3 matrix
denoted M in Sec. 4.1.

Note that this algorithm is identical to that for fitting a plane,
except the singular vector corresponding to the largest (rather than
smallest) singular vector is chosen. Also, the fitting of parallel
lines in space is not considered in this paper, but could be per-
formed in a manner that is likewise analogous to Secs. 4.2 and 4.3
(the fitting of parallel lines in a plane is considered in this paper,
accomplished by implementing the parallel plane algorithm in
two-dimensions).

There is a close connection between the largest singular value
and the rms value between the fitted line and the curve (as
approximated by the sampled points). This rms value is a quantity
of interest in future ISO 1101 revisions. As we will later see in the
proof of Theorem 4, the square of the smallest singular value is
related to the objective function—the weighted sum-of-squares of
residuals. If we denote the singular values as o, g,, and g3, with
a3 being the largest and if the weights correspond to the discretely
partitioned lengths about the sampled points, totaling the curve
length L, then the (discrete) rms value can be simply obtained as:

2 2 ) 2
o]+ 05 _ \ o7+ 03

This (perhaps surprising) result can be understood as follows:
The planes orthogonal to the eigenvectors of M™M and all passing
through the centroid form three orthogonal planes (since M™M is
symmetric). The weighted sum-of-squares of distances from the
points to any one of the three planes equals the eigenvalue of
M™M associated with that plane; this will be seen in the proof of
Theorem 3. But the two planes corresponding to the smallest two
eigenvalues both contain the weighted least-squares line. So by
the Pythagorean Theorem, the distance from each point to the line
is simply the root-sum-of-squares of the distances to each of the
two planes. Summing the weighted squares of all these distances
gives the sum of the eigenvalues of the two smallest eigenvalues
or, equivalently, the sum of the squares of the smallest two singu-
lar values of M.

We note that when the points are projected into the plane per-
pendicular to the line, this result along with its proof bears strong
resemblance to the perpendicular axis theorem (applicable for cal-
culating moments of inertia).

5 Proofs of Algorithms in Discrete Cases

We prove the correctness of the algorithms given in Sec. 4
above. Before giving lemmas and theorems, we note that the
least-squares solutions might not be unique (this is also true for
the continuous cases already considered). While we do not rely on
uniqueness in the proofs here, nonuniqueness arises only in patho-
logical cases and is not a problem when we deal with planes in
practical measurements on realistic parts [16]. Hence, we proceed,
simply speaking of the least-squares plane or line. We start with a
lemma related to the location of the weighted total least-squares
plane.

Lemma 4. (Discrete form of Lemma 1) Assume that we are
given data points x1,%2,X3, ..., Xy, where x; = (x;,yi,2;), corre-
sponding positive weights wi,wy,ws,---,wy, and an arbitrary
unit normal vector, a = (a,b,c). Then the weighted total least-
squares plane constrained to have normal a must pass through

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.or g/ on 09/03/2013 Terms of Use: http://asme.or g/terms



the weighted centroid, X = (X,y,Z) = . Furthermore, any

Wi

Z:Nl Wiki
>
plane with normal a but not passing through the weighted cent-
roid has a weighted sum-of-squares strictly greater than the plane
passing through the centroid.

Proof. The equation of any plane having normal a can be writ-
ten as @ - x — d = 0, where d is the signed distance from the plane
to the origin. The signed orthogonal distance from any arbitrary
point x; to this plane is a-x; —d. Thus, the weighted sum-of-
squares objective function for any plane of orientation a is given
by F(d) = Y0 wila - x; — d)’.

