
 1  

Proceedings of the 14
th

 ASME 2012 International Mechanical Engineering Congress & Exposition 
IMECE2012 

November 9-15, 2012, Houston, Texas, USA 

IMECE2012-87941

TOWARD BETTER INTEGRATION OF  
VEHICLE ASSEMBLY PRODUCTION SYSTEMS 

 

 

Jorge Arinez 
General Motors 

Warren, MI, USA 

Jerry Yen 
Mitsubishi Electric Automation 

Chicago, IL, USA 

John Michaloski, Frederick Proctor,  
William Rippey 

National Institute of Standards and 
Technology 

Gaithersburg, MD, USA 
 

 

 

ABSTRACT 
In today’s manufacturing world, system integration often 

necessitates composing systems of technology that are not 

designed to interoperate with each other. This inherent 

incompatibility results in redundant, non–value added work that 

is required for information to be properly transferred and 

processed in order for the total system to function properly. As 

a result, current approaches to systems integration tend to be 

complicated, costly, time–consuming, and error–prone. In the 

automotive industry, this integration predicament is found most 

dramatically in vehicle assembly systems, which are built from 

a collection of different, incompatible, and multi–vendor “silo” 

subsystems. This paper investigates the problems associated 

with integration of vehicle assembly systems and proposes a 

standard information and communication model to address the 

integration problems due to incompatible data models. Benefits 

to the standard information and communication model, 

including better integration, improvements to the efficiency of 

the existing vehicle assembly operations, and additional 

capabilities to increase productivity, is discussed. 

 

NOMENCLATURE 
API  Application Programming Interface  

CNC  Computer Numerical Control 

COM Microsoft Component Object Model 

DA  Data Access 

DCOM Distributed Component Object Model 

COTS Commercial–Off–The–Shelf  

ERP  Enterprise Resource Planning 

FTP  File Transport Protocol 

HMI Human Machine Interface 

HTTP Hypertext Transfer Protocol 

IO  Input/Output 

IP  Internet Protocol  

IT  Information Technology 

MAP Manufacturing Automation Protocol 

MMS Manufacturing Message Specification 

MES Manufacturing Execution Systems 

OLE  Object Linking and Embedding 

OPC  OLE for Process Control 

PC  Personal Computer 

PLC  Programmable Logic Controller 

REST REpresentational State Transfer 

SCADA Supervisory Control and Data Acquisition 

SDK Software Development Kit 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

W3C World Wide Web Consortium  

WS  Web Services 

XML eXtensible Markup Language 

XSD XML Schema Definition 

 
BACKGROUND 

Assembly efficiency and capability is a competitive 

discriminator in every product manufacturing sector [1].  In 

theory, advances in robotics, sensors, controls, effectors, and 

material handling could support the easy deployment and 

routine production of customized products in a single assembly 

production line. However, the problems associated with 

integration, configuration, and programming of assembly 

systems has hampered the cost–effective use and production 

efficiency of assembly systems. The problems with assembly 

systems can be attributed to incompatibilities between assembly 

subsystems that are not designed to interoperate and 

communicate with each other. This inherent incompatibility 

results in redundant, non–value added work that is required for 

information to be properly transferred and processed in order 

for the total system to function properly. As a result, current 



 2  

approaches to systems integration tend to be complicated, 

costly, time–consuming, and error–prone. 

To alleviate this situation, manufacturers are targeting the 

use of standard platforms and communication protocols. The 

primary goal of standardization is to enable interoperability of 

diverse systems. Because systems integration takes place 

vertically and horizontally, so must standardization. Figure 1 

shows a typical factory floor relying on communication 

networks to integrate the manufacturing technology and the 

enterprise.  Horizontal integration requires standards that allow 

physical equipment, such as motors, sensors, and controllers; 

and also software, such as process plans and part programming 

languages; to communicate efficiently. Vertical integration 

covers the breath of the enterprise that includes factory 

equipment, plant–level control, and management used in 

design, process planning, quality control, accounting, 

forecasting, and other resource planning activities. 

 

Figure 1 Overview of integration architecture 

The available communication standards cover a wide range 

of capability and cost ranging from high–speed networked I/O 

subsystems standards to distributed communications standards 

for integrating all machines on the shop floor into the wider 

enterprise.  Numerous competing communication standards are 

available to interface controllers to device, shop floor, and IO. 

