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1. Introduction

In this paper, we apply connection relations (see for instance Andrews et al. [2, Section 7.1]; Askey [3, Lecture 7]) with
one free parameter for the Jacobi, Gegenbauer, Laguerre, and Wilson polynomials (see Chapter 18 in [12]) to generalize
generating functions for these orthogonal polynomials using series rearrangement. This is because connection relations with
one free parameter only involve a summation over products of gamma functions and are straightforward to sum. We have
already applied our series rearrangement technique using a connection relation with one free parameter to the generating
function for Gegenbauer polynomials [12, (18.12.4)]

1 > n
—_— = C’(x). 1
AT 720" ;p e (1)
The connection relation for Gegenbauer polynomials is given in Olver et al. [12, (18.18.16)] (see also Ismail [9, (9.1.2)]),
namely
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Inserting (2) into (1), we obtained a result [5, (1)] which generalizes (1), namely

1

- - (v,;) L
AT 720 —;fn M (p)CL (x), (3)

where f"" : {z € €C:0 < |z| < 1}\ (=1, 0) — Cis defined by

I (p)e™ =2 (n 4 ) vep—t1jz (14 P2
T D) prt1/2(1 — p2yv—n—1/2 u=1/2 20

where Q/* is the associated Legendre function of the second kind [12, Chapter 14]. It is easy to demonstrate that fn(”’”) (o) =
p". We have also successfully applied this technique to an extension of (1) expanded in Jacobi polynomials using a connection
relation with two free parameters in Cohl [4, Theorem 1]. In this case the coefficients of the expansion are given in terms of
Jacobi functions of the second kind. Applying this technique with connection relations with more than one free parameter
is therefore possible, but it is more intricate and involves rearrangement and summation of three or more increasingly
complicated sums. The goal of this paper is to demonstrate the effectiveness of the series rearrangement technique using
connection relations with one free parameter by applying it to some of the most fundamental generating functions for
hypergeometric orthogonal polynomials.

Unless otherwise stated, the domains of convergence given in this paper are those of the original generating function
and/or its corresponding definite integral. In this paper, we only justify summation interchanges for a few of the theorems
we present. For the interchange justifications we have given, we give all the details. However, for the sake of brevity, we
leave justification for the remaining interchanges to the reader.

Here we will make a short review of the special functions which are used in this paper. The generalized hypergeometric
function ,F; : C° x (C\ —Ng)? x {z € C: |z] < 1} — C(see Chapter 16 in Olver et al. [12]) is defined as

ai,...,0p, - — (@) .. (ap)n 2"
F, = —_— .
b q<b1,...,bq’z> Z(b1)n...(bq)n nl

n=0

S p) =

When p = 2, ¢ = 1, this is the special case referred to as the Gauss hypergeometric function ,F; : €2 x (C\ —Np) X
{z € C:|z] < 1} — C(see Chapter 15 of Olver et al. [12]). When p = 1, q = 1 this is Kummer's confluent hypergeometric
function of the first kind M : C x (C\ —Ng) x C — C(see Chapter 13 in Olver et al. [12]), namely

M(a, b, z) = Z EZ;"% =1F (Z; z) .

n=0

When p = 0, g = 1, this is related to the Bessel function of the first kind (see Chapter 10 in Olver et al. [12])], : C\ {0} — C,
for v € C, defined by

@y - =z
L(@) ~—moﬂ (U+1’T>' (4)

The case of p = 0, g = 1 s also related to the modified Bessel function of the first kind (see Chapter 10 in Olver et al. [12])
I, : C\ (—00,0] — C, forv € C, defined by

_ @2 - .7
MO = Toan o (Uw 1)

When p = 1, g = 0, this is the binomial expansion (see for instance Olver et al. [12, (15.4.6)]), namely

1Fo (&z) =(1-2" (5)

In these sums, the Pochhammer symbol (rising factorial) (-), : C — C[12,(5.2.4)] is defined by
n
@n =] +i-1.
i=1

where n € Ny. Also, when z ¢ —Ng we have (see [12, (5.2.5)])

I'(z+n)
@n=—1—"". (6)
I'(2)
where I' : C\ —Np — Cis the gamma function (see Chapter 5 in Olver et al. [12]). _
Throughout this paper we rely on the following definitions. For a,, ay, as, ... € C,ifi,j € Zandj < i then ZJn:i a, =0

and ]_[{1=i a, = 1. The set of natural numbers is given by N := {1, 2, 3,...}, theset Ny := {0, 1, 2, ...} = N U {0}, and the
setZ := {0, &1, £2, .. .}. The set R represents the real numbers.
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2. Expansions in Jacobi polynomials

The Jacobi polynomials P**”’

(Olveretal. [12,(18.5.7)])

(@+1) —mnda+p+1 1-2
PP (z) == n‘ "o a+1lB )

: C — Ccan be defined in terms of a terminating Gauss hypergeometric series as follows

forn € Ng,and @, § > —1suchthatifa, 8 € (—1,0) thena + 8+ 1 # 0. The orthogonality relation for Jacobi polynomials
can be found in Olver et al. [12, (18.2.1), (18.2.5), Table 18.3.1]

(e, B) (e, B) Y] By —
le P, () (1 =x)*(14+x)"dx = antatpT DM@t prnt D

/1 2B M@ +n+ DB +n+1) 5 o

A connection relation with one free parameter for Jacobi polynomials can be found in Olver et al. [12, (18.18.14)], namely
(B + Dn
y+B+Dy+B+2)n

8 Z Y4+B+2k+DF +B+ D+ B+a+ D@ — )i
k=0 B+Di(+y + B+ 2 — k)

PP (x) =

PP (x). €)

In the remainder of the paper, we will use the following global notation R := /1 + p% — 2px.

