NISTIR 5766

SOLID PROPELLANT GAS GENERATORS: PROCEEDINGS OF THE 1995 WORKSHOP

Jiann C. Yang and William L. Grosshandler, Editors

November 1995 Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director

DISCLAIMER

The views, comments, suggestions, and recommendations expressed at the workshop and reported in these proceedings are those of the participants and the editors and do not necessarily reflect those of the National Institute of Standards and Technology, which is under no obligation to execute the recommended actions. In addition, certain commercial equipment, instruments, or materials that have been identified in this document are included in order to specify experimental procedures adequately, or to demonstrate a type of equipment. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

CONTENTS

Page

Disclaimer	····· i	ii
Acknowlegmer	ıtsi	v
Abstract	•••••••••••••••••••••••••••••••••••••••	v
Introduction .		1
Discussion and	Conclusions	2
Recommendation	ons	3
Appendix A	Comments/Suggestions for Future Gas Generator Related R & D from Workshop Participants	5
Appendix B	Solid Propellant Gas Generators: An Overview and Their Application to Fire Suppression	5
Appendix C	List of Participants	3
Appendix D	Meeting Agenda	2
Appendix E	Workshop Presentations 25 Introductory Remarks, Jiann C. Yang 26 Fundamentals of Solid Propellant Combustion, Kenneth K. Kuo 32 Fire Extinguishing Pyrotechnics, James Hoover et al. 75 Modeling and Experimental Validation of Pyrotechnic Gas Generators, 75	5 2
	Herman Krier and P. Barry Butler 89 Aspects of Flame Suppression, Anthony Hamins 123 Species Concentration Measurements, Williamm M. Pitts 147 Oxygen Concentration Measurements using Diode Lasers, David Bomse 173 USAF SPGG Advanced Development Program, Mark Gillespie 183 Inert Gas Generators Used for Fire Protection Aboard Navy Aircraft, 183	3 7 3 3
	Marco Tedeschi 190 Navy Qualification of Solid Propellant Gas Generators for Aircraft Fire Suppression, Philip Renn 198 Explosion Suppression for Industrial Applications, Francesco Tamanini 208	3

ACKNOWLEDGMENTS

The editors would like to express their sincere gratitude to all the speakers (in alphabetical order) whose presentations and participation have made this workshop a successful event: Dr. David Bomse (Southwest Sciences, Inc.), Professor Barry Butler (University of Iowa), Lt. Mark Gillespie (U.S. Air Force Wright Laboratory), Dr. Anthony Hamins (BFRL/NIST), Dr. James Hoover (NAWC, China Lake), Professor Herman Krier (University of Illinois), Professor Kenneth K. Kuo (Pennsylvania State University), Dr. William Pitts (BFRL/NIST), Mr. Philip Renn (NSWC, Indian Head), Dr. Francesco Tamanini (Factory Mutual Research Corporation), and Mr. Marco Tedeschi (NAWC, Lakehurst). The editors would also like to thank Ms. Paula Garrett for her relentless effort in organizing this workshop, Dr. Jack Snell, Fire Program Manager of BFRL/NIST, for the official welcome, despite his busy schedule, Dr. Richard G. Gann, Chief, Fire Science Division, for providing advice in organizing and conducting the workshop, their fellow NIST colleagues, and all the workshop participants. The useful comments and suggestions provided by many participants were also greatly appreciated.

ABSTRACT

A workshop on solid propellant gas generators was held on June 28-29, 1995 at the National Institute of Standards and Technology under the sponsorship of the Building and Fire Research Laboratory. Gas generator technology was first proposed as an alternative to halon 1301 (CF₃Br) for inflight fire protection. Because the technology is still in a developing stage as a fire suppression method, there is no standard test apparatus for evaluating the performance of gas generators, and there remain many unanswered technical questions for the potential users. The specific objectives of the workshop were (1) to identify certification procedures, (2) to determine which critical parameters were required to characterize the performance of a gas generator, (3) to develop a standard test method for gas generator evaluation. (4) to identify other potential applications, and (5) to search for next generation of propellants. The participants at the workshop included representatives from aircraft and airframe manufacturing industries, airbag and propellant manufacturers, fire fighting equipment companies, military services, government agencies, and universities. The agenda of the workshop encompassed eleven presentations on various topics relevant to the applications of gas generators as a fire fighting tool, followed by several discussion sessions. Various important issues related to the achievement of the objectives set forth were addressed, and recommendations regarding what role NIST should play in this new technology were suggested.

