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Abstract 

We study the effects of elastic and inelastic scattering on the thermoelectric transport 

properties of molecular systems.  These systems can exhibit high thermopower due to resonant 

transmission through molecular orbitals.  We focus on systems which exhibit suppressed 

conductance near transmission anti-resonances due to quantum interference.  For coherent 

electronic transport, these anti-resonances also lead to very high thermopower.  We find that 

elastic and inelastic scattering reduces the thermopower, and that this reduction is more severe 

for larger molecules, and for molecules which are more weakly coupled to the leads.  

  

Introduction 

The thermoelectric effect enables the conversion of heat flux to electrical power, and has 

the potential to be a renewable energy source through applications such as waste heat recovery.  

The efficiency of this conversion is related to the dimensionless figure of merit 2ZT S T  , 

where S  is the thermopower,   is the electrical conductivity, and   is the thermal conductivity.  

Current values of ZT  are around 1, and the conflicting materials requirements for high values of 

ZT  inhibit the pace of further progress.  There is hope, however, that nanostructured materials 

may offer a route to more efficient thermoelectrics [1].  For example, the electrical conductivity 

of systems with reduced dimensionality can vary rapidly with energy, resulting in a larger 

thermopower S .  Additionally, such systems can scatter phonons more effectively, reducing   

[2].  Transport through molecular systems serves as an example of this general proposition: 

resonant transport through localized orbitals results in high thermopower [3-11], and the large 

mismatch between the phonon modes of bulk and molecular systems results in low   [12,13].   

Transport in molecular systems has been an active area of research since Aviram and 

Ratner proposed that a molecule could function as the building block of a circuit [14].  The 

miniaturization of electronics finds its natural endpoint in the transport through a single 

molecule.  However, there are many challenges associated with the characterization and control 

of transport in molecular systems.  In particular, the strong dependence of the conductance on the 

molecule-lead coupling and the molecular orientation/conformational shape complicate the 

interpretation of current-voltage curves.  Recent experimental work has shown that thermopower 

in molecular systems is more immediately relevant as a diagnostic tool than as an energy-

harvester [11].  For example, the sign of the Seebeck coefficient is used to distinguish between 

HOMO or LUMO-dominated transport [15], and ensemble studies of S  can help determine the 

main sources of variability in transport measurements [16].  

Thermoelectric transport in molecular systems may also exhibit specific features which 

are of fundamental interest.  For example, it has also been predicted that quantum interference 

effects in molecular transport leads to high values of thermopower and large deviations from the 

Wiedemann-Franz law [6].   This prediction takes on added relevance in light of recent 



experiments which demonstrate quantum interference effects in transport studies of conjugated 

molecules [17].  These interference effects are manifested in the suppression of charge transport 

at specific energies, which are geometry and molecule-dependent.   

In this work we show that transmission anti-resonances due to quantum interference in 

atomic junctions indeed lead to thermopower enhancement for phase coherent transport.  We 

additionally explore the effects of transport decoherence due to inherent phase breaking and 

dissipative processes.  We present numerical results, develop an analytical expression for the 

effect of phase-breaking scattering on the transmission, and present the physical picture which 

underlies this phase-breaking transmission.  It is shown that these processes have an adverse 

effect on the thermopower near anti-resonances, and that these effects are more severe for larger 

molecules and/or molecules that are weakly coupled to the leads.   

  

 

Model. 

We consider a 1-d tight-binding model (illustrated in Fig. 1), with the overall system 

Hamiltonian given by: 
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The first three terms describe the electronic 

system: †ˆ
id  is the creation operator for a 

localized orbital i  in the molecule, 
 †ˆL R

kc  is 

the creation operator for propagating states 

with energy k  in the left (right) lead, and 

ikV is the molecule-lead coupling.  The 

molecular orbitals have a nearest neighbor 

hopping matrix element ijt  and an onsite 

energy iU .  The last two terms in Eq. (1) 

result from the presence of phonons: †b  

creates a phonon with energy  , and 

ijM 
is the coupling between the mode 

labeled by  , and orbitals ,i j  on the 

molecule: 

 
2 nij n R

n n

M C i H j
M





  R , 

where the sum is over nuclei with 

coordinates R , M  is the ionic mass, and 

nC  is the expansion of the   mode in real 

space coordinates.  

Fig. 1. Schematic drawing of the different atomic 

junctions connected to two contacts. 