Theorem 1. Let « € C, 8,y > —1suchthatif B,y € (—1,0)thenB+y +1#0,pe{zeC:|z] < 1}, x € [-1,1].
Then

20+# Lo @k y B D+ B D () (=42)
= K
RA+R—p)*(A+R+p)f y+B+14 @+ B+ 1) (y+2ﬁ+2) (y+2ﬁ+3)
k k
,3+k+l,a+/3+2k+l,a—y kn(.B)
X3F2< a+Bk+1y+p+2k+2 P )PP 9)

Proof. Olver et al. [12, (18.12.1)] give the generating for Jacobi polynomials, namely

2a+ﬂ

— np(@.f) (y). 10
R(1+R—p)*(14+R+p)f ;p ) (10)

This generating function is special in that it is the only known algebraic generating function for Jacobi polynomials (see
[9, p. 90]). Using the Jacobi connection relation (8) in (10) produces a double sum. In order to justify reversing the order of
the double summation expression we show that

o0 n
Y lenl Y lawd
k=0

n=0

P,Ea’ﬂ)(x)‘ < o0, (11)
where ¢, = p" and ay, are the connection coefficients satisfying
- (
PP ) =) aul " (0.
k=0

We assume that o, 8, ¥ > —1, x € [—1, 1], and |p| < 1.It follows from [15, Theorem 7.32.1] that

max_|PP (x)| < Ki(1+n)7, (12)
xe[—1,1]

where K7 and o are positive constants. In order to estimate a,; we use
1A =71 +x0PPP PP (x) dx
S5 =07+ 08P (0} dx

Qnk =
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Using (12) we have

1
/ (1= (140 P@P )PTP (x) dx| < Ky(1+ k)7 (1 +n)°.
-1

Using (7), we get

K3
1+ k

=

1
f (1 =071+ 0P P () dx
-1

where K3 > 0. Therefore,
|ank| = K4(1 + k)aJﬂ(l + n)0~
Finally, we show (11):

00 n
Z |Cn| Z |ank|
k=0

n=0

o0 n o0
p;w(x)\ <K Y 1"y A+ A +n)° <Ks Y [p"(1+n)* < oo,
n=0 k=0

n=0

because |p| < 1. Reversing the order of the summation and shifting the n-index by k with simplification, and by analytic
continuation in o, we produce the generalization (9). O

Theorem 2. let @ € C, 8,y > —1suchthatif B,y € (—1,0)then+y +1#0,pe{zeC:|z] < 1}, x € (—1,1).

Then
2 /2 2 B/2
<<1 - X)p) ((1 +X),o> Je (V2 =300) 1 (V2( +%0p)

_ 1 o Rk+y+B+Dy +B+1)k (a+2;3+1)k (a+2ﬂ+2)k
S (yHB+DI(@+DIB+1T) =0 (o + D (B+ Dy (@ + B+ 1 (y+ﬂ+2) (y+ﬂ+3)
k k

2

2k+a+p+1la—y ) kp(-B)
xaFs (oe—i—ﬂ—l—k—i—1,y+,3+2k+2,ot+k+l’p PP ). (13)

Proof. Olver et al. [12, (18.12.2)] give a generating function for Jacobi polynomials, namely

2 /2 2 B/2
<<1 - X)p> <(1 +X),o> Ja (ﬁ“ - ’00) Is (Jz(l +X)p)

N 1 o
_nX:(;F(a+1+n)F(ﬁ+]+n)an (x). ”

Using the connection relation for Jacobi polynomials (8) in (14) produces a double sum. Reversing the order of the
summation and shifting the n-index by k with simplification produces this generalization for a generating function of Jacobi
polynomials. O

Definition 3. A companion identity is one which is produced by applying the map x — —x to an expansion over Jacobi
polynomials or in terms of those orthogonal polynomials which can be obtained as limiting cases of Jacobi polynomials
(i.e., Gegenbauer, Chebyshev, and Legendre polynomials) with argument x in conjunction with the parity relations for those
orthogonal polynomials.

By starting with (9) and (13), applying the parity relation for Jacobi polynomials (see for instance Olver et al. [12, Table
18.6.1])

PP (—x) = (=1)"PP) (x),

and mapping p + —p, one obtains the corresponding companion identities. Although for (13), one must substitute
—1 = e*”, and use Olver et al. [12, (10.27.6)]. Therefore Theorems 1 and 2 are valid when the left-hand sides remain
the same, and on the right-hand sides «, 8 +— B, «, the arguments of the 5F, and ,F; are replaced by —p, and the order of
the Jacobi polynomials become («, ).
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Theorem 4. Let @ € C, 8,y > —1suchthatif B,y € (—1,0)thenB+y +1#0,pe{zeC:|z] < 1}\(-1,0], x €
[—1, 1]. Then

A+, (140 _ ry+p+0
Ro+1 o R Zﬁ/zr(ﬂ + 1)(] _ p)a—yp(y+1)/2
o i Ck+y+B+ Dy +B+ D+ B+ D
k=0 (13 + 1)k
ook [ 1
x PY Pk 1<711_£>P,5V’ﬂ)(x). (15)