1995 WORKSHOP ON SOLID PROPELLANT GAS GENERATORS

INTRODUCTION

The rapid phase-out of halon 1301 fire protection systems has accelerated the search for other potential technologies as alternate means to suppress fires. Solid propellant gas generators (also known as fire extinguishing pyrotechnics or flame suppressing gas generators), a spin-off from airbag technologies, have recently been demonstrated to suppress certain types of fires, particularly aircraft engine nacelle and dry bay fires. This document summarizes a workshop on solid propellant gas generators held at the National Institute of Standards and Technology (NIST) on June 28-29, 1995 under the auspices of the Building and Fire Research Laboratory.

The intent of the workshop was to bring together gas generator manufacturers, researchers, and potential users to discuss various critical issues related to the evaluation and performance of the gas generators as a fire fighting tool and the search for new propellants. Although standard test apparatus for evaluating the performance of airbags exist, no such equivalence is currently available for evaluating fire suppression performance of gas generators due to the infancy of this technology. The specific objectives of the workshop, which reflected the need for such an apparatus, were:

- identification of certification procedure(s) for gas generators in fire suppression applications,
- determination of critical parameters for evaluating the fire suppression efficiency of various gas generators,
- development of a standard methodology to facilitate testing of gas generators,
- identification of possible applications other than protection of engine nacelles and dry bays,
- identification of a new generation of propellants.

However, the emphasis was placed on the performance and evaluation aspects because it was not possible to discuss the search for new propellants in such a format that certain proprietary propellant ingredients would not be disclosed and that the manufacturers' and researchers' patent-pending rights of the new propellants could be protected.

The workshop participants included propellant and airbag manufacturers, airframe and aircraft manufacturers, military services personnel, researchers from academia, industries, and government laboratories, and potential users.

The agenda of the workshop encompassed presentations on various topics ranging from combustion of solid propellants to flame extinction mechanisms, followed by several discussion sessions. The meeting agenda is listed in **Appendix D** and is briefly summarized as follows. For those who are not familiar with the gas generator technology, **Appendix B**, which is an extended abstract presented by the editors at the 1995 International Conference on Fire Research and Engineering, can serve as an introduction to the subject.

The meeting started with an official welcome by Dr. Jack Snell who is the Deputy Director and Fire Program Manager of the Building and Fire Research Laboratory (BFRL) at NIST. Then, Dr. Jiann C. Yang of BFRL/NIST gave a brief overview on the current gas generator technologies for fire suppression. Professor Kenneth K. Kuo of Pennsylvania State University delivered a tutorial on fundamentals of solid propellant combustion. Dr. James Hoover of the Naval Air Warfare Center at China Lake discussed the Navy's in-house research program on fire extinguishing pyrotechnics and the full-scale engine nacelle and dry bay test facilities. Professors Herman Krier of University of Illinois and

Barry Butler of University of Iowa presented their research work on modeling of a generic airbag. Dr. Anthony Hamins of BFRL/NIST discussed various aspects of flame suppression. Dr. William Pitts of BFRL/NIST and Dr. David Bomse of Southwest Sciences, Inc., discussed various species measurement techniques. Lt. Mark Gillespie of the U.S. Air Force Wright Laboratory and Mr. Marco Tedeschi of Naval Air Warfare Center at Lakehurst briefed the audience on the current Air Force and Navy gas generator programs. Mr. Philip Renn of the Naval Surface Warfare Center at Indian Head discussed various gas generator qualification programs. Finally, Dr. Francesco Tamanini of Factory Mutual Research Corporation presented his view on the potential application of gas generator technology to industrial explosion suppression. Copies of their presentations are included in **Appendix E**. Some pages, although presented at the workshop, were intentionally left blank by the speakers when they submitted their copies to the editors due to the preliminary, sensitive, and proprietary nature of the data. These pages were not included in this Appendix.