The thermoelectric transport is described within the Landauer formalism in the linear 

response regime.   The thermopower is expressed as: 
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with 0f  being the Fermi-Dirac distribution function, FE  the Fermi energy, Bk  the Boltzmann 

constant and T  the absolute temperature. The transmission function ( )T E  is expressed using the 

non-equilibrium Green function technique [18] as 
†( ) Tr L RT E G G       ,        (4) 

where G  is the retarded Green function matrix of the atomic junction and  †

, , ,L R L R L Ri     

are the broadening matrices due to the left and right leads. The Green function is expressed as 

 
1

L R SG E H


      ,       (5) 

where ,L R  are the self-energy matrices due to the left and right leads, H  is the Hamiltonian for 

the isolated molecule, and S  describes the 

effects of carrier scattering. The nonzero matrix 

elements of the lead self-energies are 

 , , ,expL R L R L Rt ik a  , where ,L Rt  are the 

hopping matrix elements between the left and 

right lead and the molecule (see Fig. 1). The 

energy dependence , ( )L Rk E  is determined by 

the dispersion relation  ,2 cos L RE t k a .   

We follow the procedure described in 

Ref. [18] to calculate ( )S E  in terms of the 

electronic Green’s function and phonon 

properties.  We assume that the phonons remain 

in equilibrium, and employ a self-consistent 

Born approximation for the electrons.  Within 

this approximation, the electron-phonon 

interaction is essentially viewed as an inflow 

and outflow of electronic carriers through an 

additional scattering terminal described by its 

self-energy ( ) ( ) 2S SE i E     [19]. If the scattering process is elastic the broadening is given 

by 

,el el( ) ( )S E D A E  ,         (6) 

Fig. 2. Energy dependence of the transmission function 

for all types of junctions shown in Fig. 1. The energy is 

normalized by the overlap energy of the reservoirs.  We 

take 0iU   and t t  . 



where  †( ) ( ) ( )A E i G E G E   is the spectral function and elD  is the elastic deformation 

potential [20].  For inelastic scattering, we assume a single phonon mode with energy 0  and 

occupation 
0

N  given by the Bose-Einstein factor.  This leads to a broadening term given by: 
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Here nG  and pG  are the electron (hole) correlation functions [18], related by 

( ) ( ) ( )n pA E G E G E  .  In this work, we assume the electron-phonon matrix element ijM   is  

diagonal in orbital space with a uniform 

value, so that 
20

inel ii
i

D M   [18].  Of 

relevance to the current work is the 

observation that the effective electron-phonon 

coupling parameter inelD  is expected to vary 

with the number of atoms in the molecule 

N as inel 1D N  [22].  This is understood by 

noting that the matrix element in Eq. (1) iiM  

should vary as 1 N  from the normalization of 

the atomic wavefunctions over a molecule 

with N  delocalized  -orbitals. The same 

reasoning is used in Ref. [22], which 

additionally verifies the relation with first 

principles calculations.  We separate out the 

N  dependence by letting inel 0,inelD D N , 

where 0,inelD  is independent of N .  Finally, 

we note that the broadening associated with the non-coherent processes (Eqs. (6) and (7)) 

depends on the correlation functions ,n pG , requiring an iterative self-consistent solution. Given 

the above assumptions, the Green’s function of the system can be found to any desired accuracy  

(the threshold we use for numerical convergence is a maximum change of 5 110  t   in the Green’s 

function between iterations).  

 

Results. 

We begin by considering an atomic junction consisting of three atoms in different 

geometrical configurations connected to two leads, as shown in Fig. 1. The energy dependence 

of the calculated transmission across the different atomic junctions for fully coherent transport 

( 0S  ) is shown in Fig. 2.  There are transmission anti-resonances for all the considered cases. 

This is purely a quantum interference effect due to the specific geometrical configuration 

considered.  Transmission anti-resonances occur when the phases acquired by electrons along 

different pathways of the molecule cancel each other leading to destructive interference.  Fig. 2 

illustrates that in addition to the usual “molecule-like” configuration in Fig. 1(a), where electrons 

Fig. 3. Thermopower as a function of the Fermi level 

for the three atomic junctions. The energy is 

normalized by the contacts bandwidth.  



would acquire different phases along the different pathways, a simple chain-like configuration 

(as in Fig. 1(b)) can also cause a suppression of the transport.  

 The thermopower is shown in Fig. 3 as a function of the Fermi level at room temperature. 

