
Componentization in the Systems Modeling
Language
Conrad Bock*

U.S. National Institute of Standards and Technology, 100 Bureau Drive, Stop 8260, Gaithersburg, MD 20899-8260
COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE

Received 28 September 2012; Accepted 28 July 2013, after one or more revisions

Published online 20 November 2013 in Wiley Online Library (wileyonlinelibrary.com).

DOI 10.1002/sys.21276

ABSTRACT

This paper describes new capabilities in the Systems Modeling Language that reduce the complexity of
specifying systems through componentization, and increase the range of systems that can be specified.
Modelers can identify portions of components available for connection to other components, and specify
how systems make use of them. This reduces the complexity of specifying system by lowering the number
of ways components can be connected, partly by hiding portions of components, and partly by limiting
how exposed portions can be connected to others. The paper introduces basic SysML concepts and
notations for specifying components and assembling them into a system. It covers capabilities added to
SysML enabling a wider range of systems to be modeled, through detailed specification of the portions
of components available for connection to other components, and detailed specification of the connec-
tions between them. These capabilities are described by relating models to potential systems built to
meet the specifications, an approach typical in specifying semantics of formal languages. The paper is
intended for those concerned with increased precision in SysML concepts, such as builders of model
analyzers, checkers, and other automated support for systems engineering. It also enables more reliable
interpretation of the SysML models generally, for example, during manufacturing and other stages of the
product lifecycle. Examples are given in SysML notation for each concept. © 2013 Wiley Periodicals, Inc.
Syst Eng 17

Key words: Model-Based Systems Engineering (MBSE); Systems Modeling Language (SysML); modulari-
zation; components

1. INTRODUCTION

One approach to specifying complex systems is to hide inter-
nal components, and restrict which portions of each compo-
nent can be connected to others in the system. Component
designs specify which portions are available for interconnec-
tion to other components, and system designs specify inter-
connections that make use of the available portions. It requires

additional engineering effort to choose component bounda-

ries, identify externally available portions, and connect those

portions with other components, but for large systems the cost

is made up in the efficiency of the entire design process. The

ways in which components can be connected is reduced,

partly by hiding portions of the components, and partly by

limiting how externally available portions can be connected

to others. This enables engineers to design systems incremen-

tally, with hidden complexity addressed later or separately.
The externally available portions of components and their

interconnections can have a complex structure; for example,

connectors on computers have pins and other parts, while nuts

and bolts have threading surfaces. Interconnections between

Regular Paper

* E-mail: conrad.bock@nist.gov

Systems Engineering
© 2013 Wiley Periodicals, Inc.
Systems Engineering Vol. 17, No. 4, 2014
© 2013 Wiley Periodicals, Inc.

392

: 392–406, 2014

these structures are also usually complex, for example, the
way computer connector pins are linked together, or which
nuts and bolts will mate properly via their threading surfaces.
Sometimes the externally available portions are expected to
be used in particular ways, or perhaps not used at all despite
being available. For example, connectors on computers some-
times have holes for mechanical attachments, rather than
electrical, and some of the protruding metal surfaces are not
expected to be connected at all. Similarly, some of the surfaces
of a bolt are for wrenches to be applied, while others are for
threading onto nuts, and the top of the bolt head is not
expected to be used for anything. Externally available por-
tions of components are also intended to interact with other
components of the system in specific ways. Items might be
expected to flow into or out of the available portions, which
could include data, material, or energy. The available portions
might expect other components to have particular charac-
teristics, such as shapes that mate, or relative temperatures
that enable heat transfer. The externally available portions of
components and their interconnections are complex in them-
selves, and must be managed to design effectively.

This paper describes support for the design techniques
above in the Systems Modeling Language, version 1.3
(SysML) [OMG, 2012a]. SysML is an extension of the Uni-
fied Modeling Language (UML) for systems engineering
[OMG, 2011], issued by the Object Management Group in
cooperation with the International Council on Systems Engi-
neering (as OMG SysMLTM). Many concepts and notations
in SysML are shared with UML, but this paper will describe
them all as SysML. The primary SysML construct for speci-
fying systems and their components is blocks, which have
ports describing externally available portions of the system or
component. Interconnections between component blocks and
ports are modeled in the internal structure of system and other
component blocks. Section 2 describes blocks, including in-
ternal structure, and Section 3 covers ports.

This paper enables more reliable interpretation of SyML
models by describing the systems and components that could
potentially be built according to SysML constructs, an ap-
proach typical in specifying the semantics of formal lan-
guages [Genesereth and Nilsson, 1987]. It is intended for
those concerned with increased precision, such as builders of
model analyzers, checkers, and other automated support for
systems engineering. These areas do not have common
mathematical formalism that could be used to explain SysML,
but all of them take the general approach of formal semantics,
and benefit from explanations that relate models to instances
conforming to those models. For example, in SysML the
systems or components that could potentially be built accord-
ing to the specifications of a block are called the instances of
the block. The paper explains blocks by enumerating charac-
teristics their instances can have, following the approach of
formal semantics. Due to its focus on relating models to
instances, the paper also enables manufacturers and other
participants in the product lifecycle to more accurately under-
stand what blocks specify and whether they have designed
factories and other systems properly to meet the specifica-
tions. This paper differs from other formalizations of SysML
[Berardi et al., 2005; Bouabana-Tebibel et al., 2012; Linhares
et al., 2007; Graves, 2010] by explaining concepts in simple

but well-defined terms accessible to advanced modelers and

modeling tool builders concerned with precise understanding

of SysML.

2. BLOCKS

Blocks specify components of systems and their assembly

into entire systems. Section 2.1 covers the basic meaning of

blocks, while Sections 2.2 and 2.3 show how blocks specify

characteristics of components and systems and how they are

linked together, respectively. These first three subsections

introduce terminology for SysML models as well as for the

systems built from them, as reflected by the pair of terms in

their titles (the first term is about models and the second is

about systems built from them, such as “block” and “ in-

stance” in Section 2.2). The subsections use the terms of the

systems as built to give a precise interpretation of the terms

used in modeling. These definitions are the basis for explana-

tions in the rest of the paper. Sections 2.4, 2.5, and 2.6 describe

how flows and other interactions between system components

are specified. Section 2.7 covers the assembly of components

into larger components or systems.