Proof. Olver et al. [12, (18.12.3)] give a generating function for Jacobi polynomials, namely

1 1 .
5(“"‘}34-1),5(054—,34-2). 2(1+x)p _Z(a+ﬁ+1)n

1+ p) % #71,F , =
A+ 2 841 +p? |~ & B+

p"PP) (). (16)

Using the connection relation for Jacobi polynomials (8) in (16) produces a double sum on the right-hand side of the equation.
Reversing the order of the summation and shifting the n-index by k with simplification gives a Gauss hypergeometric
function as the coefficient of the expansion. The resulting expansion formula is

%(a-{-ﬂ—i— 1), %(014—/34—2)_ 2(1+x)p

(14 p)* P 15F ;
211 '8 +] (-1 +P)2

L& Gy B+ B D (S (242)
— K
y+B+14 B+ i <%ﬂ+2)k <Lﬂ+3)k

2

a+B+14+2ka—y, ¥.8)
X2F1< yﬁ+ﬂ+2+2k ys p)pkpkyﬂ(x)' (17)

The Gauss hypergeometric function coefficient is realized to be an associated Legendre function of the first kind. The
associated Legendre function of the first kind P/' : C\ (—o0, 1] — C(see Chapter 14 in Olver et al. [12]) can be defined in
terms of the Gauss hypergeometric function as follows (Olver et al. [12, (14.3.6), (15.2.2), Section 14.21(i)])

1 z+1 12 -V, v 11—z
Pl2) = | —— 2F1 1_+ i —— | (18)
ra—w \z—-1 12 2
for |1 — z| < 2. Using a relation for the Gauss hypergeometric function from Olver et al. [12, (15.9.19)], namely
a,b 20702 r@—b+1) , (1+z2
2F1<a—b+1’z>_ (1—Z)b P—b 1-2)° (19)

forz € C\ {(—o00,0] U (1, 00)}, the Gauss hypergeometric function coefficient of the expansion can be expressed as an
associated Legendre function of the first kind. The Gauss hypergeometric function on the left-hand side of (17) can also be
expressed in terms of the associated Legendre function of the first kind using Magnus et al. [11, p. 157, entry 11], namely

QM ZVF1 (-\)—,LL —v—u+1 .l)

ra— @z - 2 2 e n

Pl (z) =

1—p

where 0z > 0. This completes the proof. O

Corollary 5. Let 8 € C,«, Yy > —1suchthatif a,y € (—1,0)thena +y +1#0,p € (0,1), x € [—1, 1]. Then

(1—x)“"/zp,a 1—p\ 'y +a+1)
RE+1 P R ) 2020 (a+ 1)(14 p)frplr+D/2
o i Ck+y+a+ Dy +atDila+ B+ Da
= (o + i

—y—a—2k— 1-— P o,
XP),Zﬁ 2k 1<m Plg )/)(X)' (20)
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Proof. Applying the parity relation for Jacobi polynomials to (17) and mapping p +— —p produces its companion identity.
The Gauss hypergeometric functions appearing in this expression are Ferrers functions of the first kind (often referred to as
the associated Legendre function of the first kind on the cut). The Ferrers function of the first kind P/ : (-1, 1) — Ccan be
defined in terms of the Gauss hypergeometric function as follows (Olver et al. [12, (14.3.1)])

1 1+x\"? —vv+1 1—x
PL(X) = N AR 1)
ra-m\1—x w2

for x € (—1, 1). The Gauss hypergeometric function coefficient of the expansion is seen to be a Ferrers function of the first
kind by starting with (21) and using the linear transformation for the Gauss hypergeometric function [12, (15.8.1)]. This
derives a Gauss hypergeometric function representation of the Ferrers function of the first kind, namely

ab =92 r@—b+1) , (1-x
2F1 X ) = P2, ,
a—b+1 (1+x)? 1+x

for x € (0, 1). The Gauss hypergeometric function on the left-hand side of the companion identity for (17) is shown to be a
Ferrers function of the first kind through Magnus et al. [11, p. 167], namely

QM yVF1 —Vv—-—u —v—u+1 1
A= pa—am | 2 2 ’

PA(x) = _
V( ) r 1—u X2
for x € (0, 1). This completes the proof. O

The above two theorems are interesting results, as they are general cases for other generalizations found from related
generating functions. For instance, by applying the connection relation for Jacobi polynomials (8) to an important extension
of the generating function (16) (with the parity relation for Jacobi polynomials applied) given by Ismail [9, (4.3.2)], namely

PP, (22)

14 <a+,3+2 a+,3+3.zp(x—l))_i(a—i—ﬂ—i—l—l—Zn)(u—f—ﬂ—}—])n

—__F : ; =
A—perpe?t\ 2 2 1-p2 ] & (@+B+D@+ Dy

produces a generalization that is equivalent to mapping o — « + 1in Theorem 4.

It is interesting that trying to generalize (22) using the connection relation (8), does not produce a new generalized
formula, since (15) is its generalization—Ismail proves (22) by multiplying (16) by p@+#+1/2_after the companion identity
is applied, and then differentiating by p. Ismail also mentions that (22) (and therefore Theorem 4 and Corollary 5) are closely
connected to the Poisson kernel of {P,E“’ﬂ ) (x) } One can also see that these expansions are related to the translation operator
associated with Jacobi polynomials by mapping & — « + 1in Theorem 4.

