
Exposing Software Security and Availability Risks
For Commercial Mobile Devices*

Key Words: Software reliability, Dynamic analysis, Execution coverage, Android

SUMMARY & CONCLUSIONS1

The advent of smaller, faster, and always connected
handheld devices along with the ever-increasing reliance on
technology for our everyday activities have introduced novel
threats and risks. Beyond hardware security another primary
factor that affects the reliability of the device is mobile
applications. Indeed, the shift to smart commercially available
mobile devices has created a pressing need for understanding
the risks in using foreign mobile code running on the mobile
devices. This new generation of smart devices, including
iPhone and Google Android, are powerful enough to
accomplish most of the user tasks previously requiring a
personal computer. In our paper, we discuss the cyber threats
that stem from these new smart device capabilities and the on-
line application markets for mobile devices. These threats
include malware, data exfiltration, exploitation through USB,
and user and data tracking.

In this manuscript, we present our efforts towards a
framework for exposing the functionality of a mobile
application through a combination of static and dynamic
program analysis that attempts to explore all available
execution paths including libraries. We verified our approach
by testing a large number of Android applications with our
dynamic analysis framework to exhibit its functionality and
viability. The framework allows complete automation of the
execution process so that no user input is required. We also
discuss how our static analysis output can be used to inform
the execution of the dynamic analysis. Our approach can serve
as an extensible basis to fulfill other useful purposes such as
symbolic execution, program verification, interactive
debugger, and other approaches that require deep inspection of
an Android application.

In summary, we believe that our efforts are the beginning
of a long journey to asserting and exposing the risks of
commercially available mobile devices. Our future work will
include non-Android platforms.

1 INTRODUCTION

Static analysis of application code serves as a useful
method to examine the possible behavior that an application
can exhibit; however, static analysis is constrained to certain
functionality due to its inherent limitations of not actually

* Disclaimer: We identify certain software products in this document, but
such identification does not imply recommendation by the US National
Institute for Standards and Technology, nor does it imply that the products
identified are necessarily the best available for the purpose.

executing the code [1]. Static analysis is susceptible to false
positives, false negatives, and obfuscation [2, 3]. The
precision of the analysis increases when the analysis process
better understands the semantics of the code and is able to
observe the state of an application. When using dynamic
analysis, test inputs need to be randomly generated, come
from a pre-generated set, or be input by an active entity.
Dynamic analysis may or may not get complete coverage of
the code, but all the instructions executed will be reachable
and the application's true behavior can be observed.

We have developed a process for static and dynamic
analysis of Android programs. Our approach allows us to
perform a quick, first-pass analysis and in-depth analysis to
understand the behavior of Android applications. The dynamic
analysis framework runs on a computer and performs concrete
execution of an Android application while abstracting certain
details from the execution of the application. This abstraction
allows the dynamic analysis to automate the analysis of as
many paths as possible through the application without
requiring any user input. Due to the abstraction, automation is
achieved, but the precision of the analysis is reduced. The
abstraction is necessary due to not running the application on
an Android-enabled phone and the absence of the Android
Application Programming Interface (API) in disassembled
applications, although we can still utilize the Java API calls
resident within the Android API. The dynamic analysis
framework only requires an Android Package (apk) file, which
is the compressed format used to encapsulate the constituent
files of an Android application into a single file.

To get as close as possible to complete coverage of the
code, a method must exist to affect the control flow of the
application. As each conditional statement is encountered,
either the values of the variables would need to be changed at
runtime to obtain the desired outcome, determined a priori by
symbolic analysis, or be forced by controlling the jump to a
particular branch independent of the outcome of the Boolean
condition being evaluated. This type of execution approach
[4, 5, 6] stresses the application by entering as many branches
as possible to make the application exhibit different types of
behavior.
The impetus behind this approach is to maximize the coverage
in terms of code, as opposed to examining the behavior of the
application exhibited by a more limited number of execution
traces. This is important because malware can contain very
specific conditions that must be met in order for it to display
malicious behavior [7]. In certain instances, the behavior is
triggered by certain events such as specific times, dates,
hostnames, local IP addresses, the presence of a file, and other
factors. In addition, an application may restrain its malicious

functionality when it determines that it is being debugged,
running in an emulator, or some other type of controlled
execution environment [8].