2.1. Blocks and Instances

Blocks specify individual systems that each conform to the

block as a specification (instances of the blocks). For exam-

ple, a block for cars might specify that they have four wheels,

which John’s and Mary’s cars do, making their cars instances

of that block, or the block might require something not all cars

have, such as four-wheel drive, which might mean John’s car

is not an instance of the block, but Mary’s is. Things can be

instances of more than one block at the same time, for exam-

ple, Mary’s car might be an instance of a block for cars and a

block for four-wheel drive cars. Mary’s car conforms to both

specifications, because it has four wheels, as specified by both

blocks, and has four-wheel drive, as specified by the block for

four-wheel drive cars. Figure 1 illustrates this with the SysML

notation for blocks at the top (rectangles with “«block»” at

the top), and for instances at the bottom (labeled with under-

lined text). The blocks are shown in a block definition dia-

gram, indicated with the “bdd” abbreviation in the upper left

of the frame (the rest of the article will omit the frame and

«block» indicator for brevity). The dashed arrows indicate

Figure 1. Blocks and instances.

2 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 393

which blocks model which instances (these arrows, solid bar,

and labels on the left are not SysML notation).
Things can be instances of some blocks at one time, and

others at other times. For example, John might be an instance

of a block for students one year, and no longer an instance of

that block next year, becoming an instance of a block for
engineers instead. Blocks might have no instances at all,

either intentionally or not. For example, a block for perpetual
motion machines has no instances, and blocks for car designs
that turn out to be unbuildable will also have no instances.

Blocks only establish conditions for things to be instances;

they are not the same as their instances [Bock et al., 2010].
Individual things might be intended to be instances of

particular blocks (“ specification” blocks), or blocks might be
intended to have particular things as instances (“as-built”

blocks). For example, cars coming off assembly lines are

supposed to be instances of particular specification blocks,
and usually the assembly lines will be modified if they are

not, while the instances of as-built blocks for cars are sup-

posed to be the cars coming off assembly lines and the blocks
are modified if they are not. The difference between specifi-

cation and as-built blocks is whether the blocks or the in-

stances are changed to maintain their relationship.

Specification blocks usually specify only some aspects of
individual things, and can be combined with other blocks into

complete specifications. For example, a block limiting car

emissions is only concerned with the chemical composition

of exhaust, not design of the drive train. Similarly, a car block

specifying the drive train probably does not mention emis-

sions. These blocks are models of cars, even though the blocks

are incomplete, and individual cars can be instances of them.

For example, if John’s car meets the limitations of the emis-
sions block, then it is an instance of that block, otherwise not,

and similarly for the car block specifying the drive train.

Blocks specifying some aspects of a system can be com-

bined into complete specifications if they are consistent and

complementary. One way to combine blocks is by how widely

they apply (generalization). For example, a block repre-

senting emission limitations might apply to more cars than a

block for cars having a particular kind of drive train. Figure
2 shows the SysML notation for generalization (arrows with

closed, unfilled heads). The Car block generalizes other

blocks that specify some aspects of cars, in terms of emis-
sions, materials, and shape (a sans serif font is used in this

paper for names of model elements). This means the specifi-

cations of Car apply more broadly than the blocks below it,

for example, Car might specify the number of wheels, which

would apply to all cars, not just the ones with low emissions.

The partial specifications in blocks for emissions, materials,

and shape are combined by generalizing to a single GoodCar
block, which means good cars have the specified emissions,

materials, and shape.
The AsBuiltCar block models things that are produced by

car factories. As-built cars might not meet any of the specifi-

cations of the other blocks, even the one for cars in general,

because as-built cars might not be manufactured properly.

However, some (and hopefully many) instances of AsBuiltCar
might also be instances of the other blocks in Figure 2, having

low emissions, recyclable materials, and streamlined shapes.

Products of car factories not meeting any of the specifications

for the other blocks in Figure 2 would only be instances of

AsBuiltCar.
Another way to illustrate blocks and generalization is Venn

diagrams, as shown in Figure 3 (this is not SysML notation),

reflecting the blocks and generalizations in Figure 2. Block

names are shown labeling ellipses that are imagined to en-

close instances of those blocks (instances are omitted in the

figure for brevity). Ellipses entirely contained in others are

for blocks that are related by generalization, where the larger

ellipse is the more general block. For example, the ellipse for

LowEmissionCar is entirely contained in Car. The Venn dia-

gram highlights that all instances of a block are instances of

its more general blocks, because all the instances enclosed by

an ellipse are also enclosed by its containing ellipses. For

example, all instances LowEmissionCar are instances of Car.
Venn diagrams also highlight that generalization does not

completely constrain the instances of blocks. For example,

GoodCar is generalized by LowEmissionCar, 70%Recy-
clableCar, and StreamlineCar, but not all cars with low emis-

sions, recyclable materials, and streamlined shapes are

instances of GoodCar, because the ellipse for good cars does

not take up the entire intersection of the other three ellipses.

This reflects some other conditions required for good cars that

are not captured in Figure 2. The generalizations of GoodCar
only give some of the characteristics of good cars, because

generalization only requires that all the instances of a block

Figure 3. Generalization and Instances.Figure 2. Generalization.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 3

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK394

be instances of its generalizations, not that all the instances of
the generalized block be instances of the block.

2.2. Properties and Values

Blocks have several kinds of features, some related to how
blocks interact with other blocks (behavioral features), and
others giving characteristics of blocks themselves (structural
features):

• Behavioral features specify tasks that can be undertaken
at the request of other blocks, including services (op-
erations), or notifications that can be received from
other blocks (signal receptions). For example, pumps
may have an operation to move water, and a reception
notifying them when the target location is full.