Theorem 4 and Corollary 5 are also generalizations of the expansion (see Cohl and MacKenzie [6])

A+x7772 4 (1 +p> p~ @2 I @nta+ B+ DI+ B+n+Dia+ B +m+ oy

Ro+m+1 otm R B 28/2(1 — p)m = rg+n+1
—a—B_om-1 (1
X P—lfl); e (] tg) PigaYﬁ)(X)7 (23)

found by mapping «, y +— « + m, « for m € Ny in Theorem 4; and its companion identity (see Cohl and MacKenzie [6]),

a—x"2 <1"’) p P2 X anta+ B+ DM@+ B+ D@+ B+m+ Do

RE+m+1 CAm R 29/2(1+ p)m &= F@+n+1)
B [1—=0p
a—p—2n—1 («,B)
x P — )P X), 24
—m (1 p) L (X) (24)

found by mapping 8, y — B+m, B form € Ny in Corollary 5. The expansions (23), (24) are produced using the definition of
the Gauss hypergeometric function on the left hand side of (22) and the expansion of (1+ x)" in terms of Jacobi polynomials
(see Cohl and MacKenzie [6, (7), (13)]). Interestingly, the expansions (23) and (24) are also related to the generalized
translation operator, but with a more general translation that can be seen withthe@ > o« + mor 8 — g + m.

3. Expansions in Gegenbauer polynomials

The Gegenbauer polynomials C; : C — C can be defined in terms of the terminating Gauss hypergeometric series as
follows (Olver et al. [12, (18.5.9)])

2 “mnt2n g
Gl = @/4)n 2F1 1 ,
/¢L+5 2
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forn € Npand u € (—1/2, 00) \ {0}. The orthogonality relation for Gegenbauer polynomials can be found in Olver et al.
[12,(18.2.1),(18.2.5), Table 18.3.1] for m, n € Ny, namely
7272 2p + n)

Sim,n- 2
(n+w)r2(wn! (2)

1
/ CEX)CHx)(1 — X)) 2dx =
—1

Theorem 6. Let A, u € C,v € (—1/2,00)\ {0}, p e {z € C: |z| < 1},x € [—1, 1]. Then

» P/ S W+ (=D @+ ) ()
(1= R Rt ) P R =) = o s 2, Gat 172 4 1

—A+n —A+n+1 2u+Ar+n 2u+Ar+n+1

2 2 2 2 R
. nev
XGFS 2//L+n 2M+n+1 M_"_n_'_% M+n+% +1+n s P PCn(X). (26)
> , s » V
2 2 2 2

Proof. In Koekoek, Lesky and Swarttouw [10, (9.8.32)], there is the following generating function for Gegenbauer
polynomials

,F; ; —— ] 2R Ty )T o0 (e 1) '
n+ 5 2 M+ 2 2 n=o (21)n (/‘“_'_ %)n !

These Gauss hypergeometric functions can be re-written in terms of associated Legendre and Ferrers functions of the first
kind. The first Gauss hypergeometric function can be written in terms the Ferrers function of the first kind using Abramowitz
and Stegun [1, (15.4.19)], namely

ab

’ a+b+1

A <a+b+1;x)=p(+2+)<x(l DA ),
2

forx € (0, 1), witha = A, b = 24 — A. The second Gauss hypergeometric function can be written in terms of the associated
Legendre function of the first kind using [12, (14.3.6)] and Euler’s transformation [12, (15.8.1)]. The substitutions yield

- (/2" V2 3 (=M)n(2p +2)
(1= )Van2pl2t R+ p)PE (R — p) = =3 ) -
I2(u+1/2) & Quin( + 1/2),

Using the connection relation for Gegenbauer polynomials (2) on the generating function (27) produces a double sum.
Reversing the order of the summation and shifting the n-index by 2k with simplification completes the proof. O

P"CE(x). (27)

Associated Legendre and Ferrers functions of the first kind with special values of the degree and order reduce to
Gegenbauer polynomials. For instance, if n € Ny, then through [12, (14.3.22)]

;J/rz () = 27121 (u)n!
no (2 + n)

and from [12, (14.3.21)], one has
247120 (uyn!
7T T 2u+n)

From (27) using the above expressions, we have the following finite-summation generating function expression with
m € Np,

> — DA Cl (),

12
/2= 2(X)

n+u 1/ (1 - XZ)#/2*1/4 C# (X)

QWi g~ CMnCRA M,
(mh? = 2 (1 +1),
and from the generalized result (26) we have

( w2, Z (v 4 n) (—m)y 2+ m)y (Wn

ChR+ p)CR— p) = Ct (), (28)

ChR+ p)CER — p) =

(m)? = Q2ua (L +1/2)s (v + 1)y
—m+n —m+n+1 Zu—e—m—l—n 2u+m+n+1 P
xofs | 2 2 2R Yl ety
2u+n 2u+n+1 p+n+5 p+n+3 b+ 14n
2 2 ’ 2 ’ 2 ’

which reduces to (28) when v = pu.
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Consider the generating function for Gegenbauer polynomials, Olver et al. [12, (18.12.5)]