Figure 1. Overall task flow for Analysis of Android
Applications.

2 STATIC ANALYSIS

To expose security and reliability risks, we developed a
static analysis suite to quickly examine an Android application
in order to examine the possible behavior of the application.
Figure 1 shows the steps of the static analysis. The static
analysis performs an in-depth scan of an application’s
requested permissions and its corresponding functionality
based on the API calls detected in the decompiled code, and
then reports any discrepancies between the two. Research has
shown that Android application developers have a tendency to
request superfluous permissions for their applications [9]. In
addition, an application may lack permission(s) even though
its functionality justifies its inclusion in its
AndroidManifest.xml file.

Certain Android API calls will require the application to
declare one or more permission for the call to execute
successfully. In addition, to the permission analysis that
examines the correspondence between permissions and API
call, the static analysis process also classifies sensitive API
calls into categories based on behavior. After the static
analysis has completed, a list of API calls, if any,
corresponding to each category is generated. For the most part,
these categories in the static analysis correspond to the groups
that are used in the dynamic analysis..The groups are:
commands executed, execution of binaries, Java reflection,
loading of libraries, network events, files accessed, dynamic
class-loading, etc. The list of API calls for each category also
lists the file name and line number of each API call
occurrence, so that further analysis can be performed to obtain
more context for the API call.

The static analysis process enumerates the list of method
calls and Android API calls that the application can make.
The analysis also extracts hard-coded values from the
application. It will parse through the smali [10] files of the
application to find all the initialization of strings in the
application. The smali format is a human-readable
representation of the Dalvik bytecode, which shows the
instructions as well as the register numbers, object types, and
literal values that can be used as arguments to the instructions.
This set of strings from the smali files can then be parsed for
known malicious URLs or suspicious strings such as nc, su,
etc. This only works for hard-coded values where the

Figure 2. Simple domain name obfuscation using String
manipulation.

application developer has not made any attempt at obfuscating
the value. For example, there is an Android application with
the package name of “com.antivirus.kav”, which uses a
simple technique to obfuscate the actual domain that it
connects to. The method called LinkAntivirus in the
application returns a domain that has been transformed using
three calls to the replace method of the java.lang.String class.
Figure 2 shows the smali for the LinkAntivirus method,
which upon conclusion will ultimately return a String
containing http://routingsms.com/z.php.

We executed the application within the dynamic analysis
framework to obtain a better understanding of the
functionality of the application. The dynamic analysis output
revealed that the application connects to this domain using the
openConnection method of the java.net.URL class. The
application also appends the phone number, the device ID, and
the subscriber ID of the phone to this domain which occurs in
the GetRequest method of the SmsReceiver class within the
application. Performing static analysis on the files of the
disassembled application would not be able to detect the
obfuscated domain, as well as the phone-specific information
it appends to the domain.

We plan to use the static analysis to identify all the
sensitive calls in an application and then try to determine a
path or paths to the sensitive call from one of the entry points
of the application. The path information would be of the form
of the application component to start from and then a sequence
of conditional jump values to input, switch cases to enter, and
callbacks to execute. A list of methods is not needed since the
dynamic analysis program always executes each method call it
encounters. The output of the static analysis can be used to
guide the dynamic analysis as to how to reach the sensitive
calls within an application. This would significantly improve
the performance of the dynamic analysis since it currently
performs an exhaustive search for un-traversed executed paths
through the application. The static analysis output can
augment and reinforce the dynamic analysis process by
directing it in an intelligent manner.