• Structural features specify a wide variety of nonbehav-
ioral aspects of blocks, mostly properties. These in-
clude simple alphanumeric aspects (value properties),
such as weight, manufacturer name, or color, and com-
plex aspects, such as geometry, meshes; and other
blocks, which might be contained (part properties), or
not (reference properties).1

Properties have a dual purpose: specifying the kind of
things they provide (property types), as well as specific things
given in each instance (property values, not to be confused
with value properties). For example, the type of a temperature
property might be a number in Centigrade units, while the
value for a particular instance will be a particular number,
such as –2 ºC for one of the ice cubes in John’s freezer. The
value might be slightly different for other ice cubes in John’s
freezer, and might be more different for an ice cube in Mary’s
freezer, but the value will always be a number in Centigrade
units, as required by the property’s type. If the value does not
conform to the type, for example, if it is given in Fahrenheit,
or includes letters, then the value is violating the type and is
invalid.

Properties can be typed by blocks, in which case their
values are instances of those blocks. For example, the type of
a property identifying a car’s front left wheel might be a block
representing wheels with a particular size range, as shown in
the upper part of Figure 4. Properties appear in a list within
block rectangles, with the property name to the left of the
colon and the type to the right (the type name includes the
numeric range and unit for brevity). The value of the property
for John’s car will be a particular wheel (instance of the wheel
block), of a particular size, as shown in the lower part of
Figure 4 (instance names at the top of rectangles are under-
lined, and are used to the right of “=” to show property
values). The value of the same property on Mary’s car will be
a different wheel with a different serial number (another
instance of the wheel block), possibly of a different size, but
the values for John and Mary’s cars will both be wheels, and
be within the size range indicated by the property type;
otherwise the values are invalid. Properties with no type can

have any value and still be valid, but this might just be an

incomplete model, rather than intentionally unrestricted.
Properties can have the same or shared values, even on the

same thing. For example, cars have front wheels and powered

wheels, and in some cars these are the same set of wheels

(front-wheel drive cars), while in others there are more pow-

ered wheels than front wheels (four-wheel drive cars). A

block representing cars might have these two properties, as

shown in the upper part of Figure 5. In some instances, such

as John’s car, the values of the two properties will be the exact

same instances of the wheel block, while other instances, such

as Mary’s car, more wheels will be powered, as shown in the

lower part of Figure 5 (the rear wheels of John’s car are
omitted for brevity). Properties can be thought of as “ roles”

of the blocks they are on, such as the front wheels and powered

wheels of a car, with their values “playing” the roles, includ-

ing values that play more than one role. A specialized block
for front-wheel drive cars can be defined requiring the values

of these two properties to always be the same (see Figure 16

in Section 2.7 about modeling this in SysML).
Sometimes the values of one property are included among

the values of another, rather than having exactly the same

values (property subsetting or property “generalization”).

For example, the values of a property for the front wheels of

a car will always be included among (be a subset of) the values

of a property for all the wheels. Finally, properties can have

values that are the same as the things they are on (called “ self”
properties in this paper). For example, cars might have a

property that always has a value that is the same as the

1The information given in properties can change over time; for example,
temperature can change, which might change geometry. They are considered
structural because they do not specify exactly how they change.

Figure 4. Properties.

Figure 5. Properties sharing values.

4 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 395

individual car it is on (on John’s car it has John’s car as a value,
on Mary’s car it has Mary’s car as a value, and so on). This
seems redundant, but self properties are important to some
approaches to component modeling in SysML (see Section
3.3).

Properties that share values with other properties do not
affect the bills of material or “part count” during manufac-
turing, because each value is only counted once, no matter
how many properties have that value. For example, the pow-
ered and front wheel properties on John’s car as in Figure 5
might each have two values, adding up to four, but if his car
has front-wheel drive, the two values are the same. Then the
two properties only contribute two instances of the wheel
block to the manufacturing bill of material for John’s car (the
instances needed at the time it is assembled). Modelers might
highlight this by choosing one of the properties to be a part
property, and the other a reference, but more is needed to
ensure they have the same values (see Section 2.7). Self
properties also do not affect bills of material, because their
values are the thing that is assembled from parts on the bill.

2.3. Associations and Links

Associations specify which properties are about the same
relationship between blocks; for example, a property giving
the front wheels of a car is about the same relationship as a
property giving the car that the wheels are in.2 Figure 6
illustrates this with the SysML notation for associations (lines
between blocks, with a diamond indicating that frontW is a
part property). Names of the properties involved (association
ends) appear near the line ends opposite from the blocks they
are on. In this example, the frontW property is the same one
as in Figure 5, but shown in a way that makes its related
property inCar more obvious. The values of associated prop-
erties must be consistent with each other. For example, if a
wheel is a value of frontW for a particular car, then that same
car must be a value of inCar for the wheel; otherwise the
values are invalid.

Associations also specify links between instances of
blocks (links of associations are analogous to instances of
blocks). Property values should always be consistent with
links of associations that have the properties as ends. For
example, links for the association in Figure 6 between a
particular instance of car and its front wheels should be
consistent with the values of the frontW property giving the
front wheels of that instance of car. Properties typed by blocks
can informally be said to “ link” instances of blocks, even if
they are not ends of associations, because the properties have
values on instances of blocks, where the values are instances
of other blocks.

Association blocks are both associations and blocks, ena-
bling their links to have the characteristics of instances,
including properties. For example, an association block link-
ing cars to their wheels might have a property indicating the
rate that energy is flowing to the wheels at any given time
(power), as illustrated in Figure 7 with the SysML notation
for association blocks (a dashed line with no arrowheads

between the association line and block rectangle). This exam-

ple has energy going to the front wheel of John’s car at

different rates, perhaps because the car is going around a curve

at this particular moment (property values can change over
time; see footnote 1 in Section 2.2). The instances at the

bottom are links of the association FrontWheelInCar (the

dashed arrows between the instances and FrontWheelInCar
are omitted for brevity). Association blocks can also have part
and reference properties (see Section 2.7).