Taking the first and second derivatives yields

"(d) = —Ziw,-(a -x;—d)
p

N
F'(d) =2 Zw,- >0,

,and
as all weights are positive

The fact that the second derivative is a positive constant implies
that the function is strictly convex, and has a unique minimum
if and where its first derivative vanishes. This occurs when
SV wi(a-x; — d) = 0. Distributing the sum and solving for d
yields

But this means that the distance from X (the weighted centroid)
to the plane is @ - ¥ — d = 0, implying that the weighted centroid
must lie on the weighted total least-squares plane constrained to
have normal a. Furthermore, the objective function is strictly con-
vex, meaning any other plane not passing through the weighted
centroid must have a greater weighted sum-of-squares. ]

THEOREM 3. Assume that we are given K > 1 sets of data points

{xl,l,xlly---nyl‘l}y {xl‘Z,x2,27---7xN2,2},---a{xl‘l(,xll(,-n,xNK,K}y
where x; = (Xij, yij, zij), and the corresponding positive weights:
WL W2 s s WNLL W12, W22, -, WK K, Where all the weights are

positive. Then a set of K parallel planes of weighted total least-
squares can be computed as the planes passing through the
respective weighted centroids of the data sets and all sharing the
same orientation defined by the singular vector corresponding to
the smallest singular value of the matrix

Wit (X1,1—Xa1) VW11 —Ya1) Wii(z1,1—Za1)
VW21(y2,1 —Yar)

W1 (X2, —Xa1) W1 (22,1 —Za1)

WL (N1, 1 —Xa1)
VW2 (X1 2—%a2)
VW22 (X020 —Fa2)

VN (2N, —Za1)
VWi2(z12—2a2)

w2 2(22 2_ZA2)

Wh1 (YN11—Ya1)
VWi2(V12—Ya2)
VW22(¥22—Ya2)

| V/WNK K (xnk &k —Xak ) /WNK K (VNK K —YaK) /WNK K (ZNK K —ZAK)_

Proof. For the sake of simplicity of notation and ease for the
reader, we demonstrate the proof for the case of K =2, as we did
in Theorem 1. Using simpler notation then, we assume two sets of
data points, x1,x,...,Xy, and Xyi1,Xy+2, ..., XN+, and corre-
sponding weights, wy, wy, ws,...,wyiy. The weighted sum-of-
squares objective function is given by
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N+M

Zw,[a x,—dA —+ Z wila - x; — dB]

i=N+1

a dA 7dB

(Here, d4 and dp are the distances from the two planes to the ori-
gin). For a fixed orientation, a*, the objective function becomes

N N+M
dA 7dB Z ll X — dA]z + Z w,-[a* X — dg}z
i=1 i=N+1

But we note that d, occurs in the first sum only and dp occurs in
the second sum only, allowing us to express the objective function
as F(da,dp) = F(da) + F(dp) where F(d,) and F(dg) are defined
as in the proof of Lemma 4 and each corresponding to its own set
of data. This decomposition allows us to see that F(d4,dp) is mini-
mized when each term in its sum is minimized. That is,

min

min min [F(da)] + do [F(dg)] )

dady )1 = g,

Thus, for the fixed orientation, the parallel planes minimizing the
objective function are in fact the planes that each individually
minimize the weighted sum-of-squares for its own set of data.

Lemma 4 can be applied then to the two minimization problems
on the right hand side of Eq. (5), yielding that each plane must
pass through the weighted centroid of its individual data set. Since
this result is true for any fixed direction a*, it follows that it holds
for the least-squares direction in particular.

Knowing this, the objective function to be minimized can be
written as a function of @ alone

Zw,[a

N+M

x— %)+ Y wila- (x— %))

i=N+1
To solve the orientation problem, we again use the method of
Lagrange multlpher% The minimum of F(a) subject to G(a) =

(where G(a) = |a|* — 1) occurs when VF = AVG. In this case we
have,

VF =

which, when expanded becomes

N N+M T
> wila- (xi = %)](x — Xa) + > wila - (xi — %) (x; — %)
i=1 i=N+1
N N+M

2| Y wila- (xi— x| —3a) + Y wila- (x; — %) (vi — 35)
i=1 i=N+1
N N+M
Zwi[a *XA *ZA +Z W, *.fg)](Z,’ *ZB)
L i=1 i=N+1 i

Similar to the single plane case, computing the gradients yields
an eigenvector problem, but the sum in each matrix entry is
replaced by the two corresponding sums for data sets A and B.