Further, application domain communication standards compete 

with other domain communication standards as well as 

communications standards from the PC industry.  In fact, many 

PC communications standards have been adapted to the factory 

floor to provide built–in redundancy and durability, so that all 

the devices remain connected despite the harsh conditions often 

found in a factory environment. 

For vehicle assembly, horizontal integration and 

intercommunication of constituent controllers, such as PLC, 

robot, welder, and conveyor, is the primary technology 

contributor to the integration impasse, mainly due to the lack of 

a universal communication standard and common information 

model in this domain. The focus of this paper is on examining 

the issues related to smart assembly system integration, 

specifically intersystem communication, presenting an 

enhanced integration architecture necessary, and reviewing 

some potential integration technologies to this difficult 

problem. 

In the next section, the difficulties related to vehicle 

assembly system integration will be analyzed, including a 

discussion on data programming and fault handling. We then 

give an overview of the benefits of an enhanced integration 

framework that emphasizes a common information model. In 

particular, the application of the enhanced integration 

framework to maintenance and troubleshooting is highlighted. 

Included is a summary of some relevant manufacturing 

programming and integration technology, and categorizes each 

technology based on its constituent integration components. We 

then discuss the issues related to achieving an enhanced 

integration framework. 
 

PROBLEM ANALYSIS 
In this paper, vehicle body assembly will be used to 

illustrate the various integration problems in vehicle assembly. 

In body assembly, parts arrive from the stamping facility and 

are welded together to form the body of the vehicle. There are 

approximately 4000 welds in the body performed by robots. 

Robots in the body shop also apply adhesives and sealants at 

various stages in the assembly process. Generally, the robots 

have multiple end–effectors (e.g., a welding gun and a gripper 

to position parts). The grippers and fixtures are relatively 

adaptable because the components for different vehicles are not 

identical, and different vehicle types, plus their variants, can be 

built on the same line at the same time. Because of the 

complicated nature of vehicle assembly, simulations are often 

popular in understanding the complexity [2, 3].  

Figure 2 shows the typical manufacturing architecture for 

body welding. There is a master PLC controller which 

supervises and coordinates the individual pieces of equipment 

in the manufacturing cell. The master PLC controls the arrival 

of parts on the inbound conveyor and the subsequent robot 

transfer to the first welding station. There are individual 

controllers for the robots and welders. In addition, logic is 

required for fixture/tooling stations and HMIs (i.e., 

maintenance/operator display panels) inside the cell. Thus, for 

each of these controllers, stations, and HMIs, specific ladder 

logic program routines are stored inside the PLC controller. In 

addition, each robot and welding controller will have its own 

local control programs that control the device itself.  

Operator

 Interface

Enterprise

IO IO IO IO IO IO

Controller Controller(s)

Horizontal Integration

 Shop Floor and Device

Communication

IO and Device Communications

Vertical

 IntegrationFactory

Dashboard



 3  

 

Figure 2  Manufacturing cell for body welding 

In manufacturing assembly, there is an emphasis on 

interworking among controllers, often combining data from 

several applications to arrive at new information. Examples of 

inter–transfer of non–real time information between devices 

and systems in assembly systems include: 

 Alarm and event information from plant floor 

devices/systems to a Production Monitoring system 

for reporting, analysis, and/or storage; 

 Production data (e.g., production counts, equipment 

status, cycle time information) to plant floor systems 

for reporting, analysis, and/or storage; 

 Configuration and status information of a device that 

is being transferred from a device (e.g., a robot or 

weld controller) to another (e.g., a cell controller 

PLC); 

 Maintenance information (e.g., fluid level low, 

scheduled maintenance required) and requests (e.g., 

temperature is trending out of control) from an 

intelligent device/system to a central system for 

preventative and/or scheduled maintenance actions. 

In today’s integration landscape, each of the constituent 

controllers acts as a silo with limited intercommunication 

abilities, and no common capabilities to assimilate other 

controllers’ information models. Figure 3 illustrates the issues 

related to the existing integration of plant floor devices and IT 

applications in a manufacturing environment. The figure shows 

application silos with the separation of data among the systems 

and different applications having  their own data models.  

These issues contribute to the complexity of data configuration 

and lack of common information being transferred. 

 

 

Figure 3  Current plant assembly integration 

For the body assembly cell, Figure 4 gives a more detailed 

description on the current implementation of clients and 

servers, and in this example, communication is based on OPC 

technology. OPC is an industry standard with original OPC 

specifications based on the Microsoft COM/DCOM model [4]. 

