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Multi-zone modeling of size-resolved outdoor ultrafine 
 particle entry into a test house  

 
ABSTRACT  
 
Airborne particle entry into buildings is important for human exposure to particles 

and associated health effects. The present study investigated the entry of size-

resolved outdoor ultrafine particles into a test building under three different 

ventilation scenarios using a multi-zone airflow and contaminant transport model. 

Simulations of the entry of outdoor ultrafine particles into a residential test building 

were performed and validated with measurement data. The study results show that 

accurate particle deposition and penetration inputs are required to predict the time-

varying particle concentrations in buildings. For closed-window conditions, both 

deposition and penetration have significant effects on modeling UFP transport, while 

deposition is more important than penetration for open-window conditions. As the 

window opening area increases, the filtering effect of the building envelope decreases 

and more outdoor particles enter the building through window openings. The study 

results also show that the indoor–outdoor (I-O) concentration ratio is a strong 

function of particle size and building operating conditions. The comparison between 

measurements and prediction suggests that a multi-zone particle transport model can 

provide insight into particle entry into buildings under various weather and building 

operating scenarios. 

 

Keywords: ultrafine particles; indoor-outdoor relationship; multi-zone modeling; 

CONTAM 

 
INTRODUCTION  

Among the many airborne contaminants, ultrafine particles (UFP), <100 nm 

in diameter, are of great importance because of their association with adverse health 

effects such as oxidative damage to DNA (Bräuner et al. 2007; Vinzents et al., 2005) 

and cardiac and respiratory mortality (Stölzel et al. 2007; Oberdörster et al. 2007). In 

the absence of indoor sources, UFP concentrations in buildings are determined by the 

entry of outdoor air particles (Kearney 2011; Rim et al. 2010; Zhu et al. 2005; Long 
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et al. 2001). Outdoor UFP originating from vehicle engines (Kittelson 1998) and 

atmospheric nucleation (Kulmala et al. 2004) can penetrate through the building 

envelope. In particular, in urban environments, entry of outdoor UFP into buildings 

has a significant impact on UFP levels in occupied spaces. Understanding the 

dynamics of urban ultrafine particle entry into a building is important for evaluating 

UFP exposure and the associated health effects.   

Previous studies have examined transport of outdoor UFP to the indoor 

environments using laboratory-based or field measurements (Mullen et al. 2011; 

Kearney et al. 2011; Rim et al. 2010; Hoek et al. 2008; Bennett and Koutrakis 2006; 

Zhu et al. 2005). For example, Rim et al. (2010) found based on measurements in a 

test building that UFP infiltration is a function of particle size and air change rate. 

Other studies (Mullen et al. 2011; Kearney et al. 2011; Bennett and Koutrakis 2006; 

Zhu et al. 2005) monitored indoor and outdoor UFP concentrations and found that the 

indoor/outdoor ratio varies with particle size, building characteristics, weather 

conditions, season, and HVAC system operation including fan and filter usages. The 

studies in the literature are valuable in indentifying these important factors 

determining UFP entry through the building envelope; however, most of them are 

limited to a specific set of conditions since they are experimental studies of specific 

buildings in a given geographic location during a certain time period.  

Outdoor conditions vary daily and seasonally while building characteristics 

and operation conditions also vary for different buildings, and it is a difficult task to 

collect indoor and outdoor UFP data in each of different buildings over long time 

periods. Also indoor UFP sources such as electric and gas stoves or chemical 

reactions are not readily controlled during experiments, complicating estimates of 

indoor concentrations of outdoor-originated UFP (Long et al. 2001). Given these 

complications, multi-zone airflow and contaminant transport modeling offers the 

ability to investigate transport of outdoor UFP into a building under a wide range of 

building operating and weather conditions. A few studies used multi-zone modeling 

approach to investigate the particle dynamics within buildings (Dols et al. 2011; Li et 

al. 2008; Sohn et al. 2007; Hu et al. 2007; Emmerich and Nabinger 2000). For 

example, Dols et al. (2011) investigated indoor-outdoor dynamics of fine particles for 
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a two-story office building using the CONTAM multi-zone model, and showed the 

capability of the model to predict airflow and transport of fine particles by using 

proper model inputs. Sohn et al. (2007) simulated transport of environmental tobacco 

smoke (ETS) particles (0.07 µm to 1.2 µm) in a three-room multi-zone chamber 

using the COMIS multi-zone airflow model along with an indoor aerosol dynamics 

model (MIAQ4). They showed good agreement for particle size distributions 

(0.07 μm to 1.2 μm) between measurements and simulations. Hu et al. (2007) 

performed CONTAM simulation of particle resuspension due to human activities in a 

three-zone office building, demonstrating that the CONTAM model can be used to 

simulate indoor particle deposition, resuspension, and dispersion. Emmerich and 

Nabinger (2000) evaluated the ability of the CONTAM multi-zone model to predict 

concentrations of airborne particles (0.3 μm to 5.0 μm) in a residential building with 

the operation of two different air cleaners, considering particle deposition, penetration, 

and filtration efficiencies. They reported that simulated 24-h average particle 

concentrations were within 30 % of measurements for all particle sizes. Taken 

together, the previous multi-zone modeling studies have shown simulation 

capabilities for predicting transport behavior of airborne particles within buildings. 