As in the proof of Theorem 1, we have VG =2a and
VF =2La = 2(M"M)a, where L is defined to be M"M, and
where M is now defined as the (N + M) x 3 matrix given as
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E
N
=

|
N
N
=
=
=
N

|
ﬁll
b

]

VWN (YN —a)
VN1 (N1 —B)
VWni2(Yn42 —B)

VWN(zn —Z4)
VW1 (2ve1 — 2B)
VW2 (22 — )

VWh (v —X4)
VW1 (v — X)
VW2 (v — X)

L/ W (Xnm —X8) /W ON+m —IB) /Whm (Zn+m — ZB)

The orientation, (a, b, c), can be found by solving the 3 x 3 eigen-

a a
problem given by L | b | = 4| b |, by using well known meth-
c c

ods. As in the proof of Theorem 1, the eigenvectors of M’ M are
also the singular vectors of M. This allows us to gain better nu-
me;rical results by applying the SVD to M without ever computing
M'M.

We further mimic the proof of Theorem 1 to select the proper
eigenvector (singular vector). The normal equations can be writ-
ten as follows:

ZW,‘(X,‘ —)?)[a . (x,‘ — fA)] + Z W,‘(X,‘ —)f) [d . (x,* — -fB)} = )va
i=1 i=N+1
Z wi(yi — V)la - (x; —%4)] + Z wi(yi —¥)a- (x; —xp)] = 2b

N+M

N
Z:w,-(ziff)[a- (i — %)+ Y wilzi —2a- (xi — %) = Jc

i=N+1

Multiplying these equations by a, b, and c, respectively, then
summing the equations gives

N+M

N
Zw,-[a. (i — %)+ > wila- (x; — %p)’= al’= 1 (6)

i=N+1

But the sum on the left is just the objective function, F(a), hence
the correct eigenvector for the solution corresponds to the smallest
eigenvalue (since F(a) =/, and since we seek to minimize F).
When using the SVD, we choose the singular vector correspond-
ing to the smallest singular value, since under these conditions the
singular values are the square roots of the eigenvalues. ]
LemMma 5. (Discrete form of Lemma 2) Assume that we are
given data points xi,X3,X3, ..., Xy, where x; = (x;,yi,z;), corre-
sponding positive weights wi, wy, w3, ...,wn. Then the point that
minimizes the sum-of-squares objective function,
F(xo) = SN wilxi — xo|* is the weighted centroid, ¥ = (X5, 7)
X
a Zl,v:l Wi
squares objective function value strictly greater than that of the
centroid.
Proof. Setting VF =0 yields vazl wi(x; — xo) = vazl
wi(yi — o) = S0 wi(zi — z0) = 0. Solving for (xo, yo,z0) gives
Z?I:l Wiki le WiYi le WiZi
Z,N:1 wi Z:'Vzlwi 7 Z"V:IW’

. Any point that is not the centroid has a sum-of-

) , which is simply x.

Ei'vzl Wi 0 0
The Hessian matrix of F is 2 0 vazl wi 0 ,

0 0 Swi

which is immediately seen as positive definite, implying that the

031008-8 / Vol. 13, SEPTEMBER 2013

objective function is strictly convex and that the centroid is the
unique point that minimizes F ]

Lemma 6. (Discrete form of Lemma 3) Assume that we are
given data points xi,X2,X3, ..., Xy, where x; = (x;,yi,z;), corre-
sponding positive weights wi,w,,ws,...,wy, and an arbitrary
unit vector, a = (a,b,c). Then the weighted total least-squares
line constrained to have direction a must pass through the

N
. . — R o Wik .
weighted centroid, X = (X,y,7) = 2’7\3 . Furthermore, any line

i=1 !

with direction a but not passing through the weighted centroid
has a weighted sum-of-squares strictly greater than the line pass-
ing through the centroid.

Proof. Suppose not. That is, suppose the least-squares line does
not pass through the weighted centroid, X. We construct a plane
perpendicular to the line and passing through x. Call the point
where the line intersects this plane, x (noting that x* # ¥). The
remainder of the proof will show that the objective function of the
line having direction @ and passing through x" is strictly greater
than the objective function of the parallel line passing through X,
which contradicts the original supposition, since the line supposed
to minimize the objective function indeed does not.