2.4. Flow Properties

Flow properties specify things that might flow into or out of

a block, as the type of the property. For example, a block

representing automobile factories might have a flow property
with cars as its type, indicating that cars flow out of factories,

and similarly the same block might have incoming flow

properties typed by engines or frames, indicating the kinds of

things that flow into the factories, as shown in Figure 8. Flow

properties are considered structural, even though they have a

behavioral aspect, because values of flow properties are the

particular things flowing in or out at a particular instant (items
or flowing instances), rather than over time. For example, the
outgoing flow property of Factory in Figure 8 has Car as its

type, but for a particular factory at a particular instant, the

value will only be the individual cars with particular identifi-

cation numbers (instances of Car) leaving the factory at that
particular time. The same applies to flows of nondiscrete

things, like liquids or energy, where instances flowing in or

out at a particular time are infinitesimally small “ slices” of
liquid or packets of energy. These slices or packets conform

to the property’s type, indicating the kind of liquid or energy

flowing, otherwise the values are invalid.
Items flow along links between instances of blocks. For

example, factories in Figure 8 might be linked to suppliers via

an association between factory and supplier blocks. An out-

2UML associations can involve more than two properties, but only two are
allowed for SysML compliance.

Figure 6. Associations.

Figure 7. Association blocks.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 5

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK396

going flow property for components leaving suppliers can

correspond to an incoming flow property for components

arriving at factories. When individual components with iden-

tification numbers leave a particular supplier, they will go to

the particular factories linked to that supplier via the associa-

tion between suppliers and factories. Similar examples apply

to flows of nondiscrete things, like energy or liquids. Outgo-

ing flow property types must be the same or more specific

than corresponding incoming flow property types for flow to

occur. For example, a factory block with an incoming flow

property typed by wheels might be associated with a supplier

block with outgoing flow property typed by engines, but the

engines will not flow between suppliers and factories linked

by this association, because wheels are not engines. See

Section 2.5 for restrictions on which links items can flow

across. See Section 2.7 for other ways to create links for flows.

2.5. Item Flows

Item flows specify items that flow along associations between

blocks. Item flows are realized by associations, restricting the

flows to occur across links of the realizing associations. This

is notated with filled triangles overlaying the association lines

and pointing in the direction of flow, as shown in Figure 9.

Labels above item flow triangles indicate the kinds of items

that might flow. Item flows can be specified without corre-

sponding flow properties. For example, the top of Figure 9

shows an item flow realized by an association between blocks

for factories and suppliers that do not have flow properties. A

complete model must have flow properties for items to flow,

and they must be consistent with each other and with corre-
sponding item flows. Flow properties specify flows without

restricting the associations across which flows will occur,
while item flows specify flows along particular associations.

The kinds of items flowing can be the same, more specific,

or more general than the flow property types on the blocks.
For example, in the middle of Figure 9 the kinds of items

flowing are engines, small engines, and power sources, which
are consistent with the flow properties typed by the blocks for

factories and suppliers. Only the middle item flow (SmallEn-
gines) would restrict the possible flowing items more than the

types of the flow properties (suppliers could only send small
engines to factories), while the top and lower item flows do

not restrict the flow more than the types of the flow properties

(engines are power sources). The latter kind might appear

when the item flows are defined before the flow properties or
when the item flows or flow properties are defined on differ-

ent blocks related by generalization. The kind of item flowing

cannot be completely unrelated to the flow property types. For
example, in the middle of Figure 9 the kind of item flowing

could not be trucks.

More than one association between blocks can realize item
flows, with specific kinds of items intended to flow between

different instances of the blocks, as shown at the bottom of
Figure 9. The blocks for factories and suppliers have two

associations between them, one for the flow of new engines,

another for the flow of remanufactured engines. The item flow
for new engines is realized by the association for new engine

distribution, and an item flow for remanufactured engines is

realized by the association for remanufactured engine distri-

Figure 8. Flow properties.

Figure 9. Item flows.

6 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 397

bution. The links of these associations reflect which particular
factories are consuming which kind of engines, and from
which particular suppliers engines of each kind should come.
See Section 2.7 for other ways to realize item flows.

2.6. Directed Features
The features defined on blocks in previous sections are for
other blocks to use (provided features), while this section
introduces features on blocks that are used by those same
blocks, but defined on related blocks (required features).
These are collectively called directed features. Figure 10
shows an example of a block for pumps with a required
property and operation that things linked to them are expected
to support (isFull and isEmpty). These indicate whether those
things are full and empty, respectively. Pumps can use the
property and operation to determine when to stop or start
delivering fluid to things they are linked to, respectively. The
required properties and operations on pumps must be matched
by provided properties and operations on the linked things,
which in this example are tanks (features that do not indicate
provided or required are taken as provided).3 Individual
pumps get the values of provided properties on the particular
tanks linked to each pump via the association between pumps
and tanks, or invoke provided operations on those tanks.
Required features do not specify which property or associa-
tion will link to things supporting the required feature, but at
least one must exist for the model to be complete. See Section
2.7 for other ways that links are specified for directed features.

Properties and behavioral features can be both provided
and required, which means the features are supported by the
block that defines them and by related blocks. For example,
in Figure 10 the isInService property is provided and required
on pumps and tanks, enabling each to find out if the other is
ready to perform its function.

2.7. Internal Structure
Properties and associations are not specific enough to prop-
erly model many applications, especially systems of compo-
nents. For example, an association between blocks for engines
and wheels, as shown in the top part of Figure 11, allows links
between the engine in one car and wheels in another, as shown
in the bottom part of the figure between the engine in John’s
car and the wheels in Mary’s. This is because associations
apply to all instances of the blocks they relate. Adding asso-
ciations between the block for cars and the blocks for engines
and wheels does not affect the association between engines
and wheels. The three associations are independent of each
other, and do not reflect that engines drive wheels only within

each individual car, not between cars. More examples of the
deficiency of properties and associations in modeling systems
are in Bock [2004].