Nonetheless, the multi-zone modeling studies in literature (Dols et al. 2011, Sohn et 

al. 2007, Hu et al. 2007, Emmerich and Nabinger 2000) focused on the impact of 

indoor sources and not on particle penetration through the building envelope. 

Furthermore, previous multi-zone modeling studies have rarely studied transport of 

UFP or nano-scale particles. 

 The objective of this study is to compare multi-zone modeling of indoor-

outdoor UFP dynamics with actual measurement data. Such model validation is 

critical to ensuring that such modeling is able to provide reasonable predictions under 

a range of conditions, thereby supporting further model application to broader 

contexts. This study also develops and demonstrates a framework to simulate 

transient airflow and entry of ambient UFP transport into a building under different 

building operation and weather conditions. Using the multi-zone airflow/contaminant 

transport model CONTAM (Walton and Dols 2005), the present study also highlights 
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important model input parameters and the accuracy that can be achieved in predicting 

the entry of outdoor UFP into a building. 

 

METHOD 
 
Building Description 

 The experimental measurements used for the model validation were 

conducted in a full-scale one-level manufactured test building (Nabinger and Persily 

2011, see Figure 1). The test house is located on the campus of the National Institute 

of Standards and Technology (NIST) in the suburban Washington D.C. area, with an 

interstate highway within about 2 km of the test house. The outdoor UFP 

concentration had occasional peaks during commuting hours and in the afternoon 

during nucleation burst events on sunny days (Kulmala et al. 2004). The test building 

consists of three bedrooms, two baths, kitchen, family room, and living area, and has 

a floor area of 140 m2 and a volume of 340 m3. The exterior construction consists of 

insulated wood-frame walls, with exterior vinyl siding and an interior finish of vinyl 

covered drywall without taped and textured joints. The house is on a cinder block 

foundation forming a crawl space with moisture sealed walls and a floor of 

polyethylene sheet over crushed-stone. The crawl space has a floor area of 140 m2 

and a volume of roughly 140 m3. The house’s heating, ventilating and air-

conditioning (HVAC) system consists of a 22 kW gas furnace, a 15 kW air 

conditioner, and a forced air re-circulation fan with a design airflow rate of 470 L/s. 

The leakage areas for the whole building and the air distribution ductwork were 

determined using whole building pressurization tests with a measurement uncertainty 

of about ±10 % (Nabinger and Persily 2011). These values were used in the 

CONTAM model of the test house as discussed later in this paper. 
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Table 1. Test ID, conditions, window, temperature difference, wind speed. 

Window 
Opening  Test ID Test 

Date 

Indoor conditions Outdoor condition
Temp 

(SDd) (°C)
Air Change 
Rate (SD) 

(h-1)

Temp 
(SD) (°C) 

Wind 
Speed 
(m/s)

All 
windows 

closed 

ClosedW1 3/1/09 23.6 (0.5) 0.37 (0.05) 0.43 (1.8) 4.5 (2.4)

ClosedW2 4/25/09 22.0 (0.6) 0.20 (0.06) 22.8 (7.9) 6.2 (1.0)

ClosedW3 5/2/09 20.3 (0.6) 0.15 (0.02) 17.2 (1.4) 2.0 (1.3)

ClosedW4 5/9/09 20.6 (0.5) 0.19 (0.06) 23.0 (4.0) 3.4 (1.9)

One 
window 

open 8cma 

1WinOpn1 9/21/08 24.3 (1.0) 0.37 (0.08) 16.6 (6.3) 2.4 (1.5) 

1WinOpn2 10/4/08 22.9 (0.5) 0.33 (0.06) 15.7 (3.4) 6.1 (0.5) 

1WinOpn3 9/6/09 19.9 (1.6) 0.48 (0.12) 21.9 (3.7) 6.5 (0.9) 

1WinOpn4 9/20/09 19.4 (0.5) 0.40 (0.21) 16.5 (5.4) 6.0 (0.6) 
Two 

windows 
open 15cmb 

2WinOpn1 10/2/10 21.4 (2.0) 0.88 (0.34) 14.0 (3.6) 6.4 (0.6) 

2WinOpn2 10/17/10 20.4 (2.7) 0.92 (0.40) 14.6 (6.4) 7.6 (1.5) 

Two 
windows 

open 8cmc 

2WinOpn3 7/15/11 24.5 (0.5) 0.87 (0.32) 23.1 (4.2) 6.3 (0.7) 

2WinOpn4 9/5/11 22.9 (0.5) 0.83 (0.44) 23.7 (2.8) 6.2 (0.8) 

a. one window open (Win1) 650 cm2; b. two windows open (Win1&Win2) 1300 cm2 each; c. 
two windows open (Win1&Win2) 650 cm2 each; d. Standard Deviation 
  