The objective function of the supposed least-squares solution is
Flx*) =S wi [|xi - x*|2—(d""“"e(x,',x*))2]. The objective
function of the parallel line passing through x is F(x)
=N, Wf[|xi *f\zf(dpla"e(xi,f))z}. However, since the same
constructed plane with normal @ contains both x" and ¥, we see
that P4 (x;, X) = dP¥(x;, x*) for all points, x;, so F(x*) — F(x)
reduces to S0 wilxi — x*P =N wilx; —#°. But from
Lemma 5, we know that SV wilx; — x*> SV wilx — 7,
meaning F(x*) — F(x) > 0; and hence, the line passing through
x yields a greater objective function value than the line passing
through x. This contradicts the original supposition, proving the
lemma.

THEOREM 4. Assume that we are given data points
X1,X2,X3, ..., Xy, where each x; = (x;,y;,2;), and corresponding
positive weights wy,wy, w3, ---, Wy, then a weighted total least-
squares line can be computed as the line passing through its
weighted centroid, X, and having its orientation defined by the sin-
gular vector corresponding to the largest singular value of the
N x 3 matrix denoted M in Sec. 4.1.

Proof. That the least-squares line passes through the centroid
comes straightforwardly from Lemma 6. Knowing this, the objec-
tive function to be minimized can be written as a function of a
alone

N N
Fla)=> wilx— %= wi (™ (x;, )’
= =1

But the first term does not depend on a, so the function is mini-
mized when the second term is maximized. But the second term is
simply the objective function we had for the case of plane fitting,
which ended up equaling the eigenvalue as seen in Eq. (6) of The-
orem 3 (when K =1). Thus, the direction a that maximizes the
second term in the objective function here is found as the singular
vector corresponding to the /argest singular value of the matrix
from Theorem 1 (with K = 1) which is denoted M in Sec. 4.1. [ ]

6 mATLAB Code and Numerical Testing

MATLAB code for the cases of fitting of one or two planes
or a line is included here. The function names should be
understood as wtlsgPlane = “weighted total least-squares
plane,” wt1lsg2pp = “weighted total least-squares two paral-
lel planes,” wt1sqgLine = “weighted total least-squares line,”
In this code, wl and w2 are column vectors of weights. pts1l
and pts2 are matrices three columns wide containing the
coordinates of the points, one point per row. g is a point on
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the single least-squares plane/line; g1 and g2 are points on the
two parallel least-squares planes. In all cases, v is the unit vec-
tor that is normal to the least-squares plane(s) or in the direc-
tion of the least-squares line. The distance between the least-
squares parallel planes can be computed as abs ((gl-
q2) *v).

function [g, v] =wtlsgPlane (wl, ptsl)

g=sum (bsxfun (Rtimes,wl,ptsl)) /sum(wl);
Al =bsxfun (@minus,ptsl,q);

A= [bsxfun(@times,sqgrt(wl),Al)];

[U,S,V] =svd(A,0); % Canuse [V, S] =eig (A’ *A) ;
[s, 1] =min(diag(S));

v=V(:, 1);
return;

function [gl, g2, v] =wtlsg2pp (wl, ptsl, w2, pts2)

gl =sum(bsxfun (@times,wl,ptsl)) /sum(wl);
g2 =sum (bsxfun (@times, w2,pts2)) /sum(w2) ;

Al =bsxfun (@minus,ptsl,gl);
A2 =bsxfun (@minus,pts2,gq2);

A= [bsxfun(@times,sqrt(wl),Al); ...
bsxfun (@times, sqgrt (w2) ,A2) ];

[U, S, V] =svd(A,0); % Canuse [V, S] =eig (A’ *D) ;
[s, 1] =min(diag(S));
v=V(:, 1);

return;

function [g, v] =wtlsglLine (wl, ptsl)

g=sum (bsxfun (@times, wl,ptsl)) /sum(wl);
Al =bsxfun (@minus,ptsl, q);

A= [bsxfun(@times,sqgrt(wl), Al)];

[U,S,V]=svd(A,0); %Canuse [V, S] =eig (A’ *A);
[s, 1] =max(diag(S));

v=V(:, 1);
return;

The algorithms in this paper were also implemented in Mathe-
matica for the cases of fitting one, two, and three parallel planes
and for fitting a line. The mMaTLAB and Mathematica algorithms
were compared with each other to assure they give the same
results (up to computational precision limits). The Mathematica
code was also used to test the algorithms presented in this paper
against a brute-force minimization search algorithm.