The internal structure of blocks addresses these problems
by introducing new relations between properties that apply
associations in the context of each instance of a block sepa-
rately (connectors). In the example of Figure 11, the proper-
ties of a car block identifying the engine and wheel in each
car (poweredBy and frontW) can be related by a connector
using the association between engines and wheels
(drivenBy/drives). This limits links of the association to en-
gines and wheels in the same individual car, not engines and
wheels in different cars.4 Connectors only apply associations
to link instances identified by the same “context” instance,
in this example, an individual car with a particular identifica-
tion number.

Internal structure has its own internal block diagram,
indicated with the “ ibd” abbreviation in the upper left of the
frame, as shown in the top part of Figure 12. The entire
diagram notates a single block Car, as indicated in the upper
left of the frame. The rectangles in internal block diagrams
are notation for properties of the block, rather than blocks as
in block definition diagrams. Property names appear in the
rectangle labels to the left of colons, and the property types
to the right. These properties can be ends of associations, as
shown in Figure 11. The lines in internal block diagrams are
notation for connectors, rather than associations as in block
definition diagrams. Connectors are adorned with informa-
tion about their associations, specifically the association end
names (defined in Fig. 11 in this example). The effect on
instances is illustrated in the lower part of Figure 12. In this
example, the drivenBy/drives association is limited to links
between engines and wheels in the same car, specifically, the
engines in John’s and Mary’s cars are linked to the wheels in
their respective cars, rather than each other’s.5

Internal structure affects capabilities that depend on links,
in particular flow properties, item flows, and directed features

Figure 10. Directed features.

Figure 11. Antiexample for assembling components.

3Flow properties are not directed features, but are effectively always provided
and required, because related blocks are expected to have similar flow
properties in the opposite direction (see Section 2.3).

4Associations used by connectors might have links that are not specified by
connectors, but these are created separately from internal structures. If links
are only created due to connectors, then internal structures effectively restrict
how associations are applied.
5Figure 12 has instance arrows only for John’s and Mary’s cars, because the
only block shown is for cars; the other rectangles are properties, which do
not have instances.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 7

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK398

(see Secs. 2.4, 2.5, and 2.6 about these). They use links to

determine which instances items flow between, and which

instances might use provided features, or need to support

required features. The internal block diagram at the top of

Figure 13 shows energy flowing between the engine and front

wheels of a car. The item flow is realized by a connector,

rather than by an association as in block definition diagrams.

This limits the flow to occurring between engines and wheels

in the same car, rather than between engines and wheels in

different cars, because the connector limits links to each car

instance separately. The item flow in Figure 13 is supported

by flow properties on the block for engines and wheels, as

shown in the block definition diagram at the bottom of the

figure.
Similarly to flows, the engine might require wheels to

provide information, such as whether they are slipping, via

properties or operations, such as the operation on wheels for

determining if they are slipping (isSlipping, in the lower right

of Fig. 13). The engine accesses this operation on wheels, but

only the wheels it is linked to (see Sec. 2.6). In this example,

links between engines and wheels are specified by connectors,

which limit the links to engines and wheels in the same car.

This ensures the engine finds out whether the front wheels are

slipping, rather than the back wheels, or wheels in other cars.
Internal structure can be combined with generalization to

specify connectors more or less broadly as needed (see Sec.

2.1 about generalization). For example, Figure 14 is a block

definition diagram showing generalizations between blocks

that have internal structure displayed in compartments of the

blocks. The general block at the top is the same as the one in

the internal block diagram for cars in Figure 13 (except for

additional information on the item flow; see below). The

specialized block in the middle of Figure 14 has internal

structure adding a connector for some of the engine’s energy

to heat the seats. The connector in the more general block for

cars applies to cars with heated seats also, due to the gener-

alization arrow, so the front wheels in cars with heated seats

will also receive energy.

The specialized block on the bottom of Figure 14 restricts

the flowing energy to be mechanical, which requires an item
property, notated by a property name to the left of a colon in

the item flow label. The type of an item property is the kind

of items flowing, shown to the right of the colon. Like all

properties, the values of item properties must of the kind

specified by the property types, which in this example is

energy, or specifically mechanical energy. The values of item

properties on instances of blocks are the items actually flow-

ing at any particular time across links specified by connectors

realizing item flows. In this example, these values are quanta

of energy flowing across links between engines, seats, and

wheels in each car separately. The item property in the more

general block for cars applies to cars with mechanical

drivetrains also, due to the generalization arrow, but the

specialized block narrows the type of the item property to

indicate mechanical energy is flowing.6

Association blocks (see Sec. 2.3) can have internal struc-

ture, helping to hide complexity between blocks in the same

way internal structure does within blocks. For example, an

association for energy delivery between engines and wheels

Figure 12. Internal structure.

Figure 14. Generalization of internal structure.

6This is done with property redefinition in SysML, which has the same effect
as property subsetting (see Sec. 2.2), but enables the property type to be
specialized. The redefinition notation is omitted from Figure 14 for brevity.Figure 13. Item flow across connectors.

8 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 399

involves many other blocks and associations, representing

components such as the transmission, differential, shafts, and

the associations between them. Figure 15 is a block definition

diagram showing part of this for the association between

blocks for engines and wheels from Figure 11. The top of

Figure 15 shows a drivenBy/drives association block using the

notation from Figure 7 in Section 2.3, but with a compartment

for the internal structure of the association. The property

rectangles marked with “«participant»” have values that are

the instances linked together by instances of the association

block (instances of engines and wheels in the example). The

expressions in curly brackets identify which association end

the participant properties correspond to. Participant property

rectangles have dashed borders to identify them as reference

properties, because the instances linked by associations are

“outside” the association, rather than contained by them (see

Sec. 2.2 about reference properties). The third property rec-

tangle is for the transmission, which is “ inside” the associa-

tion. Two connectors ensure the transmission is linked to the

engine and wheel at the ends of each instance of the associa-

tion (the block diagram for associations is omitted for brev-

ity).
The internal structure of a block for cars at the bottom of

Figure 15 uses the association block defined at the top. The

property rectangle marked with “«connector»” has values

that are instances of the drivenBy/drives association block, as

indicated by the name to the right of the colon. The expression

in curly brackets in the constraint compartment at the bottom

ensures the same transmission is used for both front wheels.