All of the twelve tests used an identical experimental approach. Readers are 

referred to Rim et al. (2010) for details of the measurements and data analysis, which 

presents all the measurements except the tests with two windows open. However, a 

brief description of the experimental approach is included as follows. In the 

experiment, indoor and outdoor UFP ranging from 3 nm to 100 nm were alternately 

monitored in the master bedroom and outdoors using a Scanning Mobility Particle 

Sizer (SMPS). A switching valve in the UFP monitoring system alternated sampling 

between indoor air and outdoor air using a timing circuit. The indoor and outdoor 

UFP concentrations were alternately measured over an interval of 10 min each at a 

height of 1.5 m above the floor (indoor samples) and ground (outdoors). During each 

test, the house air change rate was measured using the tracer gas decay method 

(ASTM 2000) with the tracer gas (SF6) injected every 4 hours. Following the 

injection of the tracer gas, about 20 min to 40 min were allowed for complete mixing 

to be achieved, and the tracer gas concentration was measured in seven rooms of the 
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house sequentially each minute with a dedicated electron capture detector, 

completing a cycle of all sampling locations in 10 minutes. Based on the decay data, 

the air change rates were calculated using the best fit slope to a plot of the natural log 

of the ratio of concentration of SF6 to the initial concentration vs. the time of the 

sample. The regressions were performed over an hour using seven 10-min data points 

at 10-min intervals and repeated in a step-wise fashion every 10 minutes. A central 

air distribution fan (part of the heating and cooling system) was always on during 

these tests to provide mixing at a rate of 2000 m3/h, or about 6 air changes per hour. 

Under closed-window conditions, the tracer gas decay rates typically agree across all 

rooms to within 10 % RSD.  When one or two windows are open, the majority of 

RSDs remain within 10 %; however, the zones with the open windows sometimes led 

to increased RSDs, but still generally within 20 %.  

For each experiment, three time-varying variables were monitored: air change 

rate (a), indoor concentration (Cin) and outdoor concentrations (Cout). The indoor 

concentration (Cin) resulting from the entry of outdoor particles can be expressed by 

the mass balance equation: 

                                         
( )in

out in

dC
PaC a k C

dt
                                (1) 

where P is the penetration coefficient (dimensionless); a is the air change rate (h-1); k 

is the rate of UFP deposition onto interior surfaces including ductwork and furnace 

filters (h-1), and Cin and Cout are the indoor and outdoor UFP number concentrations 

(#/cm3), respectively.   

The penetration coefficient (P) is the fraction of outdoor particles that enters a 

building with incoming air as it moves through the building envelope. Particle 

deposition rate (k) represents a first-order loss due to deposition of airborne particles 

onto building interior surfaces. Using the difference form of the mass balance model 

(Equation 1), the penetration coefficient (P) and deposition loss rate (k) were 

estimated based on minimizing the sum of squared errors that represents the 

difference between the modeled and measured indoor concentrations (Rim et al. 

2010).  
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CONTAM Simulations 
 
 The test building described in the previous section was modeled using the 

CONTAM multi-zone air movement and contaminant transport program (Walton and 

Dols 2005). CONTAM is an established simulation tool for predicting airflows and 

contaminant concentrations in multi-zone building airflow systems. When using 

CONTAM, a building is represented as a series of interconnected zones (e.g. rooms), 

with the airflow paths (e.g. leakage sites and open doors) between the zones and the 

outdoors defined as mathematical relationships between the airflow through the path 

and the pressure difference across it. Outdoor weather conditions and system airflow 

rates are used to describe mass balances of air into and out of each zone, which are 

solved simultaneously to determine the interzone pressures relationships and resulting 

airflow rates between each zone, including the outdoors. These airflow rates can be 

calculated over time as weather conditions and system airflow rates change. Once the 

airflows are established, the model can then calculate contaminant concentrations 

over time in each building zone based on contaminant source characteristics and 

contaminant removal information, such as that associated with deposition and other 

loss mechanisms. In the present study, the CONTAM model simulated time-varying 

indoor-outdoor particle transport for size-resolved UFP particles, and the model 

results were compared to the twelve measurements performed in the test building. 