Test data sets were simulated randomly. Planar data sets were
generated having varying aspect ratios, varying distances between
them, varying numbers of points per plane, varying weights
assigned, varying perturbations of the points from an exact plane,
and varying nominal orientations of the planes to one another.
Data sets for testing line fitting were generated having various
lengths, numbers of points, weights, and perturbations of data
points from a straight line.

The brute-force iterative search was performed using Mathema-
tica’s FindMinimum function. The options were tweaked to
improve the desired accuracy and increase the working precision
beyond machine precision in seeking accurate answers. The
required initial guess for the function was obtained using knowl-
edge of how the test data sets were generated. In contrast to the
iterative search method, the algorithms presented in this paper
were coded using normal machine precision, purposely not taking
advantage of Mathematica’s ability to increase the precision.

Results are shown here for the cases of two parallel planes for
100 simulated data sets (all other results were similar). Figure 5
shows a histogram of the anglular differences between the normal
directions computed by the two methods. Figure 6 shows a
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Fig. 5 Histogram of angular deviations in radians (log base 10
scaling)
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Fig. 6 Histogram of relative distance deviations (mm, log base
10 scaling)

histogram of the relative distances between the two computed par-
allel plane pairs. In both figures, the deviations are given on a log
base 10 scale, meaning the greatest deviation shown in Fig. 5 is
107" radians and the greatest deviation shown in Fig. 6 is
10~ mm. The magnitudes of these maximum deviations are
more important than the histograms themselves, since they show
that in all of the cases tested, the two methods agreed to within
amounts attributable to machine precision.

7 Convergence of the Discrete to the
Continuous Cases

Tolerance specifications according to standards are considered
to apply to the continuous surface. Verification of such specifica-
tions is done using discrete points. Thus, we seek to prove the fun-
damental connection between the discrete and continuous cases.
Specifically, we seek to show that the discrete cases converge to
their corresponding continuous cases as the sampled points
become dense (under idealized conditions of no measurement
error and when the weights are the lengths/areas of the arcs/
patches associated with each point). We show this first for the
case of planes and then note that the case of lines is similar.

We seek to prove convergence for surfaces over which 2nd
degree polynomials (as encountered in the continuous case in
Theorem 1) are Riemann integrable—surfaces that are piecewise
smooth, bounded, having finite area—conditions that are reasona-
ble for real workpieces.” In order to prove that the discrete solu-
tion converges to the continuous solution as the points become

“When considering convergence to the continuous case, we treat the surfaces as
mathematical, ignoring the fact that, at very small scales, the molecular makeup of
the material differs from our understanding of a continuous, mathematical surface.
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dense (when the weights are assigned the values of the areas of
the surface corresponding to the points, as shown in Sec. 2) we
show the following three steps:

(1) The weighted centroid computed discretely converges to
the centroid in the continuous case as the points become
dense.

(2) Every individual cell value of the 3 x 3 matrix in the dis-
crete case (denoted L in the proof of Theorem 3) converges
to its corresponding cell value in the matrix in the continu-
ous case (also denoted L in the proof of Theorem 1) as the
points become dense.

(3) The fact that the individual cell values converge implies
that the eigenvalues and eigenvectors from the discrete case
also converge to their continuous case counterparts as the
points become dense.

Step 1: Looking at the first coordinate in the weighted centroid
(the others being similar), we have ¥ = Z{il wix;/ Z{v:l w;. We
want to show this value converges to its continuous counterpart,
E ds/ fgd s. Since we are assuming the weights are the areas of the
patches associated with each point, the denominator in both the
discrete and continuous cases is simply the area of the patch.
Thus, we need to show convergence only of the numerator. The
numerator converges as the points become dense because it forms
a converging sequence of Riemann sums. The details of this state-
ment are the same as will be given in step 2, below.