3 DYNAMIC ANALYSIS

3.1 Dalvik Bytecode and Java implementation

We utilized apktool, a free open-source utility, which
unpacks an apk file into its constituent resources and
disassembles the Android application's classes.dex file into a
format called smali. Each application contains a single
classes.dex file, and apktool disassembles it into a directory
tree of smali files. Each smali file corresponds to a single Java
class file. Android applications are written in Java and
converted to Dalvik bytecode.

Dalvik bytecode uses 1 byte to denote the opcode for an
instruction. This yields 256 possible instructions although
there are currently only 226 instructions in use [11]. We
examined the documentation for the instructions and
developed a Java implementation for all of the instructions
that occur in Dalvik bytecode. This enables us to perform
concrete execution of an Android application's bytecode
within certain limitations. Although the Android API is
notably absent from the disassembled application, certain API
calls from the wrapper classes for primitive data types, the
java.lang.reflect package, the java.lang.String class, the
java.lang.System class, the java.lang.Runtime class, and
different classes to load classes dynamically are handled by
our dynamic analysis framework. In addition, we also leverage
the Java API since dynamic analysis executes inside the Java
Virtual Machine, which allows us to creates a wrapper around
certain Java API calls and have them executed.

Dalvik bytecode uses registers, as opposed to a stack, to
pass and maintain the values of primitive data types and object
references as an optimization for the mobile platform [12].
Our dynamic analysis creates a register entry object to keep
track of the following data: type, object type (if applicable),
value, register number, variable name, elements (for arrays),
and fields (for objects). The value attribute in the register
entry object is stored as a string, and it is converted to the
format of its respective primitive data type once it is used in
an operation. Dalvik bytecode does not declare the primitive
data type belonging to the literal value being loaded into a
register. Davlik bytecode has mathematical and logic
instructions specifically to operate on different primitive data
types. The value variable retains the literal value, in hex, in
the register entry object until the register is used as a
parameter to a mathematical or logic instruction. The type of
the primitive data type can be inferred by the type of
instruction that it is used in.

When an Android API call, which is not specifically
handled by the dynamic analysis, is encountered, then the code
for the API call is not actually executed and a register entry
object of its return type, if any, is created. A default value is
used for primitive data types in this scenario. We use an
abstract representation for the objects that are returned from
Android API calls, which are not specifically handled by our
dynamic analysis. These objects will have the same
corresponding type but they will have no state. The state can
be built as operations from the application to set the value of
the instance variables of an object.

 This limitation can be overcome by incorporating a more
dynamic approach where an Android-enabled phone is

employed to handle all API calls that our dynamic analysis
framework does not specifically handle. In addition, random
values could be used for the values of the primitive data types,
as well as the use of shadow objects. For a more dynamic
approach, the phone would be tethered to the computer
running the dynamic analysis. This could be achieved by
using the standard format, which is used for the creation of
objects and the calling of methods using Java reflection.

3.2 Dynamic Analysis - Structure and Operation

There are two primary components that comprise the
dynamic analysis framework: the execution module and the
controller module. The execution module handles the
execution of the Dalvik bytecode and contains data structures
related to a single execution path through the Android
application. The controller contains a stack to temporarily
retain data about each method that is called. As the execution
encounters method calls and returns, the stack grows and
shrinks, respectively. The controller module creates a new
instance of the execution module after it completes each
execution path. Certain data is transferred from the execution
module to the controller module before each execution module
is replaced by a new instance of itself. A single instance of
the controller module persists until all the possible execution
paths have been traversed or the time limit, if used, is reached.
An optional time limit can be used to bound the execution
time of the dynamic analysis. The execution of different paths
through the application is modeled using a binary tree [13].
The controller module contains the logic to determine: (1)
which path should be taken when a conditional statement is
encountered, (2) the management of the binary tree (i.e.,
insertion of nodes and updating the state of nodes), and (3)
various routines for detecting loops, maintenance of ancillary
data structures, handling recursion, and detecting infinite
loops.