1— px
(] + pz — sz)v+1

1 o0
=5 > (n+20)p"Ch (), (29)
n=0
and the generating function

X—p 1 <,
— LS e, 30
(1+ p2 — 2px)"+1 21),0§ PG R (30)

which follows from (29) using (1). The technique of this paper can also be applied to generalize (29) and (30). However, note
that

1— px 1—p? 1 +1 1
(I+p2=2px)" 1 2 (14p2 =200 " 2(14p% —2px)"’
X—p 1—p? 1 1 1

(T+p2 =200~ 2p (1+p2—2p0"  2p (1+p? —2px)""

so it is easier to use (3) on the right-hand sides.
The Gegenbauer polynomials can be defined as symmetric Jacobi polynomials, namely

(v(iv)ln)Plguuz,uuz)(x). (31)
2/n

Therefore the expansions given in the section on Jacobi polynomials can also be written as expansions in Gegenbauer
polynomials by using symmetric parameters. Furthermore, these expansions can also be written as expansions over
Chebyshev polynomials of the second kind and Legendre polynomials using U,(z) = Cr} (2), Ph(z) = C,f/z (z), forn € No.
One may also take the limit of an expansion in Gegenbauer polynomials as ;# — 0. This limit may be well defined with the
interpretation of obtaining Chebyshev polynomials of the first kind through Andrews et al. [2, (6.4.13)], namely

G (x) =

1

€n

n
Ta@) = — lim 2 cr ), (32)
n—0 12

where the Neumann factor €, € {1, 2}, is defined by ¢, := 2 — §, 9, commonly seen in Fourier cosine series. We can, for
example, derive the following corollaries.

Corollary 7. Let« € C,y € (—1/2,00)\ {0}, p e {z € C: |z| < 1}, x € [1, 1]. Then

getr=1 1o k) (550), (=),

RA+R—p) A +R+p)" 2 vy & (@+yhly+ i

1
y+k+5,a+y+2k,a—y,

X 3F, sp | pfCl . (33)

oa+y+k 2y +2k+1

Proof. Using (9), mapping« — « — 1/2and §, y +— y — 1/2, and using (31) completes the proof. O

Corollary 8. letax € C,p e {z€ C: |z| < 1}, x € [—1, 1]. Then

1
k+ E,a—i-Zk,a_

172 00 @) (efl
(1+R+p) =2y Mﬁz io | P Tex). (34)

R +R—p)e1/2 k=0 @)kt 2k+ 1,0+ k
Proof. Taking the limitas y — 0 of (33) and using (32) completes the proof. O

4. Expansions in Laguerre polynomials
The Laguerre polynomials L} : C — C can be defined in terms of Kummer’s confluent hypergeometric function of the
first kind as follows (Olver et al. [12, (18.5.12)])

1
9(z) == MM(—n, a+1,2),
n!
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forn € Ny, and o > —1. The Laguerre function L} : C — C, which generalizes the Laguerre polynomials is defined as
follows (Erdélyi et al. [7, (6.9.2.37), this equation is stated incorrectly therein]) for v, « € C,

Wi rd+v+aw) _
LV (2) = RCESYAE 1)M( v,a+1,2). (35)

The orthogonality relation for Laguerre polynomials can be found in Olver et al. [12, (18.2.1), (18.2.5), Table 18.3.1]

% r 1
/ X (L% (X dx = w&m' (36)
0 n!

The connection relation for Laguerre polynomials, given by Olver et al. [12, (18.18.18)] (see also Ruiz and Dehesa [13]), is

19(x) = /Z; %Lf(x). (37)

Theorem 9. Let o, B € R, x > 0, p € C. Then

r +
a/2 (2\/7) _ pa/ze_pZ%L;H;(P)pklf(x)- (38)

Proof. Olver et al. [12, (18.12.14)] give a generating function for Laguerre polynomials, namely

n

a/2 _ 01/2— p ¢
Jo(2/x0) = p ”ZWHM)L(@

where J, is the Bessel function of the first kind (4). Using the Laguerre connection relation (37) to replace the Laguerre
polynomial in the generating function produces a double sum. In order to justify reversing the resulting order of summation,
we demonstrate that

Z |Cnl Z | @k | |Lj, (X)‘ < 00, (39)
n=0
where
n
Cn — pi
I'ae+14+n)
and
Qe = w_ (40)
(n—k)!

We assume thata, 8 € R, p € Cand x > 0.1t is known [15, Theorem 8.22.1] that

L] < k(1 +m, (41)
where Kq, 01 = % — }1 are constants independent of n (but depend on x and «). We also have
lane] < (1+n -k < (1+n)%, (42)

where 0, = |a — B|. Therefore,

lol"
L ‘ <K o1+0y+1 )
n§0:|cn|§:|ank||k<x> §jr( i <o

Reversing the order of summation and shifting the n-index by k yields

X1, 2xp) = p*Pe? ii (@ = pn o™ r ).
* i+ 14+n+kn! L

Using (6) produces a Kummer's confluent hypergeometric function of the first kind as the coefficient of the expansion. Using
the definition of Laguerre functions (35) to replace the confluent hypergeometric function completes the proof. O
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Consider the generating function (Srivastava and Manocha [ 14, p. 209])

e =T )a Zp" Ly " (0, (43)

fora € C,p € {ze€C:|z|] <1},x > 0.Using the connection relation for Laguerre polynomials (37) in the generating
function (43), yields a double sum. Reversing the order of the summation and shifting the n-index by k produces

U= p)w ZZ B e,

Using (5), (6), and substituting z = p/(1 + p) yields the known generating function for Laguerre polynomials Olver et al.
[12,(18.12.13)], namely

exp (%) =1=p)fY p"h ), (44)
n=0

for B € C. Note that using the connection relation for Laguerre polynomials (37) on (44) leaves this generating function
invariant.