Step 2: That the sum converges to the surface integral for each
of the nine cells is immediate from the definition of the Riemann
surface integral (see, e.g., 1.5.1 in Ref. [17]). Specifically, if a par-
tition of a surface called S is given by S = {s\" s\ s}
where these disjoint subsets have well defined areas, and if n
points are chosen such that x; € SE"), for i =1,2,...,n, then the
Riemann sum for a real valued function f over S is defined by

n

R = (A4 )r(x) ™

i=1

where AA,(n) represents the area of the subset SE"). If all sequences
{R,} approach the same limit R with A, = max{Area(S(I")), s
Area(S")} — 0 as n — oo, then fis defined as Riemann integra-
ble over S and the surface integral of f over S is defined by
i (x)ds := R.

In our discrete case, each cell in the matrix L contains one or
more sums of the form Z{v:l wif (x;). But, since we are assigning
each w; to have the value of its point’s associated area, we have in
fact a Riemann sum as in Eq. (7). Furthermore, as the points
become dense, we then have a sequence of Riemann sums where
the maximum area of a partition approaches zero. Then by defini-
tion, this must converge to its corresponding integral when the
function is integrable over S. However, since the function fis sim-
ply a second degree polynomial, it is uniformly continuous over
the piecewise smooth S and thus is integrable. Hence, Step 2 is
shown.

Step 3: We now show that, since the individual cell values con-
verge, the smallest eigenvalue and its corresponding eigenvector
converge as well (when the smallest eigenvalue is unique, i.e.,
simple).

We first note that since there are a finite number of cells
(namely nine) the convergence is uniform. That is, for any € > 0
the points will become dense enough that every cell in the discrete
case differs from the continuous case by less than e.

We look at the sensitivities of the eigenvalues and eigenvectors
in this case. Since the matrix is symmetric, we gain the advantage
of several theorems that bound the changes in eigenvalues and
eigenvectors under small changes to the matrix.

First, in this symmetric case, Stewart shows (p. 309 of Ref.
[18]) that the eigenvalues are perfectly conditioned—that suffi-
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ciently small e-sized perturbations in the cells of the matrix yield
differences in the eigenvalues essentially no greater than e. Thus,
convergence of eigenvalues is assured. Furthermore, this ensures
that if the smallest eigenvalue in the continuous case is unique,
then the smallest eigenvalue in the discrete case will eventually be
as well.

It is also shown (p. 310 of Ref. [18]; see also Refs. [19,20]) that
the eigenvector associated with the any unique eigenvalue 1 is
also well conditioned. Specifically, if the unit eigenvector associ-
ated with the smallest eigenvalue of the matrix L is denoted v, and
the corresponding unit eigenvector of matrix L + AL is v + Av,
then the size of Av is bounded as follows:

[AL],

2
lavi,s e+ o(IAL;)

where /; (j = 1, 2) represents the other two eigenvalues of the ma-
trix. Thus (eventually), as the points become dense, we can find a
constant x such that if every element of AL is less than ¢, then
|Av||,< Ke. This means that—provided the smallest eigenvalue is
unique—its eigenvector must also converge from the discrete to
continuous case as the points become dense. Convergence for the
case of lines is similar, only the largest eigenvalue must be unique
instead of the smallest.

8 Concluding Remarks

We have presented and proved solutions to the problems of
weighted total least-squares fitting of lines, planes and parallel
planes. Furthermore, the solutions are conducive to implementa-
tion in computer algorithms using reliable and readily available
linear algebra functions. The weighted fitting cases can be easily
simplified to equally weighted fitting if desired. The need for such
algorithms has been demonstrated and is relevant to newer toler-
ancing standards and instrumentation.

Furthermore, these fits in the discrete cases converge to their
corresponding continuous cases as the points become dense (inde-
pendent of the sampling strategy). This result is not generally true
in the case of unweighted fitting.

Future work includes creating an appropriate practical means to
assign weights to points as well as extending the work to nonlin-
ear geometries.

This material is declared a work of the U.S. Government and is
not subject to copyright protection in the United States. Approved
for public release; distribution is unlimited.
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