An Android application can have various entry points into
the application which are called application components [14].
The AndroidManifest.xml file enumerates the list of entry
points into an application. The dynamic analysis framework
parses the AndroidManifest.xml file to get the list of the
application components and sequentially performs forced path
execution on each. A binary tree is created for each
application component. The dynamic analysis framework
starts execution of the class constructor, constructor, and
initial method (i.e., onCreate or onReceive) for the application
component after examining its corresponding smali file which
associates application components with their initial class. The
initial method, and any other method that is called, is searched
for infinite loops before the execution of the method begins.

In the case of a conditional statement or switch statement,
the dynamic analysis will locate the appropriate branch to
execute within the method by examining the binary tree to
determine which path(s) from the node have not been
traversed. In the event of a method call, the smali directory
tree is searched to determine if the code is available in the
smali directory tree. If the code for the method is not
available (i.e., Android API call) and the method has a return
type that is not void, then a register entry object with no state
is created with the return type of the method. If the code is

present for the method call in the smali directory tree, all of
the data related to the current method, variable values,
execution location, and various data structures related to the
processing of the method remain on the stack and the data
related to the new method is pushed onto the stack. The stack
easily enables the resumption of the execution of the previous
method once a called method returns. The output from
processing each application component is: (1) a method call
graph, (2) control flow graph, (3) the output of an in-order
traversal of the binary tree, (4) a list of the jump values for
each conditional statement taken for each execution through
the application component, and (5) a list of relevant behaviors
of the application (e.g., commands executed, execution of
binaries, Java reflection, loading of libraries, network events,
files accessed, dynamic class-loading, etc.). The dynamic
analysis process could easily be modified to search for and
record any functionality or behavior.

3.3 Forced Path Execution

To get full coverage of the execution paths through the
code, the dynamic analysis controls the outcome of the
evaluation of the Boolean condition for conditional
statements. When a conditional statement is encountered, the
execution module queries the controller module for what the
outcome of the Boolean condition should be depending on
which path(s) from the node have not been taken. This
alleviates the importance of actual values that are evaluated in
conditional statements since all possible paths are taken (or as
many as possible before time expires). Taking all available
paths yields a comprehensive view of the application's
behavior. Dalvik bytecode has 12 different instructions to
evaluate if conditional statements and 2 instructions to
evaluate switch statements. The 12 instructions for if
conditional statements have two possible outcomes. If the
Boolean expression in an if statement evaluates to true, then
execution continues after jumping to a particular code branch.
If the Boolean condition of an if statement evaluates to false,
then execution continues on a different branch (i.e., linear
execution from the conditional statement). Switch statements
will have at least one case and possibly a default case that is
executed if all of other cases evaluate to false. The switch
case that evaluates to true will have execution continue at the
specific branch associated with the switch case.

The paths taken through the application are modeled
using a binary tree. The nodes in the binary tree represent
conditional statements that alter the control flow of the
application. As conditional statements are encountered they
are inserted into the binary tree assuming that the conditional
statements are not part of a path that has already been
traversed. If execution traverses a path that partially overlaps
with another path that has already been traversed, then the
reference to the current node will be moved along already
established nodes in the binary tree until the paths diverge.
Specifically, a node can represent an if conditional statement
or a case of a switch statement. Unconditional jumps are not
included since they occur without any condition being
evaluated. Each node in the tree contains the following
components {type/name, relative path and file name, line
number, method, and switch name (if any)}. These attributes

of each node uniquely identify a conditional statement within
an application.

Each node will have two child nodes unless it is a leaf
node – leaf nodes represent the conclusion of an execution
path through the application. This can be caused by the
eventual return from the initial method, detection of an infinite
loop, or encountering an API call that causes the JVM to exit.
Once a conditional statement is encountered, the two options
are to make the jump to a specific branch if the Boolean
condition is true or to continue linear execution if the Boolean
condition is false. In the binary tree, the right child represents
the next if conditional statement or switch statement case that
is encountered when the Boolean condition of the current
conditional statement evaluates to true and the jump to that
particular branch is taken. The left child represents the next if
conditional statement or switch statement case that is
encountered when the evaluated condition of the current
conditional statement evaluates to false and linear execution
occurs. During our dynamic analysis process, following a
jump (i.e., Boolean condition is true) is represented by the
integer value 1 and continuing linear execution (i.e., Boolean
condition is false) is represented by the integer value of 0.