Theorem 10. Let A e C,a € C\ —N, 8 > —1,p e {z € C: |z| < 1},x > 0. Then
xp (M Ak a—pB B
M(A’a—}_l’,o—l) )Z(a+1)k a+1+k P P Ly ().
Proof. On p. 132 of Srivastava and Manocha [14] there is a generating function for Laguerre polynomials, namely

IR DEDPREE S W Y
M(A,a-l—l,p_l)_(l 0) ;(a+1)nLn(x).

Using the connection relation for Laguerre polynomials (37) we obtain a double summation. In order to justify reversing the
resulting order of summation, we demonstrate (39), where

(AMnp"
(@ + 1),
and ay is given in (40). We assume that € C\ —N, 8 > —1, |p| < 1and x > 0. Given (41), (42), then

Z |cnl Z | @k |

for some K3 € R. Reversing the order of the summation and shifting the n-index by k produces

)" n—+k n
(et ) =0 S G,

Then, using (6) with simplification completes the proof. O

n =

A 00
Lk (X)‘ K; Z :E ):_| |1/;| | a+ n)(71+r72+1 <K Z |,0|n(1 + n)(71+172+)»—a < o0,
n=0

5. Expansions in Wilson polynomials

The Wilson polynomials W, (xz; a,b,c, d), originally introduced in Wilson [16], can be defined in terms of a terminating
generalized hypergeometric series as follows (Olver et al. [12, (18.26.1)])

—-nn+a+b+c+d—1,a+ix,a—ix
W,(x% a,b,c,d) = (a+b)n(a+c)n(a+d)n4l~'3< a4 b.atc atd ;1).

These polynomials are perhaps the most general hypergeometric orthogonal polynomials in existence being at the very top
of the Askey scheme which classifies these orthogonal polynomials (see for instance [ 12, Figure 18.21.1]). The orthogonality
relation for Wilson polynomials can be found in [ 10, Section 9.1], namely
f‘x’ IF'a+ix) (b +ix)I"(c +ix) " (d + ix) 2
0 I (2ix)
_ 27! (n +a—I—b)F(n+a—l—c)F(n+a+d)F(n+b+c)1"(n+b+d)1“(n+c+d)8
- @n+a+b+c+d—DIn+a+b+c+d—1)

Wi (¥ a, b, ¢, d) W, (x*; a, b, ¢, d) dx

m,n



H.S. Cohl et al. /]. Math. Anal. Appl. 407 (2013) 211-225 221

where fta, N b, Nc, Nd > 0, and non-real parameters occurring in conjugate pairs. A connection relation with one free
parameter for the Wilson polynomials is given by [13, equation just below (15)], namely
n
n!

2. _ : 2.
W, (x*;a,b,c,d) = kZ(; IOy Wi (¥*;a,b, ¢, h)

y (n+a+b+c+d—1pd—Mprk+a+b)yk+a+c)prk+b+)ni
(k+a+b+c+h—1)QRk+a+b+c+h) '

In this section, we give a generalization of a generating function for Wilson polynomials. This example is intended to
be illustrative. In Koekoek, Lesky and Swarttouw [10] for instance there are four separate generating functions given for
the Wilson polynomials. The technique applied in the proof of the theorem presented in this section, can be easily applied
to the rest of the generating functions for Wilson polynomials in [10]. Generalizations of these generating functions (and
their corresponding definite integrals) can be extended by a well-established limiting procedure (see [ 10, Chapter 9]) to the
continuous dual Hahn, continuous Hahn, Meixner-Pollaczek, pseudo Jacobi, Jacobi, Laguerre and Hermite polynomials.

(45)

Theorem 11. Let p € {z€C:|z| <1},x € (0,00),Ra, Nb,Nc,RNd,R"h > 0 and non-real parameters a, b, c,d, h
occurring in conjugate pairs. Then

a+ix, b+ ix c—ix, d—ix x (k+a+b+c+d—1)
2F1< + + §/0>2F1< 'P)ZZ .

a+b c+d P)T LUt atb+cth— i@+ by (c+dik
d—h,2k+a+b+c+d—-1,k+a+c, k+b+c . K 2.
x aF3 <k+a+b+c+d—1, 2k+a+b+c+h, k+c+d’p>p Wi (x*; a, b, c, h). (46)

Proof. Koekoek et al. [10, (1.1.12)] give a generating function for Wilson polynomials, namely

a+ix, b+ ix c—ix, d—ix . p" W, (x*;a,b, c,d
2F1( ;,0>2F1( §P>=Z n( )

a+b c+d = (a+b)y(c+dyn”

Using the connection relation for Wilson polynomials (45) in the above generating function produces a double sum. In order
to justify reversing the summation symbols we show that

(o] n
D lenl Y land Wi a, b, e, hy| < oo,

n=0 k=0

where
n

o
B (@+ b)n(c + d)on!’

and ayy, are the connection coefficients satisfying

Cn

Wa(*; a,b,c,d) = Y auWi(x*; a, b, c, h).

n
k=0

We assume that a, b, ¢, d and a, b, c, h are positive except for complex conjugate pairs with positive real parts, and x > 0.
It follows from [17, bottom of p. 59] that

(Wi (x*; a, b, ¢, d)| < Ky(n))>(1 4+ )™, (47)

where K; and o are positive constants independent of n.
We will need the following lemma.