In the OPC architecture, control devices are called OPC 

Servers. Applications, called OPC Clients, can connect to OPC 

Servers provided by one or more vendors. OPC offers a number 

of ways in which OPC clients and servers can communicate, 

including Data Access, Event and Alarm Management, and 

Historical Data Access. 

The OPC Client can be implemented in and accessed by a 

process/tooling HMI, upstream by MES, and/or other enterprise 

applications.  The Rockwell OPC Server acts as an Ethernet 

communication gateway to the underlying PLC. In our 

terminology, a communication gateway provides one or more 

application clients access to data of one or more devices. The 

weld controller and robot controller provide bit–level 

information to the PLC, and it then transfers the fault/status 

information, with additional information (such as fault 

messages associated with the fault codes received) when 

feasible to the MES/SCADA systems for processing.  

Each device may have its own console HMI that can be 

used to program (or configure) the device during deployment, 

and display production information and device status during 

production. It can also be used to help troubleshooting system 

or device problems. Finally, a historical data base collects real–

time shop floor OPC data and is used to help determine the root 

cause of faults.  

fixture/tooling

robot

conveyor

welder

transfer 

station

welder

fixture/tooling

robot

conveyor

welder

transfer 

station

welder



 4  

 

Figure 4  Example of current body assembly integration 

architecture 

From this current vehicle assembly integration architecture, 

several costly and complicated problems exist, but we will 

discuss issues related to device data management and fault 

analysis. 

Data Programming 
There are two data handling problems in the current 

vehicle assembly integration architecture: 1) exposing system 

level data / information, and 2) incompatible data models. The 

first integration problem is the need to develop a custom 

application using a Software Development Kit (SDK) provided 

by the device supplier to gain access to internal system level 

data inside the device and then expose the data to external 

systems using OPC DA technologies. This may entail the 

development of an OPC DA server or application specific 

programs if the supplier of the device does not provide such 

OPC DA server commercially. Typically, vehicle assembly 

workcell implementations do not require the use of SDKs. 

Instead, procurement of OPC DA servers from the suppliers as 

commercial–off–the–shelf (COTS) products is the standard 

procedure.  

The OPC DA servers and clients reside in servers of IT 

systems that are used to gather plant floor data for MES 

applications. Sometimes, a device SDK must be used to 

program at the “device” level to access data that is not readily 

available. For special cases, the equipment supplier offers a 

SDK with a set of APIs for programming applications to get to 

the system level data. A device SDK, if used, is used during the 

system development stage and not in production. One example 

is the use of SDK to develop an OPC DA server for Fanuc 

robots. In this case, the Fanuc SDK has the APIs that allow the 

access to Fanuc internal data through a proprietary protocol. A 

user then develops the OPC DA server, which calls the APIs to 

access system level data and makes the data available to the 

external systems through the OPC DA Server. Application data 

of a device can be programmed using the programming 

environment provided by the device such as PLC ladder logic. 

The data can also be transferred to the upper level systems 

using the same OPC DA server.  

Fault Handling 
The incompatible data model is the second integration 

problem. OPC DA servers are capable of transferring data; 

however, there is no standard naming and definition of these 

data points among device suppliers. A complete and standard 

information model supported by each device and a standard 

communication mechanism would help overcome this problem. 

Fault handling is an explicit example of this issue. For 

example, opening a safety gate while a robot is running causes 

a safety fault in the PLC which will cause an immediate stop of 

the robot, which in turn may cause many additional device 

faults to occur. Determining the root cause of the fault by 

unwinding the proliferation of alarms is a programming time 

sink, as each vendor has their own set of alarms/faults, and to 

further compound the problem, similarly named faults can 

mean entirely different things.  

Deciphering a fault sequence can be so difficult that 

instead of even trying to do so, the first fault is often used as the 

root cause of the fault. This first fault may work most of the 

time, but when it doesn't, analyzing a fault without a coherent 

trace could result in erroneous and unpredictable conclusions.  

The standardization of a vehicle assembly alarm/fault 

information model is seen as an enabler of fault analysis 

programming and potentially offering cost savings in reduction 

of equipment maintenance and increase of production uptime. 

This standardization would be broken down into device fault 

models, network communication fault model, and application 

fault model. 