Figure 2 shows an image of the building in the CONTAM graphical interface, which 

depicts different zones, airflow paths (doors, wall joints, windows, etc.), and ducts on 

the main floor of the building. The attic and crawl space were also included in the 

model but are not shown in this figure. The leakage areas of the individual airflow 

path were determined previously (Nabinger and Persily 2011). The whole building 

exterior leakage expressed as effective leakage areas (ELA) at a reference pressure of 

4 Pa was measured as 555 cm2. Table S1 (See Supplementary Material) provides 

details of the CONTAM air leakage values for the building leakage sites expressed as 

ELA at 4 Pa. 
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The leakage values for the various building components were used as model inputs to 

represent the interconnectivity between outdoor and indoor spaces. The time-varying 

ambient weather data and outdoor UFP concentrations were also used as inputs to 

calculate the temporal airflow and indoor UFP concentrations in each of the building 

zones. The initial indoor UFP concentrations for particles from 3 nm to 100 nm were 

set using a lognormal distribution (geometric mean: 50 nm, standard deviation: 1.5, 

total number: 860 cm-3) based on a number of indoor UFP observations in the test 

building. However, the initial concentration inputs affected the model prediction for 

only the first few hours (< 3 h) and did not impact the prediction for the later 

simulation period. The calculation time step of the model was 30 seconds; however, 

given that the time resolution of the measurements was 2.5 min, the model results and 

the measurement data were compared at this same 2.5 min interval. 

 

       
Figure 2. Graphic interface for the main floor of the test building 

 
Two key parameters that impact indoor-outdoor UFP dynamics are particle 

deposition rate and penetration factor. The determination of particle deposition rates 

has been handled differently in previous studies. Dols et al. (2011) used the terminal 

settling velocity of 1 m particles as a model input and showed that the model results 

agree with the average deposition values measured using small glass vials. Sohn et al. 

(2007) directly calculated the particle deposition using an analytical model from 

Nazaroff and Cass (1990). Hu et al. (2007) used mean deposition velocity of 12 m 

particles (with a density of 1.3 g/cm3), which they measured in laboratory 

experiments, as a deposition input in the model. Emmerich and Nabinger (2001) used 
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deposition rate based on particle decay measurement for use in a CONTAM model to 

predict the performance of air cleaner. In this study, we used regression data from 

average measured deposition rates based on 25 experiments with the central mixing 

fan operating, including the twelve test cases described above and listed in Table 2 

(Rim et al. 2012). These deposition values are up to five times greater than the 

theoretical estimates for surface deposition based on Lai and Nazaroff (2000) due to 

forced air re-circulation through the central mechanical fan during the measurement. 

The high air recirculation through the central HVAC system and ductwork led to 

relatively high measured UFP deposition rate (0.28 h-1 to 4.46 h-1 as seen in Table 2). 

Previous experimental studies also found relatively high values of UFP under central 

fan operation. For example, Wallace at al. (2004) reported rates of 0.8 h-1 to 5.0 h-1 

for particle sizes between 10 nm and 100 nm, while He et al. (2005) estimated rates 

between 2.0 h-1 and 5.0 h-1 for the UFP size range from 10 nm to 100 nm.      

 With regard to UFP penetration into a building, most of the multi-zone 

modeling studies in literature (Dols et al. 2011, Sohn et al. 2007, Hu et al. 2007) 

explored the impact of indoor sources on indoor particle concentrations and therefore 

did not consider particle penetration through the building envelope. In the present 

study, we used average penetration coefficients (P) observed from nine different 

measurements with all windows closed (Rim et al. 2010). We regressed the 

measurement data to generate the following relationship between penetration 

coefficient (P) and particle diameter (Dp): 

               P = 0.14(0.01)ln(Dp) - 0.048(0.039)                                 (2) 

In the equation, the numbers in the parentheses are the standard errors of the 

estimates of the slope and intercept. The size-resolved penetration coefficients 

derived using equation (2) (see Table 2) were somewhat different from theoretical 

penetration model of Liu-Nazaroff (2001). For example, the P values for an ideal 

rectangular crack with dimensions 1.0 mm high by 10 cm long at a pressure 

difference of 4 Pa are 0.10 and 0.93 for 10 nm and 100 nm particles, respectively. 

The values of P for these two particle diameters in Table 2 are 0.28 and 0.62. 

Possible explanations for this discrepancy are variation of indoor-outdoor pressure 

difference over time and rough and irregular cracks in real building that are of 
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unknown shape, length, and height. However, the P values in Table 2 are comparable 

to experimental studies in the literature. For instance, Zhu et al. (2005) observed the 

mean values of 0.1 to 0.6 for particle sizes ranging from 10 nm to 100 nm) for four 

apartments close to a major freeway in Los Angeles, CA. Along with the size-

resolved penetration coefficients for air leakage paths associated with cracks and 

other small openings, we assumed a penetration coefficient (P) of 1 for the airflow 

through open windows. 

 The size-resolved deposition loss rates (k) and penetration coefficients (P) 

shown in Table 2 were used as model inputs in the CONTAM simulations of indoor-

outdoor UFP dynamics. Note that the penetration and deposition characteristics can 

vary substantially with building design, crack shape, envelope leakage area, indoor 

surface area, indoor-outdoor pressure differential, and building operating condition. 

The CONTAM model can easily consider variations in input data of deposition, 

penetration, and air leakage characteristics and analyze the effect of changes in the 

value of each parameter on the model prediction of indoor-outdoor UFP dynamics. 

 
Table 2. Size-resolved P and k observed in the test building. 
 