It is written in the Object Constraint Language (OCL) [OMG,

2012b] and uses the name of the connector property (dd) to

refer to the instances of the association block, as well as the

name of the property identifying the transmission (trans). The

dot operator gives a list of the transmissions in the instances

of the association block, and the size operator gives the length

of that list, which is constrained to be exactly 1. This limits

the transmissions in each car to be exactly 1, rather than a

separate transmission for each front wheel.
Item flows could be realized by the associations and con-

nectors in Figure 15 as they are in Figures 9 and 13. For

example, the association between blocks for engines and

wheels at the top of Figure 15 could realize an item flow for

energy, as could the connectors inside its association block

between the engine, transmission, and wheels. Modelers

should define these consistently with each other, but SysML

does not specify a methodology they must follow. For exam-

ple, if the associations had properties for the rate of flow of

energy, as Figure 7 does (power), and the association block

constrained the values of this property to be within a particular

range, such as 0–100 kW, then modelers should check that the

ranges for these properties on the associations between en-

gines, transmissions, and wheels are the same or narrower

than the range, such as 0–90 kW, rather than wider, such as

0–110 kW. This reflects that the power range on the associa-

tion between engines and wheels is an overall restriction that

the flows in the association block must adhere to.7

SysML provides a special kind of connector for specifying

that particular properties have the same values in each in-

stance of a block (binding connector) (see Sec. 2.2 about

properties sharing values). In the example of Figure 5, Section

2.2, the block representing cars in general has a property for

front wheels and a property for powered wheels, but in

front-wheel drive cars the front wheels and powered wheels

are the same. An internal block diagram for front-wheel drive

cars can model this with a binding connector between these

two properties, as shown in Figure 16 by the «equal» keyword

Figure 15. Association blocks with internal structure.

7Using item flows on associations and the connectors inside them is infor-
mally called “ item flow decomposition,” but item flows cannot be decom-
posed because they are not blocks, and the relationship between the kinds of
things flowing along associations and those flowing along connectors in the
associations is not necessarily decomposition; see other examples in Section
3.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 9

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK400

on the connector. This indicates values of the front wheel
property in each front-wheel drive car are the same as values
of the powered wheel property in that same car (the same
instances of the block for wheels), rather than other cars. The
effect on instances is shown in the lower part of Figure 16.
The same two wheel instances (JLFW and JRFW) are linked
as front wheels and powered wheels to John’s car.8 Binding
connectors highlight properties that do not affect manufactur-
ing bills of material, and this can be further emphasized using
reference and part properties together (see Sec. 2.2 about
reference and part properties). For example, in Figure 16, the
property rectangle for front wheels or powered wheels could
have been dashed to emphasize that it does not contribute to
bills of material. The values of bound properties must be
instances of both property types, either directly or by gener-
alization (see Section 2.1 about generalization).

3. PORTS

Ports specify externally available portions of system compo-
nents, a critical capability for achieving the benefits of com-
ponentization (see Sec. 1). This section describes ports in
terms of the concepts from Section 2. Section 3.1 covers the
basic meaning of ports and how they contribute to assembling
components. Section 3.2 describes how complexity of ports
themselves can be managed. Section 3.3 shows how ports
appear from inside the blocks that have them.

3.1. Port Properties

Ports are a special kind of property, and like all properties, can
be typed by blocks, but unlike other properties, the features
and associations of these blocks are explicitly available to
other blocks (some ports can also have internal structure; see
Sec. 3.3). The features can be any of the kinds described in
Section 2, with limitations in some cases, and the associations
can have internal structure. Figure 17 shows ports using
SysML notation, at the top in a block definition diagram
(small rectangles on the boundary of block rectangles labeled
in the same way as properties), and at the bottom in an internal
structure diagram (small rectangles on the boundary of prop-
erty rectangles). The connector in the internal block diagram
is for the association in the block definition diagram (the
association information on the connector is omitted for brev-
ity). Ports are linked by connectors rather than associations,
because ports are properties rather than blocks.

Features of ports are externally available via links between
the values of port properties and instances of other blocks,
which might be values of other port properties (see Sec. 3.3
about the values of port properties). The links can be specified
by connectors in internal structures between ports and other
properties, including other ports, as in Figure 17. In this

8Binding connectors do not identify an association to apply, but are equivalent to applying an association that only links instances to themselves, and no others

Figure 16. Binding connectors.

Figure 17. Ports.

10 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 401

example, the flow of energy from the engine is available to
the hub, due to the connector in the internal structure diagram.
Ports hide complexity in blocks when connectors from out-
side link only to ports, rather than to top-level properties of
blocks. This limits available features to those defined on port
types, rather than features of the block having the ports. In
addition, ports do not always need to be connected. For
example, in Figure 17, the internal block diagram does not
have a connector for the tire (it is available only to things
outside car). Blocks specializing the block for cars might add
connectors (in this example to things outside the car as part
of a “ total” system specification), but cars built to the internal
block diagram in Figure 17 will not have links to the tires.

Connectors can use association blocks that have connec-
tors between ports (see Sec. 2.7 about association blocks
having internal structure). For example, the association block
of Figure 15 could be modified to connect ports, as in the
block definition diagram of Figure 18. The same effect can be
achieved by decomposing the connectors of the association
block in Figure 15 with their own internal structure, as in
Figure 19. The incremental decomposition of Figure 19 en-
ables the model in Figure 15 to hide the complexity of how
engines, transmissions, and wheels are related, whereas the
approach of Figure 18 puts it all in one diagram. Figure 19
also enables high-level specifications or requirements to be
placed on the relationships of engines, transmissions, and

wheels, with design refinements meeting those specifications
or requirements captured in other diagrams. Combined with

generalization of association blocks, alternative design re-
finements can be captured without modifying high-level
specifications or requirements in Figure 15 [Bock et al.,

2010]. Figure 18 is simpler than Figure 19 but adds a signifi-
cant inefficiency to the design process.