Lemma12. [etje N,k,n € Ng,ze C,Ru >0, w > —1,v > 0,x > 0. Then

W)l = Rw)G— D!, (48)
(V)n < v
= 1+n)°, (49)

k)!
(n + w) < max{1, ZW}M
n!

, (k=n), (50)

n!
[(k+ 2)nr] < (1 +n)‘2'ﬁ, (k <n), (51)
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(k+x— 1), > min x 11 @k
k= 2°6] K
. 1 (n+4k)!
2k 4+ x)p_ > min{x, 1}1 T (k <n).

Proof. Let us consider

[l =lullu+1]...Ju+j—=1>NRu@u+1)...Ru+j—-1) > Ru)§— D
This completes the proof of (48). Choose m € Ny such that m < v < m + 1. Then

@n _ 41Dy 4+ DH0+2)...(n+m)

n!

This completes the proof of (49).If —1 < w < 1 then

nn+w) <nln+1)(n+2)...(n+k) = mn+k!
Ifm < w < m+ 1withm € N then

nl(n + wy < (n+ k)1 :J’:r In :j’i; 2.0 :f; K oMtk < 27 (n + k!
This completes the proof of (50). If |z| < 1 then

n! m!

n!
[((k+2)pil < k+1D(kk+2)...n= o

If |z] > 1 then, using (49),
KK +2)ni] < [21(lzl + D ... (2l + 1= 1) = (1zDn < nl(1+ )7L

This completes the proof of (51). Let k > 2. Then

k(k—1) (2k)! - 1@hk!
2kk—1) k!' — 6 k!
The cases k = 0, 1 can be verified directly. This completes the proof of (52). Let k > 1. Then
(n+k)! 2k - 1 (n+k)!

2k)! n+k ~ 1+n k'
The case k = 0 can be verified separately. This completes the proof of (53). O

k+x—1),>k—-1Dk...2k—-2) =

(2’( + Xk > (Zk)n—k =

Using (48), we obtain, forn € N,

lp|" - lp"| _ 1 n’|p|"
[(@+ bl I(c + dnln! = R(a+b)R(c+d)(n—1DPn!  Ra+bR(c+d) (n)?°
Therefore, we obtain, for all n € N,

|Cn| =

[o]"

2
ol < Jo(1+m? 5

where
1
K; = max{1l,——— ¢ .
{ NR(a+ b)R(c +d) }
Using (49), we find
(d = h)n—k
(n—k)!
Using (50), we obtain
Inln+a+b+c+d— 1) <Ks(n+ k).

From (51), we find

< (14mH

n!
[(k+a+ byl <(1+ n)"“g,

- :(1+n)(1+g>...<1+%)§(1+n)m§(1+n)v-

(52)

(53)

(54)

(55)

(56)
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and similar estimates with a + ¢ and b + c in place of a + b. Using (52), we obtain

(2k)
[(k+a+b+c+h—1) =Ky (58)
where K; > 0. Using (53), we obtain
Ks (n+k)!
2 b h 59
(@K atbtcthnd 2 0o (59)
where K5 > 0.
Combining (55)-(59), we find
nh\?
lank| < Ks(1+n)” (k') . (60)

Now (47), (54), (60) give

ZlcnIZIankl |Wi(; a, b, c, )|
n=0

IA

o) n
KiKoKs " pl"(1+m)” > (1 +n)71+os
n=0 k=0

o0
KiKoKs Y [p]"(1 4+ m)71+76™3 < oo
n=0
since |p| < 1. Reversing the order of the summation and shifting the n-index by k produces the generalized expansion (46).
This completes the proof of Theorem 11. O
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Appendix. Definite integrals

As a consequence of the series expansions given above, one may generate corresponding definite integrals (in a one-
step procedure) as an application of the orthogonality relation for these hypergeometric orthogonal polynomials. Integrals
of such sort are always of interest since they are very likely to find applications in applied mathematics and theoretical
physics.

Corollary 13. Let k € Ng,ax € C, 8,y > —1suchthatif B,y € (—1,0)thenB+y +1+#0,p € {z € C: |z| < 1}. Then
21+y7(11’*(y + k + 1)F(ﬁ 4 k 4 1) (a+§3+1>l (a+§+2)k
K
F+B+2@+p+e (242) (242) «
K K

o +F B+k+1l,a+B+2k+1,00—y
o b Bkt 1,y+B+2k+2 P P

/] 1 —-x71+x? P

RATR_pF A tRT P b O=

Proof. Multiplying both sides of (9) by P,(ly"S ) x)(1 — x)”(1 + x)? and integrating from —1 to 1 using the orthogonality
relation for Jacobi polynomials (7) with simplification completes the proof. O

Corollary 14. Let k € Ng,a € C, 8,y > —1suchthatif B,y € (—1,0)thenB+y +1#0,p € {z € C: |z| < 1}. Then
1
/1(1 — X721 + %P2, (/2(1 — x)p) Is (\/2(1 n x)p) PP (x)dx
B2 /241 (3 4 |4 1) (a+2ﬁ+1) (a+2ﬁ+2)
k k