Particle diameter (nm) Deposition loss rate (k) (h-1) Penetration coefficient (P) 

3.4 4.46 0.13 
4 3.90 0.15 

4.78 3.37 0.18 
5.73 2.90 0.20 
6.85 2.51 0.23 
8.2 2.16 0.26 

9.82 1.86 0.28 
11.8 1.60 0.31 
14.1 1.38 0.33 
16.8 1.20 0.36 
20.2 1.03 0.39 
24.1 0.89 0.41 
28.9 0.77 0.44 
34.6 0.66 0.46 
41.4 0.57 0.49 
49.6 0.49 0.51 
59.4 0.42 0.54 
71 0.36 0.57 
85 0.31 0.59 

100 0.28 0.62 
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Statistical Analysis 

 The predictions of time-series data for 24-h particle concentrations were 

compared to the measured values using ASTM D5157 Standard Guide for Statistical 

Evaluation of Indoor Air Quality Models (ASTM 2003). ASTM D5157 provides 

three statistical tools for evaluating the accuracy of IAQ predictions and three 

additional statistical tools for assessing bias. The first three parameters are correlation 

coefficient (r), regression slope (M), and regression intercept (b). These parameters 

are related to the goodness of fit of a linear plot of the measurement and simulation 

results. A line with a slope of 1.0, intercept of 0.0, and a correlation coefficient of 1.0 

would indicate perfect agreement between measurements and model predictions.  

Three additional parameters included in ASTM D5157 are normalized mean square 

error (NMSE), fractional bias (FB), and fractional bias of variance (FS):  

 )/()(
___________________

2
opop CCCCNMSE                           (3) 

   )/()(2
____________

opop CCCCFB                             (4) 

             )/()(2 2222
CoCpCoCpFS                   (5) 

Co and Cp are the measured and predicted concentrations respectively and δ2 is the 

variance. Note that normalized mean square error (NMSE) is zero when there is 

perfect agreement and tends toward higher values as measurement and prediction 

differ by larger magnitude. Fractional bias (FB) provides a normalized range of 

values between 2 and -2 with a value of zero corresponding to perfect agreement 

between measurement and prediction. Fractional bias based on the variance (FS) of 

the concentration is zero for perfect agreement.  

ASTM D5157 contains the following criteria for assessing agreement between 

measurements and predictions:  

 1) The correlation coefficient (r) ≥ 0.9; 

 2) The line of regression between the predictions and measurements should 

 have a slope (M) between 0.75 and 1.25; 

3) An intercept (b) less than 25 % of the average measured concentration; 

 4) The normalized mean square error (NMSE) ≤ 0.25;  
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 5) Absolute values of normalized or fractional bias (FB) of the mean 

 concentrations ≤ 0.25; and 

 6) Absolute value of fractional bias based on the variance (FS) < 0.50. 

These criteria were used to evaluate the ability of the CONTAM model to predict the 

indoor concentrations of UFP.  

 

RESULTS AND DISCUSSION 

This section consists of the four major parts. The first part presents the results 

with air change rates and total UPF concentrations. The second part provides details 

of size-resolved UFP concentrations depending on window position as well as a 

summary of statistical analysis. The third part consists of comparison of measured 

and predicted indoor-outdoor UFP concentration relationship and parametric analysis 

by considering variations in deposition rate and penetration coefficient. Finally, the 

fourth part provides study limitations and future implications.  

Air change rates and total UFP concentrations: simulation vs. experiment 

 Figures 3a-3f present the measured and predicted UFP concentrations and air 

change rates for selected test cases under different window opening conditions. The 

figures show time-varying air change rates as well as indoor and outdoor UFP 

concentration profiles over 24-h. The figures indicate that prediction of air change 

rate agrees very well with the measurements with all windows closed (Figure a) and 

with only one window open (Figure c). The prediction is less accurate for the tests 

with two windows open (Figures e). This reduced accuracy seems likely due to the 

CONTAM airflow model assumption of quiescent or still air in a zone (Chen 2009; 

Wang and Chen 2008). This simplification might cause errors in the prediction of the 

airflow rates through large openings, especially when the momentum effect is high 

due to strong outdoor wind. However, even though there are uncertainties with the 

prediction of temporal airflow rates, the time-averaged air change rate is reasonably 

predicted.   

 Figures 3b, 3d, and 3f compare observed and predicted total UFP (3 nm to 

100 nm) concentrations in the master bedroom. The results demonstrate that the 

indoor concentration profile follows the variation in the outdoor concentration but at 
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a reduced level due to filtering effect of the building envelope. The measurement 

results show that outdoor UFP concentration is up to approximately ten times higher 

than the indoor concentration. Note that the dashed lines for different simulation 

results (Lines A, B and C) in the figures represent prediction of indoor UFP 

concentrations for different handling of deposition and penetration: Line A represents 

the results considering neither particle deposition nor penetration; Line B considers 

only deposition; and Line C considers both deposition and penetration. Therefore, the 

figures reveal differential effects of penetration loss and deposition in predicting 

time-varying indoor UFP concentration. Figure 3b suggests that for the case of closed 

windows, ignoring either penetration loss or deposition in the simulation can result in 

significant errors for model estimates of time-varying UFP concentrations. However, 

the effect of penetration loss dramatically decreases as window opening area 

increases (Figure 3d and 3f). For example, when two windows are open, 

consideration of penetration loss in addition to deposition only minimally improves 

the model prediction (Figure 3f). This result can be explained by the fact that as the 

airflow path opening area increases, the particle filtering effect of the building 

envelope becomes less significant compared to closed window conditions.  