3.2. Nested Ports

Blocks typing ports can have features that are other ports
(informally called “nested ports”). This hides complexity
when specifying externally available portions of systems.

Figure 20 illustrates this with a block definition diagram
specifying engines mounted on car frames. The blocks for
engines and frames at the top of the figure have ports to

identify the portions used for mounting. The types of these
ports are blocks that have ports for holes in the mounting

portions of engines and frames, defined in the middle of the
figure using the notational option of showing port names
inside port rectangles (decomposition of the association be-

tween the blocks for engines and frames is omitted for brev-
ity). The middle of the figure also shows the efm/fem
association block between the mounting portions of engines
and frames, which has an internal structure connecting the
hole ports. These connections are for the fixed association

Figure 18. Association decomposition with ports.

Figure 19. Incremental association decomposition with ports.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 11

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK402

defined between holes at the bottom left of the figure, which

has a further decomposition to specify the fastener on the

bottom right. This enables the fastening through each pair of

holes to be specified once and reused on all four pairs.

3.3. Full Ports and Proxy Ports

Some ports introduce new elements in systems when they are

built (full ports), while others only “ stand in” for existing

elements (proxy ports). The values of full ports (as properties;

see Sec. 3.1) contribute to manufacturing bills of material,

while the values of proxy ports do not. This is because the

values of full ports are not shared with other properties (and

are not the things the ports are on either; see behavior ports

below, and Sec. 2.2 about properties sharing values), while

the values of proxy ports are shared with internal part prop-

erties or are the same as the things they are on. Although port

types determine features available to connectors, port values

are responsible for supporting the features (see Sec. 3.1) and

reflect whether the port is full or proxy.
This section describes modeling approaches around the

two kinds of ports, but SysML does not require a particular

approach for using ports, and the techniques described here

are only examples for illustration. Modelers can choose be-

tween full and proxy ports at any stage of model development,

or not at all if the distinction is not needed. Modelers can also

make the choice at any level in a block taxonomy, whether on

ports of the most general blocks, the most specialized, or in

between. The choice is only restricted by constraints on the

way the two kinds of ports are related to the surrounding

model, as explained below.
Full and proxy ports only need to be distinguished when

defining blocks. When using ports on existing blocks, only

the features of port types are important. In particular, connec-

tors to ports from outside only “ see” port features, not how

ports are connected internally. Whether port values are shared

with other parts of existing blocks does not affect the port

features available outside these blocks, and it would be a very

unmodular design for outside blocks to depend on the pres-

ence or absence of value sharing in the existing blocks they

use. Modelers can switch between full and proxy ports, or not

make the choice, at any time, without any effect on other

blocks. Tools can omit the notation distinguishing the kinds

of port to simplify diagrams when existing blocks are used.

The two kinds of ports capture an important difference in

modeling methodology, but do not affect as-built systems. For

example, jacks for attachment of computer peripherals are

separate from other parts of computers, such as screens and

processing units, but ports representing jacks might share

their values with other part properties of a block representing

computers (proxy), or not (full). Modelers might choose

either kind of port to represent jacks, or not make the choice

at all, but the computers built to those specifications will have

jacks separate from other parts in any case. Figure 21 shows

two packages of blocks specifying computers and some of

their jacks, using the SysML notation for packages (rectangle

Figure 20. Nested ports.

12 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 403

with a tab labeled with the package name). The package on
the top is for use by modelers who are not supposed to receive
any proprietary information about the internals of the com-
puter or the jacks, such as system integrators. The package on
the bottom defines the internals of the computers and their
jacks, as might be seen by design or manufacturing engineers.
The top package can be sent to modelers or engineers who are
not supposed to see system internals, and both packages can
be sent to those who are.

The general block for computers in the top package has
ports representing jacks, but does not indicate whether they
are full or proxy, because the distinction is only of concern
when specifying the internals of blocks. The general ports are
typed by special kinds of blocks on the upper right (interface
blocks) that only specify interaction with or between other
things, such as the force needed to plug into the jack or the
resistance introduced electrical contacts, but not the internals
of those other blocks or themselves (including internal behav-
iors or part properties other than ports). Interface blocks can
still have instances with elements corresponding to internal
parts, connectors, and behavior, but these must also be speci-
fied on blocks that are not interfaces, see below.

Specialized blocks for computers on the lower left in
Figure 21 are in the package that defines system internals. The
Computer1 block makes the ports from Computer into full
ports, while Computer2 makes them into proxy ports9:

• The full ports restrict their types to specializations of
the general port types, shown on the lower right. The
specialized port types are blocks, rather than interface

blocks, because they add features of concern only to the

jacks themselves, such as casing material and internal

structure, rather than features affecting interaction with

other things.
• The proxy ports are typed the same as the general

ports,10 but have binding connectors to part properties
typed by the specialized port types, indicating their

values are the same as the part properties (see Figure 16

in Section 2.7). Interactions with a computer via con-

nectors to proxy ports are the same as interactions with

the internal parts they are bound to.

In order for the full ports in Figure 21 to have values

conforming to the type of the general ports, and for the proxy

ports to have the same values as the internal part properties

they are bound to, the interface blocks must have instances

with internal elements corresponding to internal parts, con-

nectors, and behavior in the model (see Sec. 2.2 about prop-

erty values conforming to property types). These internal

elements cannot be specified on interface blocks, but can be

specified on the specializations of interface blocks, as shown

on the lower right of Figure 21. The specialized blocks are

used as the types of full ports, and as the types of internal parts

bound to proxy ports. Generalization ensures that instances

of the specialized blocks with internal specifications are also

instances of the interface blocks (see Sec. 2.1 about generali-

zation). Also see the related example in Figure 22.

Computers built according to the two specialized blocks

will be the same, because proxy ports do not introduce any-

thing new into the bills of material compared to using full

ports. Full ports are simpler to model, but proxy ports are

more flexible, because they can be bound to potentially deep

nested part properties that participate in complicated internal

9This is done with property redefinition in SysML, which has the same effect
as property subsetting (see Sec. 2.2), but enables stereotypes to be applied.
The redefinition notation is omitted from Figure 21 for brevity.