Fault handling integration for welding equipment is 

another problem.  Although welding equipment may be on the 

Ethernet, it generally only supports FTP for the 

upload/download of programs and for the backup/archival of 

welding data to files stored for offline analysis. Real–time 

access to current welding device data is usually accomplished 

through device–level networks, such as DeviceNet and 

EtherNet/IP with limited access to information.  Thus, the 

propagation and logging of error sequences is difficult and 

incomplete. For example, let us assume there is a fault in the 

welding controller.  Then, the vehicle assembly cell must have 

the welding cell set an I/O bit on the robot controller to signal a 

fault, which in turn sets a bit on the PLC informing it of the 

fault. There is no real–time information collection that 

correlates the state of the weld, robot, and PLC devices when 

the fault occurred, as each device is running somewhat 

independently with occasional synchronization. The key reason 

why the simple bit interface is chosen instead of propagating 

error codes is to reduce the coupling with vendor 

implementations since each vendor chooses to implement error 

codes differently and may even change from version to version. 

Further, as this simple bit interface propagates fault bits to 

upper–level systems, correlation of information from different 

subsystems is lost.   



 5  

Again, multiple faults across multiple devices and 

controllers are difficult to analyze because there is no common 

model and no correlation of fault messages or types. For 

example, referring to Figure 4, when a weld controller fault 

occurs, the details of the fault are contained only inside the 

weld controller. The robot controller detects the weld controller 

fault but does not have the details since it only receives a fault 

bit. However, the robot controller knows its position (for 

example, the number of weld spot when the weld fault occurs). 

The PLC receives the weld fault (which translated to a robot 

process fault) that is passed through by the robot controller but 

does not have additional details. A proper root cause analysis 

would require the simultaneous time correlation of faults across 

multiple devices, which is not easily done from the historical 

database today. 

 

Configuration of New Vehicle Launch in an Existing 
Plant 

To understand the integration problems, we will look at a 

common, but potentially involved, "Configuration Use Case" 

scenario within a vehicle assembly workcell. The Use–Case 

should offer an end–to–end perspective of the steps involved in 

configuring (programming, debugging, testing, etc.) a vehicle 

assembly cell/station.  

Our Configuration Use Case covers the circumstances 

when a new vehicle model is launched in a plant that is already 

producing other vehicles. We assume a pre–existing production 

line, and break the Configuration Use Case down into three 

different configuration scenarios: 

1) Some existing equipment that will not require change 

in order to run the new model,  

2) Some equipment that will require modifications to 

logic, and  

3) Completely new equipment that will have been 

purchased for the production of the new vehicle and 

added to the production line(s).  

In the latter two use cases, there will be configuration 

required of the end devices (PLCs, robots, weld controllers, 

etc.) and also on the plant–floor MES system/SCADA system 

for them to be able to read data from the devices. From a high 

level perspective, the Configuration Use Case is defined by the 

engineering steps taken to map, link, and associate a data 

tag/PLC point into a MES/SCADA system so that the data can 

be viewed/analyzed/reported on a real–time or historical basis.  

Figure 5 and Figure 6 are examples showing the ladder logic 

programs and data structures that may be required to run a 

production cell as illustrated in Figure 2. Each device has a 

local set of tags defined in addition to the global tags for the 

master ladder logic program. Configuration at the controller 

level involves validating that the tags and the corresponding 

logic are generating correct values. Also, once a device 

configuration has taken place at the controller level, additional 

corresponding configuration must be done at the higher system 

level of MES applications.  

 

 

Figure 5 Configuration view of the master PLC controller 

for the manufacturing cell. 

 

Figure 6  Configuration view of a robot inside the 

manufacturing cell. 

In some cases, the steps to configure a new data point from 

a plant floor device to the MES or SCADA application are 

straightforward. A control engineer simply uses the 

programming editor and looks up all devices on the network 

and then proceeds to reference the data tags on the device in his 

logic program. Typically, setting up the MES/SCADA 

application consists of associating device–level addresses to 

MES/SCADA projects or programs that will be running so as to 

perform the monitoring of a manufacturing workcell.  This step 

includes a validation step to ensure that the device is correctly 

Main ladder logic program for

the master PLC controller.

M
a
s
te

r 
P

L
C

 C
o

n
tr

o
lle

r

Ladder logic programs for the 

master PLC controller.

Folders for ladder logic 

programs for other equipment 

in the manufacturing cell.

Main ladder logic program for

the master PLC controller.

M
a
s
te

r 
P

L
C

 C
o

n
tr

o
lle

r

Ladder logic programs for the 

master PLC controller.

Folders for ladder logic 

programs for other equipment 

in the manufacturing cell.