P +B+DT@+k+ 1)@+ p+ D (F52) (242) ®

< oF 2kta+p+1la—y a/2+B/2+k
N \a+B+k+ly+p+2k+2,a+1+KP)F :
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Proof. Same as the proof of Corollary 13, except apply to both sides of (13). O

Corollary 15. Let B € C, 0, ¥ > —1suchthatif o,y € (—1,0)thena+y +1#0,p € {z€ C: |z| < 1} \ (—1, 0]. Then

PA+XPPA -0 (1+p PO (ydx = 27 (y + kA D@+ B+ Dok pypoair (140
. Ro+1 o R k - (1= p)e=7 plr+D/2k) yoe 1—p/)°

Proof. Same as the proof of Corollary 13, except apply to both sides of (15). O

Corollary 16. Let B € C, o, ¥ > —1suchthatif a,y € (—1,0) thena +y +1#£0, p € (0, 1). Then

PA-0A+%7 (1= p\ @ PPy 4k D@+ B+ Dok a2kt (1= 0
; 5 P (x)dx = 7 Py% — ).
1 RA+ R (14 p)p=7 plr+D/2k 1+p

Proof. Same as the proof of Corollary 13, except apply to both sides of (20). O

Corollary 17. Let n € Ng, ¢, 0 € C,v € (—1/2,00) \ {0}, p € (0, 1). Then

1
—1/2—1/4 - -
/ 1 (1-2)"" P;/faf] R+ p) p}/}ai‘] 12 (R— p) C) (x)dx

_ VA2 Q)@@ = @GOl (340)
CuWal'G+p+mI (A +v+n)I(§+ wn!

a+n ao+n+1 2u—a+n 2u—a+n+1
2 2 5 2 7M+nvﬂ_v

2
2u4n 2u+n+1 p+n+d pt+n+? P
2 2 2 ; it

) ’

X 6Fs >

) ) ’

Proof. Multiplying both sides of (26) by C} (x)(1 — x%)"~1/2 and integrating from —1 to 1 using the orthogonality relation
for Gegenbauer polynomials (25) with simplification completes the proof. O

Corollary 18. etk € Ng,ax € C,y € (—1/2,00) \ {0}, p € {z € C: |z] < 1}. Then
1 1 — x2yr-1/2
/ ( - 2) — Cp (x)dx
S R(A+R=p)* (A +R+p) Y
T2 (y +1/2) (44Y), (*%“)k Cr (
3k

1
y+k+5,(x+y+2k,a—y_p ok
T'(y +k+ D(a+ y)k! ’

QFy+k2y+2k+1
Proof. Same as in the proof of Corollary 17, except apply to both sides of (33). O

Corollary 19. Let k € No,x € C, p € {z € C: |z| < 1}. Then

+1 1
/1 (1+R+p)"? Tk(x)dxzm Rkt at2ha )
RO+ R— p)a-12(1 — x2)172 2@k N\ uiresk )0

Proof. Multiplying both sides of (34) by T (x)(1 — x*)~'/2 and integrating from —1 to 1 using the orthogonality relation for
Chebyshev polynomials of the first kind, Olver et al. [12, (18.2.1), (18.2.5), Table 18.3.1]

1
/ Tn()Ta@) (1 — x2) " 2dx = 5.,
—1 €

n

with simplification completes the proof. O

Corollary 20. Let k € Ng, v, B € R, p € C\ {0}. Then

—p Hk+o/2
erp Lot+k

/ " e, QR (X)dx = (B —a + D— L% ).
0 .
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Proof. Multiplying both sides of (38) by x* e*"Lf, (x) for k' € Ny, integrating over (0, co) and using the orthogonality relation
for Laguerre polynomials (36) completes the proof. O

Applying the process of Corollary 20 to both sides of (44) produces the definite integral for Laguerre polynomials

00 _ p)Bt+1
/ Xﬁ exp (%) Lg(X)dX — F(Tl + /3 + 1)(1 ,0) pn, (61)
0 —

n!

which is a specific case of the definite integral given by Gradshteyn and Ryzhik [8, (7.414.8)]. This is not surprising since (61)
was found using the generating function for Laguerre polynomials.

Corollary 21. Letk e No, p € {z € C: |z] < 1},Ra, Rb, Rc, RNd, Nh > 0and non-real parameters occurring in conjugate
pairs. Then

o a+ix, b+ ix ) (c—ix d—ix ) 5
F ’ ;0 ) oF ’ ;0 | We(x%5a, b, c, h) w(x)dx
/.S 21( a+b 201 c+d ( )
_2nl(@+b)'k+a+o)l'(k+a+hl'(k+b+c)l"(k+b+mI'(k+c+h)
Cc+d Il QRk+a+b+c+h{k+a+b+c+d—1)}"

< AF d—h2k+a+b+c+d—-1,k+a+c,k+b+c . K
S \k+a+b+c+d—1,2k+a+b+c+hk+c+d?

where w : (0, o0) — Ris defined by

T'(@+ix)I'(b+ix)I'(c +ix)I(h+ix) |
I (2ix) ’

w(x) = ‘

Proof. Multiplying both sides of (46) by Wy (x*; a, b, ¢, h)w(x), for k¥ € Ny, integrating over x € (0, co) and using the
orthogonality relation for Wilson polynomials (45) completes the proof. O
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