Figure 21. Full ports and proxy ports.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 13

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK404

structures. In these cases it is graphically easier to define
proxy ports separately from the internal parts and bind them
together, rather than try to move a deeply nested property
rectangle to the boundary of the containing block rectangle.
When it is graphically feasible to move an internal part
property rectangle to the boundary and define a full port,
proxy ports can still be defined as nested ports on full ports to
restrict the features available to external connectors.

The values of proxy ports can be the same as the things
they are on (behavior ports, a kind of self property; see Sec.
2.2), rather than being the same as the values of internal part
properties. When features of behavior ports are used, it is as
if the same features were used on the instance having the ports.
For example, computers might have features for various
purposes, such as bills of material and inspection results for
manufacturing, color and CPU speed for advertising, and size
and weight for transportation planning. These features can be
separated into interface blocks that generalize the block for
computers, and the interface blocks can type proxy ports that
are also behavior ports, as shown in Figure 22 using the
notation for behavior ports (a line to a small rounded rectan-
gle). The generalizations ensure externally available features
specified by the behavior port types are supported on the block
for computers. They also ensure values of the behavior ports,
which are the instances of the block for computers, will
conform to the type of the behavior ports (see Sec. 2.1 about
generalization, Sec. 2.2 about property values conforming to
property types, and the related example in Fig. 21). Because
these are behavior ports (self properties), things linked via
connectors to the port for manufactured products (mp) have
bills of material and inspection results available to them,
while things linked via connectors to the port for transported
products (tp) have size and dimension available.

4. SUMMARY

Blocks and ports are the primary SysML concepts for reduc-
ing the complexity of specifying systems through componen-

tization. This paper introduces these concepts and covers new
capabilities in SysML that enable them to model a wider range
of systems. Blocks specify features of systems, including
features of their components and how the components are
related to each other via associations and connectors (internal
structure). Components can also be related to each other via
flows between them, including over associations and connec-
tors, specified with features such as flow properties, item
flows, and directed features. Ports are special features of
blocks for specifying externally available portions of system
components. Ports can also have nested ports when these
externally available portions become complex. Ports can be
specified as introducing something new into the system (full
ports) or as standing in for other parts of the system (proxy
ports). The paper explains these constructs by specifying the
systems and components that could potentially be built ac-
cording to them, an approach typical in specifying semantics
of formal languages, enabling more reliable interpretation of
SyML models. Combined with other capabilities of SysML,
such as the internal structure of associations, blocks and ports
provide modelers with a powerful and scalable way to specify
complex systems.

ACKNOWLEDGMENTS

The author thanks the members of the Object Management
Group SysML Revision Task Force for many discussions on
the topics of this paper, as well as Jae Hyun Lee and Donald
Libes for helpful comments.

Commercial equipment and materials might be identified
to adequately specify certain procedures. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessar-
ily the best available for the purpose.

REFERENCES

D. Berardi, D. Calvanese, and G. De Giacomo, Reasoning on UML

class diagrams, Artificial Intell 168(1–2) (October 2005), 70–

118.

Figure 22. Behavior ports.

10Proxy ports must always be typed by interface blocks to highlight that they
only stand in for other model elements that specify behaviors and nested
parts.

14 BOCK

Systems Engineering DOI 10.1002/sys Systems Engineering DOI 10.1002/sys

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 405

C. Bock, UML 2 composition model, J Object Technol 3(10) (2004),

47–73.

C. Bock, X. Zha, H. Suh, and J. Lee, Ontological product modeling

for collaborative design, Adv Eng Informatics 24(4) (2010),

510–524.

T. Bouabana-Tebibel, S. Rubin, and M. Bennama, Formal modeling

with SysML, Proc IEEE 13th Int Conf Inform Reuse Integration,

2012, pp. 340–347.

M. Genesereth, and N. Nilsson, Logical foundations of artificial

intelligence, Morgan Kaufman, Burlington, MA, 1987.

H. Graves, Logic for modeling product structure, Proc 23rd Int

Workshop Description Logics, 2010, pp. 486–496.

M. Linhares, R. de Oliveira, J. Farines, and F. Vernadat, Introducing

the modeling and verification process in SysML, Proc IEEE Conf

Emerging Technol Factory Automation, 2007, pp. 344–351.

Object Management Group (OMG), OMG Systems Modeling Lan-

guage, version 1.3, http://www.omg.org/spec/SysML/1.3, Need-

ham, MA, June 2012.

Object Management Group (OMG), OMG Unified Modeling Lan-

guage, superstructure, version 2.4.1, http://www.omg.org/spec/

UML/2.4.1, Needham, MA, August 2011.

Object Management Group (OMG), Object Constraint Language

2.3.1, http://www.omg.org/spec/OCL/2.3.1, Needham, MA,

January 2012.

Conrad Bock is a Computer Scientist at the U.S. National Institute of Standards and Technology, where he is project

leader for systems engineering modeling standards. He is co-chair of the Object Management Group (OMG) Revision

Task Force for the Systems Modeling Language (SysML). He led work on SysML 1.3’s upgrade for modularity,

developed SysML’s process modeling extensions, and contributes to several other areas of the specification. He is one

of the primary contributors to the Unified Modeling Language at OMG, on which SysML is based. He studied at Stanford,

receiving a B.S. in Physics and an M.S. in Computer Science.

 COMPONENTIZATION IN THE SYSTEMS MODELING LANGUAGE 15

Systems Engineering DOI 10.1002/sysSystems Engineering DOI 10.1002/sys

 BOCK406

	Componentization in the Systems ModelingLanguage
	ABSTRACT
	1. INTRODUCTION
	2. BLOCKS
	2.1. Blocks and Instances
	2.2. Properties and Values
	2.3. Associations and Links
	2.4. Flow Properties
	2.5. Item Flows
	2.6. Directed Features
	2.7. Internal Structure

	3. PORTS
	3.1. Port Properties
	3.2. Nested Ports
	3.3. Full Ports and Proxy Ports

	4. SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