  

Multiple ladder logic Routines  

stored in separate folders for each  

Each piece of equipment  
has its own local set of tags 

Robot #1 

Multiple ladder logic routines stored 
in separate folders



 6  

reporting the data to the OPC Server and the corresponding 

MES/SCADA project logic that makes use of the OPC Server is 

accurately reporting the data. Furthermore, the data must also 

be validated from the MES/SCADA program as well; not only 

must the device be reporting data, the data must be mapped into 

the MES/SCADA applications correctly as well. Additionally, 

OPC DA initially can support only primitive data type and not 

complex data types such as record data. However when an OPC 

DA complex data specification became available, there were 

very few implementations by suppliers.  

So far we have been simply discussing the data; such as 

whether a certain bit is on or off, or some other data type is 

being read and sent correctly.  Another important higher level 

type of data concerns alarms and fault messages. Alarms and 

fault messages also require configuration and logic verification 

to ensure that the correct program logic conditions are 

triggering the correct alarms and faults to the MES/SCADA 

applications.  

The key point of this analysis is to highlight the redundant, 

non–value added work that is required for the information and 

data to be properly transferred and processed in order for the 

total system to function properly. Examples of the non–value 

added, potentially error–prone work are: 

 Configuration of alarm information on the plant floor 

and also the upper level systems; 

 Configuration of data on the plant floor and also the 

upper level systems; 

 Configuration of communication links; 

 Translating the information hierarchy from the plant 

floor to hierarchy in the MES system because of 

inconsistent information from each device. 

 

ANALYSIS 
Improved vehicle assembly integration needs standard 

device information models as well as a standard 

communication mechanism. Figure 7 illustrates an Enhanced 

Integration Architecture embodying a unified state of the plant 

floor devices and upper layer system integration with the key of 

having a common data model. Standard information models can 

improve the process by allowing better programming support 

for diagnostic status, maintenance, and fault recovery. Standard 

data and standard communication will also allow for easier 

configuration programming of the vehicle assembly process to 

allow leaner manufacturing to reduce waste, create a more 

robust process, and increase flexibility. 

 

 

Figure 7  Plant enhanced integration architecture 

 

Using a common unified communication protocol provides the 

following benefits to end users: 

 Reducing the complexity in overall system 

configuration and debugging during vehicle launch 

process; 

 Reducing the complexity and time to accommodate 

vehicle assemble process changes; 

 Enhancing the capability of the systems to perform 

maintenance functions that are difficult to accomplish 

currently, by having standard information models and 

common ways of making the data/information 

available without additional development work; 

 Gathering more meaningful fault messages for 

diagnostic and process improvements.  

The Enhanced Integration Architecture utilizes common 

communication protocols and mechanisms, such as XML and 

Web–based services, and a common information/data model. It 

is not the goal of the Enhanced Integration Architecture in this 

paper to define a common information model for all the 

assembly system applications. Instead, the focus of the paper is 

on the device–specific operations, independent of the device 

application and programs. 

For example, a robot is an articulated mechanical device 

that operates an end–effector tool (e.g., welding tip, sprayer, or 

gripper) under program control. Robots can perform a variety 

of tasks including welding, drilling, and painting of automobile 

body parts.  Intelligent robots have multiple sensors, effectors, 

and controls, but we will only consider the robot and its process 

diagnostic data requirements.  



 7  

Figure 9 shows the relevant activity diagram within the 

scope of the robot information modeling for our discussion. The 

focus of common data will be on the status of the robot 

controller and the related auxiliary equipment. From this, the 

robot common information model contains device specific 

information (e.g., welding tip, sprayer, gripper) that is 

independent of the application such as welding, spray painting, 

or material handling. In this scenario, we want to determine 

what can go wrong with the robot system, not with the robot 

application.  Thus, if a robot programmer wrote a bad 

application program, this is not the information of primary 

concern.  The implication for the common information model is 

to reflect the importance of the maintenance status of machines, 

not the application status. 

 

Figure 9 Robot information modeling diagram 

 

Integration Architecture 
This section presents a classification scheme in order to 

better understand manufacturing integration based on 

communication and programming standards. Then, a 

comparative analysis of the several high visibility factory 

integration or programming standards is performed based on 

their communication and information modeling technology. 

The distinction between standards for factory floor connectivity 

versus factory communication protocol is considered important, 

in that many communication standards may or may not provide 

an information model describing the device beyond the 

communication functionality. For example, SOAP is a web 

communication protocol that is a generic communication and 

information modeling standard, upon which specialized 

application information models are built to allow process–to–

process communication and connectivity [5]. Another 

distinction is emphasis on communication from controller to 

controller, or controller to application, as opposed to a field bus 

implementation of communication to network devices.  