The binary tree contains instance variables that reference
the current node, the previous node, and the root node. The
current node variable represents the current conditional
statement or switch statement case that is currently being
processed. The previous node variable represents the node
that was immediately processed before the current node. The
root variable references the root node of the binary tree. Each
node contains Boolean variables representing whether the
node itself is finished, whether its left child node is finished,
and whether its right child node is finished. A node is
considered to be finished when its left child node and right
child node are both finished indicating that all possible
execution paths starting from the node have been completed.

Once an execution path is finished, a finished node
representing the completion of an execution path is inserted as
the left child or right child of the current node depending on
the value of the last jump taken. The finished node has its left
child finished, right child finished, and node finished Boolean
variables set to true. After the finished node is inserted, the
tree is traversed to update any Boolean variables that indicate
whether the Boolean variables for the left child, right child, or
the node itself is finished for all nodes. This is a process that
starts updating the Boolean variables after an execution path
completes. The traversals occur until no Boolean values are
modified throughout an entire traversal of the binary tree. As
an execution path is taken, the Boolean variables representing
whether a node's child nodes are finished for each node on the
path are examined to ensure that the path has not already been
traversed. This process repeats until the root node becomes
finished by having both its left and right child nodes become
finished which indicates that all possible paths through the
application component has been traversed.

We have taken various measures to bound the execution
time of an application during execution. We have limited
recursion, cyclical calling of methods to each other, the
number of loop iterations allowed, and execution time. We
make an attempt to detect infinite loops, although it is not

possible to detect all infinite loops due to the halting problem.
There are certain cases where it is straightforward to detect an
infinite loop such as a method lacking a return statement and
continuous iteration of code between an unconditional jump
and its target location that it jumps to. Bounding the analysis
time of the application, however, obviates the possibility of
execution causing an infinite loop.

3.4 Runtime File I/O Events

File I/O events can provide a valuable source of
information for security inspection of Android applications
[15]. The file I/O activities include file creation on the file
system, reading from files, writing to them or deleting them
from the file system. Malicious apps make extensive use of
file I/O for various malicious activities. For instance, many
malware families include publicly available root exploits in
their packages in either plain or obfuscated form [16]. As
another example, consider a malicious app which masquerades
as a legitimate app to steal a user’s credentials, the app might
save the information as a file if a network connection is not
currently available for sending the credentials back to its
remote server. To avoid raising suspicion, a malicious app
could delete its files once it has successfully used them for its
malicious activities. To gain better visibility into file I/O
activity of apps, we utilize system calls made to the kernel to
fully capture the file I/O content.

The linux kernel constitutes the lowest level in the
Android's architecture. As a result, all user space requests
made by apps have to pass through the system call interface to
get executed in the hardware. Capturing the file I/O content at
the system call level provides an accurate picture of app
behavior. We use the strace program to capture a full dump
(HEX and ASCII) of each read and write system call made on
behalf of the app under monitoring. A numerical file
descriptor specifies the target for a read or write system call.
To gain better insight, we correlate the file descriptor
argument of each read/write system call with its actual file.
To do this, we record all the file descriptors to file mappings,
which happen in the open system call. This way, we would be
able to identify the file associated with a file descriptor used as
an argument in a subsequent read/write system call. However,
when the target of a read or write call is not a file on the file
system, for instance, when named pipes or Unix domain
sockets are used for inter-process communication, mapping
will fail. To resolve such file descriptors, we look at the
/proc/PID/fd path.