There is a strong enhancement in the thermopower when the Fermi level is tuned across a 

transmission node. Since the integrands of the 

quantities jI  in Eq. (3) contain the thermal 

averaging factor f E  , the thermopower 

has maxima when this factor is centered near 

the transmission minima. The absolute value 

of the maximum thermopower has similar 

values for all of the configurations considered.  

This is consistent with the analysis of Ref. [6], 

which shows that the maximum thermopower 

maxS  is temperature independent and 

insensitive to model details near an anti-

resonance, and that maxS  takes the simple form 

max B 3S k e . Quite generally, a large 

thermopower follows from a strong energy 

dependence of the transmission function near 

the Fermi level, and in this sense there is no 

qualitative difference between transmission 

resonances and anti-resonances.  

Next the effects of phase-breaking and dissipative processes on the thermoelectric 

transport are explored.  The energy dependence of the transmission calculated for configuration 

(a) in Fig. 1 is shown in Fig. 4 with elastic or inelastic scattering processes taken into account. 

The case of coherent transport is also shown 

in Fig. 4 for reference. With inelastic 

scattering, there is a decrease in the 

transmission at the energy value 

corresponding to the phonon energy 0 . 

When elastic carrier scattering is included the 

transmission nodes are lifted and the 

transmission zeros become finite values (see 

inset of Fig. 4).  As more carrier scattering is 

present, the values of the transmission minima 

become larger.  Both elastic and inelastic 

scattering have a similar effect of reducing the 

effect of destructive quantum interference.   

We discuss the physical picture behind this 

below. 

The thermopower in the presence of 

elastic/inelastic carrier scattering is shown in 

Fig. 5 as a function of the Fermi level.  The effect of non-coherent processes is to reduce the 

thermopower of the atomic junction. For large values of the deformation potential, the reduction 

Fig. 4. Energy dependence of the transmission function 

for different values of the elastic/inelastic scattering 

deformation potential. 

Fig. 5. Thermopower as a function of the Fermi level 

with the elastic/inelastic scattering processes taken into 

account. 



can be quite drastic. For example, a small shift in transmission corresponding to el 0.01D  eV
2
 

relative to the coherent case (see the inset of Fig. 4) reduces the thermopower by about 20 %. 

The evolution of the maximum value of the thermopower with the deformation potential 

is shown in Fig. 6(a) for all of the configurations considered in Fig. 1. When phase decoherence 

due to elastic scattering is present, the maximum thermoelectric performance decreases with 

increasing deformation potential regardless of the geometrical configuration.  The same 

qualitative behavior is observed when inelastic scattering processes are taken into account 

(shown for simplicity in Fig. 6(a) for case (a) 

only). This shows that both elastic and 

inelastic processes suppress the transmission 

nodes in a similar fashion. At larger elD  the 

maximum thermopower saturates and 

becomes less sensitive to the carrier 

scattering.  

To develop an intuitive picture of 

how phase-breaking scattering affects 

transport near anti-resonance conditions, it is 

instructive to consider the simplest system 

which exhibits complete destructive 

interference in its transmission spectrum.  

Such a system is depicted in the inset of Fig. 

(6b).  In the absence of phase breaking 

scattering, there is complete destructive 

interference when the phase acquired by the 

electron in going up and back down the chain 

cancels that of the incoming electron.  This 

cancellation occurs for wave vectors *k  that 

satisfy  exp 2 1ik N   ; accordingly, anti-

resonances in the transmission occur at 

energies 2 cosE t k  .   

We can understand the effects of 

phase breaking scattering by performing an 

expansion of the transmission coefficient at 

the 0E   resonance (present in chains with 

an even number of atoms N ) to lowest order 

in elD .  We omit details of this expansion, and show the final result:  
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.         (8) 

This expression can be intuitively understood by recognizing the broadening S  in Eq. (5) as a 

spread in an electron’s energy E  (see Eq. (6)).  This leads in turn to a spread in its wave vector 

k , with the relation  
1

2 sink t k E


    (since we focus here on 0E  , we have 

Fig. 6. The maximum thermopower as a function of the 

scattering deformation potential for (a) the different 

geometrical configurations in Fig. 1 and (b) the 

configuration in Fig. 1c with different number of 

atoms. 