Table S2 (See Supplementary Material) provides airflow rates through the two 

windows (Win1 and Win2) and average fractions of the total airflow into the building 

through the two windows. According to Table S2, the average fractions of the total 

airflow into the house through the two windows (Win1+Win2) were predicted to be 

approximately 10 % for all windows closed, 75 % for one window open (Win1), and 

98 % for two windows open (Win1 and Win2). The actual fractions of total UFP 

entering through the two windows are also about 10 % for closed window (since P 

was applied equally to all air leakage sites), higher than 75 % for one window open 

(since a P value of 1 is applied only to open window), and nearly 100 % for two 

windows open. 

 Based on the results in Figures 3a-3f, both deposition and penetration need to 

be taken into account for accurate modeling of time-varying indoor concentrations. 

Particularly for cases with closed windows, deposition and penetration losses are 
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Given that both UFP penetration and deposition losses are important for UFP 

transport, Figures 5a-5f present comparisons of the model prediction and 

measurement for closed window conditions. The figures indicate that model 

performance is relatively good for the range of particle sizes. The model predicts 

temporal changes in particle concentration with reasonable accuracy. The prediction 

is least accurate for the smallest particle size (20 nm). In this case, the discrepancy 

likely exists because small particles are very sensitive to local airflow and 

environmental conditions, and the model might not catch all the details of the 

dynamics of small particles at local scale. 
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 Figures 7a-7f compare the model predictions and measurements for two-

window open conditions. The figures show that the predictions match the 

measurements of time-varying indoor concentration well even though there are small 

discrepancies in local peaks. These discrepancies might occur due to airflow effects 

such as increased momentum effect and turbulent fluctuation of the flow around the 

building that are not considered in the CONTAM model. It is also possible that the 

particle deposition rate changes over time during the experiment because of temporal 

variation in indoor airflow, while the model uses constant deposition rates. However, 

the simulation-to-experiment comparisons in Figure 7 show that relative differences 

are small and the model can predict the overall trend of the time-varying UFP 

concentration.  
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 Table S3 (See Supplementary Material) provides details of statistical analyses 

based on ASTM D5157 (ASTM 2003) for the comparison of measurements and 

model predictions of time-varying UFP concentrations. In the table, the first three 

statistical parameters (r, M, and b/Cavg) characterize the accuracy of the model 

predictions, and next three additional parameters (NMSE, |FB|, |FS|) assess bias and 

variance.  The statistical analyses show that the agreement between observation and 

model prediction is not perfect for all the test cases. However, it is encouraging to 

note that many of the statistical parameters are in the acceptable range. For instance, 

in most of the cases with closed windows, the model predicts total UFP 

concentrations with acceptable accuracy without bias. The multi-zone model was able 

to capture temporal variations in UFP concentrations including the peak levels and 

timing under many of conditions of varying weather and window opening area.  

 
Indoor-Outdoor Concentration Relationship 
 
 Figure 8 summarizes 24-h average indoor-outdoor (I-O) concentration ratios 

observed and simulated for three different particle sizes (20 nm, 60 nm, and 100 nm) 

and total UFP (3 nm to 100 nm) under different window opening conditions.  The 

figure suggests that I-O ratio for UFP number concentration is a strong function of 

particle size and window operation. For the three particle sizes considered, the 24-h 

average I-O ratio ranges from 0.09 to 0.22 for closed window, from 0.13 to 0.65 for 

one window open, and from 0.41 to 0.66 for two windows open. The larger I-O ratios 

observed with open windows indicate that high indoor concentrations of outdoor 

ultrafine particles for buildings operated with open windows. For all window 

operating conditions, I-O ratio increases with particle sizes, indicating that the bigger 

the particles, the larger fraction of the outdoor particles penetrate and remain airborne 

indoors. Comparing the measurement and simulation results of 24-h average I-O ratio, 

the percent differences are less than 12 % for closed windows, between 0 % and 62 % 

for one window open, and between 2 % and 30 % for two windows open. The 

simulation predicts UFP infiltration with a greater accuracy for the all windows 

closed condition, while the prediction is less accurate for open window conditions. In 

particular, with one window opening, the indoor-to-outdoor relationship is highly 
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Table 3.  Sensitivity analysis for two test case cases: closed windows (ClosedW2) and 

two windows open (2WinOpn4).   