3.5 Runtime Network Communications

To capture the network traffic for all the applications, we
run the application on a real device. By running applications
on a real device, we overcome the inefficiency of the
emulator. In addition, some malware may arm themselves
with VM or emulator evasion techniques. The lack of cellular
data network on an emulator may also affect the malware
network footprint. The challenge for running applications on
real devices is scalability. Even if we could have multiple
devices to run different applications simultaneously on a “one

app per device” basis, it is inefficient. To solve this problem,
we run multiple apps in a single device simultaneously.
However, network traffic capturing tools such as tcpdump or
wireshark only can work at the device level. In other words,
such tools cannot provide the granularity that is required by
malware analysis to differentiate network connections on a
per-app basis. As such, network address information is only
available under the socket level given that we don’t have
access to the target malware application context at runtime.
Therefore, we developed a dedicated kernel module to log the
application and network address mapping in the kernel.
Particularly, we monitor all sys_connect system calls and log
the caller’s process name and target network address
information. For TCP/IP, we have the destination IP address
and port number, while for the Unix domain socket we have
the socket file name. By applying such mappings onto
tcpdump capture file offline, we obtain the network traces of
the malware application. With the storage space of the real
device, we can run 200 applications in parallel within a single
device.

4 RESULTS & FINDINGS

The GMU team tested the dynamic analysis framework
on a number of malicious Android applications. Android
applications can send text messages by declaring the
SEND_SMS permission in its AndroidManifest.xml file and
using API calls from the SmsManager class. We examined an
Android application available online with the package name of
com.ku6.android.videobrowser. This application is known-
malware, which sends text messages to a premium phone
number. We log the values of parameters to specific API calls
that require security permissions or lead to administrative
actions on the phone. For instance, we examined the
sendTextMessage API call in the application which sends a
text message to the destination phone number “1066156686”,
a Chinese premium phone number and a text message body of
the number 8. The application also transmits the phone’s
International Mobile Equipment Identity when connecting to
the domain http://info.ku6.cn/clientRequest.htm. We have
noticed similar functionality in an application with a package
name of “sectoolgoogle”. This application sends a message
of 1234567 to the destination number 10086. The application
creates the directory /data/data/com.android.vending.sectool.
v1/files/.hide/ to store various xml files. In addition, it
connects to the following URL: http://www.youlubg.com:81
/Coop/request3.php.

Android applications can also programmatically make
phone calls without any user interaction by using the
CALL_PHONE permission. We identified an application
with the package name of com.xmedia.gobrowser that creates
an Intent object containing URI with an Intent action of
android.intent.action.DIAL. The application then calls the
startActivity method to send this Intent, which will call the
number supplied as a URI. Upon investigation, this number
appears to be registered to an operator outside US. The
previous two aforementioned applications are well known.
We were unable to find any analysis on the third application

http://www.youlubg.com:81/

by searching for the phone number it contained or its package
name.

5 LIMITATIONS

Our approach can be computationally expensive
depending on the structure and size of the application being
analyzed. Each if conditional statement that occurs outside of
a loop exponentially raises the number of iterations that must
be executed to cover all possible paths within an application.
Loops that are deeply nested significantly affect the
performance of the dynamic analysis due to the large number
of iterations through the code, especially when many if
conditional statements occur within each loop. An attacker
could purposefully plant various computationally expensive
activities throughout the application to slow the analysis of the
application. There are approaches to make a trade-off
between performance and analysis precision. There are the
options to: (1) limit the number of iterations through a loop,
(2) prevent loop nesting beyond a certain number of loops, (3)
limit recursion, or (4) use a timer that sets a maximum time
that can elapse to indicate that a path should end.

Currently, the dynamic analysis framework does not have
support for multithreading. In addition, there are limitations to
our approach due to the entropy in environment variables, user
input, and non-deterministic routines: the analysis will enter
all branches even if they are logically unreachable based on
the set of inputs or environmental variables. The unreachable
branches, i.e., conditional statements that will always be false,
can result from programming logic errors. Upon execution of
the application, the branch will never be entered when it is
executed without forcing the outcome of a boolean conditional
associated with an if conditional statement. As the dynamic
analysis encounters an if conditional statement, it will execute
both branches of an if conditional statement without
consideration as to whether the Boolean condition can never
be true. This could result in a false positive when looking for
certain behaviors if it occurs in an unreachable branch.