2k E t  ). The smearing of k  results in a nonzero density at site (1) due to the suppression 

of exact phase cancellation.  This  density is given by: 

      
2

2
0 1 exp 2 2 1 cos 2

N E
n iN k iN k

t

 
        

,   (9) 

where in the last approximate expression, we assume N k <<1 .  Since we assume the elastic 

scattering elD  is confined to the molecular region, the energy scale is t , and from Eq. (6), the 

relevant energy broadening is  el

t
E D A E

t
 


.  Importantly,  A E contains off-diagonal terms, 

so that electrons lose phase information during a hopping process.  We find this leads to an 

additional spread in phase that scales with N  

(or the number of hops present in the 

interfering paths) so that, effectively 

E N  .  In addition, weaker molecule-lead 

coupling results in a more strongly peaked 

spectral function near the energies of the 

isolated molecule, so that   20A E t t  .  

Hence the effective energy broadening is 
2

el

3

t ND
E

t
 


.  Plugging this E  into Eq. (9) 

leads to directly to Eq. (8).  As discussed in 

Refs. [21,23], the sensitivity of phase 

coherent effects on the molecule-lead 

coupling parameter t   can also be understood 

in terms of time scales:  t  represents the 

lifetime of a state on the molecule, and as this 

becomes greater, the opportunity for phase-

breaking scattering events increases. 

This formula illustrates the strong dependence of the transmission on N  and t : bigger 

molecules that are more weakly coupled to the leads have a much higher transmission at the anti-

resonance energy.  This results in a reduced thermopower for such molecules, due to phase-

breaking scattering.  This analysis is verified by the numerics: Fig. 6(b) illustrates the sharper 

decrease of thermopower due to scattering as the number of atoms in the system increases.  

Finally, we can rewrite Eq. (8) to include the expected dependence of the electron-phonon 

coupling parameter elD  on the number of atoms in the molecule N :  el 0,el 1D D N   (see 

discussion at the end of Section 2):   
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As described in Ref. [6], an analytic expression for the thermopower near an anti-

resonance can be established by assuming the transmission to be of the form 

   
2

0T E E E    , where 0E  is the location of the anti-resonance, and   is a background 

term.  We identify this background term with the phase-breaking transmission coefficient.  For 

Fig. 7. Transmission at E=0 as a function of the 

scattering deformation potential for a smaller (1,3-

benzenedithiol) and larger (18-annulene) molecule. 



the particular case analyzed above, this leads to an expression of the maximum thermopower 

maxS  in terms of molecular parameters: 
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where   is depends on the details of the transmission spectrum near the anti-resonance.  

Although the above applies to the chain-like model shown in Fig. 6(b), we expect that different 

configurations will follow the same general dependencies on parameters N and t . 

 To illustrate that these general considerations apply to more realistic scatterers, we again 

focus on the 0E   node in the transmission for a smaller (1,3-benzenedithiol) and larger (18-

annulene) molecule. Fig. 7 shows the transmission at the 0E   node.  As in previous cases, we 

find a 2

el( 0)T E D   dependence, and a larger transmission for the larger molecule, as expected 

from the above considerations.  We note however that the increase with molecule size is not as 

steep as predicted with the analytic treatment of the finite chain. 

 The above analysis shows that the effects of phase-breaking scattering can be mitigated 

by using small molecules which are not weakly coupled to the leads.  However, in the absence of 

phase-breaking scattering, the thermopower is maximized for the opposite conditions: weak 

molecule-lead coupling leads to a transmission which is sharply energy-dependent near a 

transmission node - advantageous for high thermopower values.  Moreover previous work has 

shown that small molecules exhibit conductance through  -tunneling, which suppresses the 

thermopower enhancement due to quantum interference [24].  Hence the factors that lead to high 

thermopower in the absence of phase-breaking scattering are the very same that make the 

enhancement vulnerable to phase-breaking scattering.  In order to balance these opposing 

considerations, the ideal molecule for observing thermopower enhancement from quantum 

interference should therefore be intermediate in size and molecule-lead coupling.   

To summarize, the thermoelectric transport properties across atomic junctions are 

calculated using the Landauer formalism and the non-equilibrium Green function technique. The 

atomic junctions are described with a simple toy model capable of showing the characteristics of 

quantum interference. It is found that the thermopower is strongly enhanced near transmission 

anti-resonances due to quantum interference. However, the predicted thermopower enhancement 

is reduced by the presence of coherence breaking processes.  Our analysis shows that this 

reduction is more severe for larger molecules that are weakly coupled to the leads.  This 

indicates the need for the careful choice of molecule and geometry to observe thermopower 

enhancement from quantum interference effects. 
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