Variations in P 
and k 

% Increase in Average I-O Ratio 

Closed Windows 
 ClosedW2 (4/25/09) 

Two Windows Open  
2WinOpn4 (9/5/11)  

20 nm 40 nm 60 nm 100 nm 20 nm 40 nm 60 nm 100 nm 

P 
 

30 % increase 10 16 19 27 3 4 4 6 

30 % decrease -9 -14 -18 -21 -3 -4 -5 -6 

k 
30 % increase -18 -16 -14 -13 -14 -10 -8 -6 

30 % decrease 28 23 21 17 18 12 10 7 

 

Study Limitations and Implications 
 
 This study presents new and important information demonstrating the ability 

to predict indoor UFP levels arising from outdoor variations in concentration for 

different window positions. However, a number of important limitations in the 

present study need to be noted that merit additional study in the future. The multi-

zone model assumed that outdoor concentrations were spatially uniform around the 

building, while the measurement of outdoor UFP concentration was performed at 

only one façade of the test building. The model did not take into account the 

variability of outdoor concentrations around the building and their influence on the 

indoor concentrations. In addition, the multi-zone model might not capture the 

instantaneous momentum effects of wind through the window openings, which is 

particularly important under high wind speeds with open window(s).  

 The present study used the experimental data (a total of 12 separate 

measurements) mainly for model validation purpose. The measurement data were 

collected from a real manufactured test house under various outdoor weather and 

building operating conditions. As model inputs, this study used average measurement 

values of penetration and deposition rates. However, the penetration and deposition 

data used in this study are not necessarily representative of US homes in general. The 

penetration and deposition parameters can vary depending on the season, weather, 

building type, and building operating conditions (Kearney et al. 2011; Long et al. 
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2001). However, the CONTAM model is capable of analyzing the effect of each 

model input parameter on the prediction of indoor-outdoor UFP dynamics. This study 

provides an initial sense of the sensitivity of the predictions by varying deposition 

rate and penetration coefficient. A follow-up study with a larger number of US homes 

could address the impacts of variations in building characteristics and weather 

conditions, as well as their effects on penetration and deposition.  

 

CONCLUSION  

 Given the challenges in measuring airborne particle transport into buildings 

under varied building operation and weather conditions, the present study 

investigated the ability of a multi-zone model to predict the entry of size-resolved 

outdoor ultrafine particles into a test building. CONTAM simulations and 

experimental studies were performed for a residential test building under three 

different ventilation scenarios. The results show that the model needs to consider both 

size-resolved deposition and penetration to predict accurately the time-varying 

particle concentrations in buildings. Particle deposition and penetration have 

significant effects in the model prediction for closed window condition, while 

deposition is more important than penetration for open window condition. For open 

window cases, the filtering effect of the building envelope decreases as relatively 

more of outdoor particles entry the building through the open windows. The study 

results also show that indoor–outdoor concentration ratio varies with particle size and 

building operating conditions. The model validation and statistical analyses results 

indicate that CONTAM model can provide insight into the general trend of UFP entry 

into buildings under various building operating scenarios.  

 
Disclaimer: The full description of the procedures used in this paper requires the 

identification of certain commercial products and their suppliers. The inclusion of 

such information should in no way be construed as indicating that such products or 

suppliers are endorsed by NIST or are recommended by NIST, or that they are 

necessarily the best materials, instruments, software, or suppliers for the purposes 

described.  
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Table S1. Exterior air leakage for the test building in CONTAM model. 

Building Component Effective leakage area 

Exterior wall 0.11 cm2/m2 

Exterior door (closed) 18.7 cm2 (per unit) 

Wall interface at building corners 0.63 cm2/m2 

Garage exterior walls 2.64 cm2/m2 

Closed windows  5.0 cm2 (per unit) 

Crawl space wall 1.43 cm2/m2 

Floor wall 0.97 cm2/m 

Ceiling wall 0.63 cm2/m 

 
 
 
Table S2. Average airflow rates and fractions of the total airflow into the building 
through the two windows: Win1 and Win2  

Window 
Condition 

TEST ID 

Average airflow rate through 
the two windows 

(Win1&Win2) (m3/h) 

Average fraction of the 
total airflow through the 

two windows (%) 

Inward Outward 
Inward     

(Win1+Win2) 
Outward 

(Win1+Win2)
Win1 Win2 Win1 Win2 

All 
windows 

closed 

ClosedW1  8.4 2.6 7.6 1.4 10 5 

ClosedW2  3.1 0.89 2.7 0.41 9 6 

ClosedW3  1.2 0.19 0.76 0.17 8 6 

ClosedW4  2.9 0.73 2.7 0.44 10 6 

One 
window 

open 

1WinOpn1  43 1.5 201 0 61 90 

1WinOpn2  78 0.82 46 0.88 78 75 

1WinOpn3  52 0.97 55 0.66 76 80 

1WinOpn4  85 1.1 90 0.77 70 85 

Two 
windows 

open       
 

2WinOpn1  640 510 450 503 98 98 

2WinOpn2  630 500 490 510 99 98 

2WinOpn3  190 310 311 147 97 96 

2WinOpn4  210 280 316 159 97 97 
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Table S3. Summary of statistical analyses based on ASTM guideline parameters 
(Bold numbers represent that the value is within the guideline range) 
I. Closed Windows 