Figure 8  shows the classification scheme for factory 

integration architecture that will be developed to highlight 

some of the important distinctions in assembly integration 

standards. The classification divides the integration model into: 

the Application Domain Information Model, the 

Communication Information Model, the Communication 

Protocol, and the underlying wire protocol.   

The Application Domain Information Model refers to the 

non–communication aspects of the standard, that is, the 

command, status, and management of a device based on an 

information model.  The Application Domain Information 

Model describes a set of communication devices in the 

standard, and can also contain information that spells out 

device capabilities, configuration, and other meta–data 

information about the device. Clearly, a standard information 

model can also decompose devices into subdevices or 

components to reflect an object–oriented device taxonomy. 

The Communication Information Model is separated out as 

elements because there are a many variations in which devices 

can communicate, including read only, write only, read/write, 

synchronous polling, asynchronous event–driven using 

subscribe/listener software pattern, master/slave, 

broadcast/multicast/unicast, connection/connectionless, etc.  

The communication–centric information model can also 

contain an electronic data sheet  that spells out the 

configuration, topology, and other meta–data information about 

the network implementation and related communication 

parameterization. 

The Communication Protocol corresponds to the Open 

Systems Interconnection (OSI) Application layer 7, and covers 

process–to–process communications, generally across an 

Internet Protocol (IP) network, using protocols such as HTTP 

or SOAP. Application layer methods use the underlying 

transport layer protocols to establish host–to–host connections.  

Over the years, numerous standards have been promoted to 

solve the factory floor integration problem. One legacy factory 

floor integration standard still in use today is the Manufacturing 

Message Specification (MMS), which is a messaging system 

for exchanging data between control applications and 

networked devices [6, 7].  MMS is a complex standard, with 

requirements for supporting several OSI Reference Model 

layers of communication functionality that does easily address 

the common information model.  

Interlocks
Safety

Zones
Robot

Spray

Painting
Welding

Material

Handling

Device/Equipment Related Application Related

End-Effector

Application Domain

Information

Model

Communication

Information

Model
Wiring

Communication

Protocol

Figure 8 Integration architecture information components 



 8  

OPC is a leading industry standard for the exchange of 

factory data over a software bus. In addition to the OPC DA 

discussed earlier, the OPC foundation has developed the OPC 

Unified Architecture (UA) to support Web Services and Service 

Orientated Architectures (SOA) [8]. At the communication 

protocol level, OPC UA leverages existing W3C standards, 

such as XML, SOAP, and the WS initiatives, and have added an 

optimized transport layer to improve OPC UA communication 

performance. OPC UA defines the communication information 

model, but does not contain any application information model, 

and the OPC Foundation states that “the Unified Architecture is 

designed specifically to allow object and information models 

defined by others.”  Because OPC does not itself define any 

application models, information model contributions tend to be 

domain specific, for example, packaging [9], power 

industry [10], or plant maintenance [11]. 

MTConnect is an open and extensible protocol designed 

for the exchange of data between shop floor equipment and 

software applications used for monitoring and data analysis 

[12-14]. MTConnect is based on XML and HTTP and uses a 

Web “REST” protocol to communicate. MTConnect defines an 

XSD information model for a variety of devices, including 

machine tools and its constituent components, sensors, tools, 

and also allows third party XSD schema data to be 

communicated. Of note, the OPC Foundation and the 

MTConnect Institute have a cooperation agreement to ensure 

interoperability and consistency between the two standards. 

PLCs are controllers that provide sequencing control, 

motion control, process control, distributed control systems, 

and/or networking for industrial automation systems. There is a 

trend in industrial automation for PLC–based robotic controls, 

which is an attractive alternative since the robot has to interface 

to many auxiliary devices and end–effectors as well as to the 

PLC.  However, because each manufacturer’s approach to PLC 

I/O addressing, memory organization, and instruction sets is 

different, it makes PLC and vehicle assembly integration 

somewhat better, but not trouble free. 