REFERENCES

1. M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee,
“Impeding Malware Analysis Using Conditional Code
Obfuscation,” in Network and Distributed System
Security Symposium (NDSS), 2008.

2. B. Chess and G. McGraw. Static analysis for security.
IEEE Security and Privacy, 2(6):76-79, 2004.

3. A. Moser, C. Kruegel, and E. Kirda. Limits of Static
Analysis for Malware Detection. In ACSAC, pages 421-
430. IEEE Computer Society, 2007.

4. J. Wilhelm and T. Chiueh. A Forced Sampled Execution
Approach to Kernel Rootkit Identification. In Proceedings
of the Symposium on Recent Advances in Intrusion
Detection, 2007.

5. Liang Xu, Fangqi Sun, and Zhendong Su. Constructing
precise control flow graphs from binaries. Technical
report CSE-2009-27, Department of Computer Science,
UC Davis, 2009.

6. S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas.

PathEx- pander: Architectural Support for Increasing the
Path Coverage of Dynamic Bug Detection. In Proceedings
of the 39th Annual IEEE/ACM International Symposium
on Micro- architecture (MICRO), 2006.

7. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,
and H. Yin. Automatically identifying trigger-based
behavior in malware. Botnet Detection, 2008.

8. A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. In Proceedings of
the 2007 IEEE Symposium on Security and
Privacy(Oakland’07), May 2007.

9. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the
18th ACM conference on Computer and Communications
Security, CCS 11, pages 627-638, New York, NY, USA,
2011.

10. smali - An assembler/disassembler for Android's dex
format. http://code.google.com/p/smali/.

11. Bytecode for the Dalvik VM.
http://source.android.com/tech/dalvik/dalvik-
bytecode.html.

12. W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P.
McDaniel, and A. N. Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th Usenix
Symposium on Operating Systems Design and
Implementation, pages 393–408, August 2010.

13. M. Neugschwandtner, P. M. Comparetti, and C. Platzer.
Detecting malware's failover C&C strategies with
squeeze. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pages 21-30, 2011.

14. Application Fundamentals|Android Developers.
http://developer.android.com/guide/topics/fundamentals.h
tm.

15. Takamasa Isohara, Keisuke Takemori, Ayumu Kubota:
Kernel-based Behavior Analysis for Android Malware
Detection. CIS 2011, pp.1011-1015.

16. Yajin Zhou, Xuxian Jiang, Dissecting Android Malware:
Characterization and Evolution. IEEE Symposium on
Security and Privacy, 2012, pp.95-109.

BIOGRAPHIES

Ryan Johnson is a PhD. student at George Mason University.

Zhaohui Wang is a PhD. student at George Mason University.

Angelos Stavrou is an Associate Professor at George Mason
University.

Jeff Voas is a Computer Scientist at NIST and was the
President of the IEEE Reliability Society in 2003-2005 and
2009-2010.

	1 INTRODUCTION
	2 Static Analysis
	To expose security and reliability risks, we developed a static analysis suite to quickly examine an Android application in order to examine the possible behavior of the application. Figure 1 shows the steps of the static analysis. The static analysis...
	Certain Android API calls will require the application to declare one or more permission for the call to execute successfully. In addition, to the permission analysis that examines the correspondence between permissions and API call, the static analy...

	3 DynAmic ANalysis
	3.1 Dalvik Bytecode and Java implementation
	3.2 Dynamic Analysis - Structure and Operation
	3.3 Forced Path Execution
	3.4 Runtime File I/O Events
	3.5 Runtime Network Communications

	4 RESults & Findings
	5 Limitations