 ClosedW1: 3/1/2009 ClosedW2:4/25/2009 

Criteria 20 nm 40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.85 0.97 0.95 0.94 0.99 0.98 0.96 0.99 
M 0.75-1.25 0.77 1.02 1.11 1.20 1.42 0.93 1.08 1.36 
b/Cavg≤ 0.25 0.01 0.11 0.09 0.33 0.04 0.07 0.01 0.11 
NMSE ≤ 0.25 0.31 0.05 0.07 0.10 0.49 0.02 0.02 0.12 
|FB| ≤ 0.25 0.28 0.10 0.04 0.18 0.40 0.02 0.10 0.20 
|FS | ≤ 0.50 0.20 0.09 0.28 0.48 0.67 0.12 0.21 0.62 
 ClosedW3: 5/2/2009 ClosedW4:5/9/2009 

Criteria 20 nm 40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.76 0.92 0.97 0.94 0.95 0.89 0.76 0.92 
M 0.75-1.25 0.62 0.80 0.99 1.03 1.12 0.80 0.46 0.99 
b/Cavg≤ 0.25 0.40 0.05 0.14 0.16 0.06 0.12 0.49 0.01 
NMSE ≤ 0.25 0.24 0.08 0.05 0.05 0.11 0.12 0.08 0.06 
|FB| ≤ 0.25 0.03 0.17 0.18 0.14 0.05 0.12 0.11 0.04 
|FS | ≤ 0.50 0.41 0.28 0.01 0.15 0.32 0.85 1.12 0.33 
II. One Window Open 

 1WinOpn1: 9/21/2008 1WinOpn2:10/4/2008 

Criteria 20 nm 40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.84 0.97 0.97 0.92 0.97 0.87 0.94 0.73 
M 0.75-1.25 0.95 1.40 1.33 1.35 1.08 0.76 1.07 0.74 
b/Cavg≤ 0.25 0.25 0.09 0.07 0.01 0.08 0.22 0.05 0.32 
NMSE ≤ 0.25 0.19 0.14 0.09 0.12 0.08 0.04 0.03 0.03 
|FB| ≤ 0.25 0.30 0.27 0.23 0.29 0.14 0.01 0.02 0.05 
|FS | ≤ 0.50 0.25 0.69 0.61 0.75 0.20 0.33 0.27 0.01 
 1WinOpn3: 9/6/2009 1WinOpn4:9/20/2009 

Criteria 20 nm 40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.79 0.84 0.91 0.84 0.93 0.96 0.87 0.91 
M 0.75-1.25 0.96 0.70 1.89 1.24 1.52 0.97 0.89 1.09 
b/Cavg ≤ 0.25 0.34 0.08 0.58 0.09 0.01 0.13 0.13 0.08 
NMSE ≤ 0.25 0.22 0.09 0.26 0.10 0.38 0.04 0.03 0.06 
|FB| ≤ 0.25 0.27 0.15 0.27 0.05 0.44 0.09 0.01 0.04 
|FS | ≤ 0.50 0.38 0.50 1.24 0.57 0.93 0.01 0.04 0.33 
III. Two windows open 

 2WinOpn1: 10/2/2010 2WinOpn2:10/17/2010 

Criteria 20 nm  40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.96 0.97 0.94 0.96 0.96 0.96 0.94 0.98 
M 0.75-1.25 1.19 1.22 1.11 1.30 0.74 0.86 1.06 0.74 
b/Cavg≤ 0.25 0.26 0.04 0.10 0.07 0.09 0.06 0.07 0.13 
NMSE ≤ 0.25 0.22 0.12 0.07 0.16 0.40 0.04 0.02 0.10 
|FB| ≤ 0.25 0.38 0.24 0.20 0.34 0.19 0.09 0.04 0.14 
|FS | ≤ 0.50 0.45 0.51 0.35 0.62 0.51 0.21 0.17 0.55 
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 2WinOpn3: 7/15/2011 2WinOpn4:9/5/2011 

Criteria 20 nm 40 nm  60 nm Total 20 nm 40 nm  60 nm Total 
r ≥ 0.9 0.96 0.93 0.95 0.95 0.91 0.89 0.93 0.89 
M 0.75-1.25 1.20 0.88 0.82 1.10 1.17 1.19 1.17 1.08 
b/Cavg≤ 0.25 0.11 0.24 0.22 0.06 0.20 0.09 0.07 0.15 
NMSE ≤ 0.25 0.24 0.03 0.02 0.04 0.36 0.17 0.10 0.17 
|FB| ≤ 0.25 0.27 0.11 0.04 0.15 0.42 0.30 0.23 0.28 
|FS | ≤ 0.50 0.44 0.12 0.27 0.29 0.50 0.57 0.46 0.40 
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