PLCopen is a standard programming effort for PLCs with 

its core activities focused around the industrial control 

programming standard IEC 61131-3 [15, 16]. PLCopen offers 

communication protocol support for MMS as well as for OPC 

UA [17, 18]. PLCopen XML is also part of AutomationML 

(Automation Markup Language), which is an XML–based open 

standard for the storage and exchange of plant engineering 

information [19, 20]. AutomationML implements topology with 

CAEX (IEC 62424) [21]. AutomationML implements geometry 

with COLLADA [22] to represent graphical attributes and 3D 

information. AutomationML implements kinematics with 

COLLADA to represent connections and dependencies among 

objects to support motion planning. Programming logic in 

AutomationML is implemented with PLCopen XML [23]. 

Robot Operating System (ROS) is a free and open source 

system based on collaboration between industry and academia . 

Robotics itself is a challenging systems integration problem and 

ROS offers many tools to manage the complexity in building 

and understanding systems. A ROS system is composed from a 

set of reusable libraries that are designed to work independently 

and use a message-based system for communication. Although 

ROS is a powerful platform, most of its commercial 

applications at this time are with mobile robots, and not 

industrial robots. 

Computer Aided Manufacturing using XML (CAMX) is a 

standards integration technology developed for electronics 

manufacturing equipment communication, specifically printed 

circuit board assembly [24]. The set of standards include 

models for board fabrication, bare board product electrical 

testing data, assembly manufacturing, and assembly test and 

inspection. Although the application is a different domain, eh 

Standard Application Domain Communication 
Information Model 

Communication 
Protocol 

MMS Generic Virtual Manufacturing Device Messages  over TCP 

OPC/COM None Microsoft IDL DA, Historian, COM/DCOM 

OPC UA None Data handling plus OPC 
Specific Modeling 
Representation  

Modified TCP or SOAP/XML proxy 
technology with polling, event, 
subscription, etc. 

MTConnect machine tool, assets,  
tools, sensors, robots, 
third party XSD schemas 

XML streams  http REST Client/Server model  

Robot Operating System 
(ROS) 

Robotics Programming libraries, 
URDF(Unified Robot 
Description Format), 
Message Ontology 

ROS  IPC using TCP/IP 

PLCopen Generic Industrial IEC 61131 MMS, and OPC UA 

AutomationML Generic Industrial XML OPC 

SEMI CAMX Electronic Factory  XML SOAP over HTTP 

Table 1 Integration Comparison 



 9  

set of standards provide an insight into the breadth of vehicle 

integration common information models that are potentially 

required. 

Table 1 presents a comparison of the different integration 

capabilities covered. Although each integration strategy has its 

strengths, no technology has proven to be the dominant player 

in solving the vehicle integration problem, and as such 

commercial proprietary solutions featuring silo integration 

architectures will continue to persist. 

 

DISCUSSION 
In general, difficulties arise for companies and vendors to 

adopt standards that are excessively broad and complex, 

making it costly to develop the required hardware and software. 

Further, the limited adoption of a standard yields marginal 

benefits. However, the lack of integration standards is severely 

hampering the vehicle assembly integration, production, and 

maintenance. This paper looked at using an Enhanced 

Integration Architecture with a provision for a common 

information model. A common information model would allow 

application independent device health data. Thus, in addition to 

data collection, formatting, and cleansing, the model would also 

provide the capability to focus on improving performance and 

behavior of the plant-floor system.  

We reviewed several industrial standards or open source 

solutions relevant to vehicle assembly, and presented a 

categorization of their information model capability. Each of 

these technologies provides attractive partial solutions, but at 

this time no single technology has a meaningful impact in the 

vehicle assembly market.   

It is not the goal of this paper to pick winners or losers, but 

instead attempt to better elucidate the universe of potential 

integration solutions, in order to better understand a potential 

migration path to the described enhanced integration 

architecture. As such, it remains a challenge to integrate 

equipment from numerous suppliers, each with their own silo 

application view of the factory. In order to achieve success in 

factory integration for manufacturers, it will require some 

cooperative activities of end-users, vendors, and academia. 

DISCLAIMER 
 Commercial equipment and software, many of which are 

either registered or trademarked, are identified in order to 

adequately specify certain procedures. In no case does such 

identification imply recommendation or endorsement by the 

National Institute of Standards and Technology or General 

Motors, nor does it imply that the materials or equipment 

identified are necessarily the best available for the purpose. 

REFERENCES 
 

[1] National Institute of Standards and Technology, 2012, 

"Smart Assembly: Industry Needs and Technical 

Challenge",  smartassembly.wikispaces.com. 

[2] D. Kibira and C. R. McLean, 2007, "Generic 

simulation of automotive assembly for interoperability 

testing," in Proceedings of the 2007 Winter Simulation 

Conference, Washington, DC, United states, pp. 1035-

1043. 

[3] J. Wang, J. Yu, S. Li, G. Xiao, Q. Chang, and S. Biller, 

2008, "A Data Enabled Operation-Based Simulation 

for Automotive Assembly," ICSC 2008 Asia Simulation 

Conference - 7th International Conference on System 

Simulation and Scientific Computing, pp. 726-731. 

[4] OPC Foundation, 1998, "OPC Data Access 2.0 

Specification." 

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, 

and H. F. Nielsen, 2003, "SOAP Version 1.2 Part 2: 

Adjuncts," W3C. 

[6] International Organization for Standardization,  

1990,"ISO/IEC 9506-1, Industrial Automation Systems 

- Manufacturing Message Specification - Part 1: 

Service Definition." 

[7] International Organization for Standardization,  

1990,"ISO/IEC 9506-1, Industrial Automation Systems 

– Manufacturing Message Specification - Part 2: 

Protocol Specification." 

[8] International Electrotechnical Commission, 2008, 

"IEC 62541-1: OPC Unified Architecture Specification 

- Part 1: Overview and Concepts." 

[9] Microsoft Corporation,  COM: Component Object 

Model Technologies. 

[10] R. D. S., Fensel; A., Fensel, 2011, "OPC UA goes 

semantics: Integrated communications in smart grids," 

in 2011 IEEE 16th Conference on Emerging 

Technologies & Factory Automation (ETFA), pp. 1-4. 

[11] Machinery Information Management Open System 

Alliance (MIMOSA), www.mimosa.org. 

[12] MTConnect Institute, "MTConnect Standard Part 1: 

Protocol and Overview", http://mtconnect.org. 

[13] MTConnect Institute, "MTConnect Standard Part 2: 

Components and Data Items", http://mtconnect.org. 

[14] MTConnect Institute, "MTConnect Standard Part 3: 

Streams, Samples, and Events", http://mtconnect.org. 

[15] E. Van der Wal, 1999, "Introduction into IEC 1131-3 

and PLCopen," in IEE Colloquia on the Application of 

IEC 61131 in Industrial Control: Improve Your 

Bottom-Line Through High Value Industrial Control 

Systems. 

[16] E. Van der Wal, 2000, "IEC 61131-3 software: 

changing the world of industial automation - the 

statue, the structuring tools, the activities and the 

libraries," in IEE Colloquia on the Application of IEC 

61131 in Industrial Control: Improve Your Bottom-

Line Through High Value Industrial Control Systems. 

[17] I. Miyazawa, M. Murakami, T. Matsukuma, K. 

Fukushima, Y. Maruyama, M. Matsumoto, J. 

Kawamoto, and E. Yamashita, 2011, "OPC UA 

information model, data exchange, safety and security 

for IEC 61131," in 2011 Proceedings of SICE Annual 

Conference (SICE), pp. 1556-1559. 



 10  

[18] PLCopen and OPC Foundation, 2010, "PLCopen and 

OPC Foundation: OPC UA Information Model for 

IEC 61131-3. Release 1.00." 

[19] R. Drath, A. Lüder, J. Peschke, and L. Hundt, 2008, 

"AutomationML - the glue for seamless automation 

engineering," Emerging Technologies and Factory 

Automation, pp. 616-623. 

[20] M. Schleipen and R. Drath, 2009, "Three-view-concept 

for modeling process or manufacturing plants with 

AutomationML," Emerging Technologies and Factory 

Automation,  pp. 1-4. 

[21] International Electrotechnical Commission, 2008, IEC 

62424, Representation of process control engineering - 

Requests in P&I diagrams and data exchange between 

P&ID tools and PCE-CAE tools 

[22] R. B. Arnaud, Mark C., 2006, COLLADA: Sailing the 

Gulf of 3D Digital Content Creation: A K Peters/CRC 

Press. 

[23] M. Marcos, E. Estevez, F. Perez, and E. Der Wal,  

2009,"XML exchange of control programs," Industrial 

Electronics Magazine, IEEE, vol. 3, pp. 32-35. 

[24] S. Cousins,  2010,"Welcome to ROS topics," IEEE 

Robotics and Automation Magazine, vol. 17, pp. 13-

14. 

[25] S. Cousins, B. Gerkey, K. Conley, and Willow Garage,  

2010,"Sharing software with ROS," IEEE Robotics 

and Automation Magazine, vol. 17, pp. 12-14. 

 

 