DISCUSSION AND CONCLUSIONS

There were several discussion sessions at the workshop. The sessions were arranged in such a way that various important issues related to the application of this technology could be addressed. Other useful comments, suggestions, and feed-back from the participants are included in Appendix A.

It was not apparent from this workshop that other potential applications, except engine nacelles dry bays, and army vehicles, had been identified because potential end-users among the participants were not broadly represented. For example, representatives from the power utility and telecommunication industries were not present in the workshop. Their absence, however, did not reflect their lack of interest in this technology, but rather it was merely the scheduling and the timing of the workshop that precluded them from attending. It is conceivable that gas generators can be used in a manner similar to a streaming agent for suppressing fires locally or in locations that are difficult to access. Unless sufficient leakage or ventilation is present, total flooding or inerting of an unoccupied space using gas generators may not be feasible because of over-pressurization. In addition, it is also unlikely that gas generators will be used for total flooding in inhabited areas because of complication of possible asphyxiation by inert gases.

Several conceptual designs of test fixtures for evaluating gas generators in fire protection applications were proposed. Since the gas generator technology has its genesis from airbag technologies, some of the proposed test fixtures bore resemblance to those used in the evaluation of airbags. The two apparatus that were discussed the most in the session were several versions of a modified discharge tank and a small-scale wind tunnel. The discharge tank is routinely used in the industry to evaluate the performance of airbags, and the small-scale wind tunnel in which a pool fire is placed behind a bluff body has been used for screening various halon alternatives. The small-scale wind tunnel set-up mimicked a simulated engine nacelle. The schematics of the proposed test fixtures can be found in **Appendix A**.

Because a majority of the participants were from the airframe and aircraft industries and gas generator technology was first proposed as a halon alternative to be used for in-flight aircraft engine and dry bay fire protection, the discussion at the workshop was heavily concentrated on the technical problems that were facing these two applications although similar problems could be encountered when exploring other potential applications of the gas generators. One discussion session was directed to the area of measurements for the purpose of gas generator performance evaluation and certification. Since the effluent product gases depend strongly upon the type of propellant used, it is not feasible and economical to measure the product gases for any arbitrary propellant using various types of instruments. There was consensus among the participants that monitoring of oxygen concentration was probably the most appropriate way to assess the performance of a gas generator used in a dry bay or engine nacelle. In this way, the dependence of effluent product gases on propellant is eliminated (assuming the gases generated are inert). The issue of response time of the measurement technique was also a subject of lengthy discussion. The requirement of 1 ms or less response time for dry bay applications has presented some technical challenges to the researchers. In addition to oxygen concentration measurement, several other parameters were suggested as useful indicators in the evaluation of gas generators, including: pressure, shock, velocity, and temperature.

It was clear that some of the current airbag models could be modified to evaluate gas generator performance. The incorporation of computation fluid dynamics models into the airbag models to study the interaction of exhaust gases from the generator with the geometry of a protected space was suggested.

There was general agreement among the participants that there is an urgent need to develop a certification procedure before gas generators could be considered as a replacement for halon 1301 in engine nacelle and dry bay applications. The lack of a certification process may hinder the deployment of this technology in a timely manner despite many successful full-scale engine nacelle and dry bay fire tests. Still, how to certify a gas generator had not become apparent at the conclusion of the workshop. The major stumbling block appeared to be the identification of certain critical parameters that were required to assess the fire suppression efficiency of an arbitrary gas generator. Such parameters should play important roles in the flame suppression mechanisms. Oxygen concentration emerged as a critical parameter from the discussion. However, detailed flame suppression studies have to be conducted before the role of oxygen in the certification process can be identified.

The lack of a standard laboratory-scale test apparatus for evaluating and screening the fire suppression efficiency of various gas generators may also slow down the advancement of this technology. A test fixture, whose functions and usefulness will be at least similar to that of a standard cup burner used for halon alternative screening studies, needs be developed. The apparatus, in principle, should be relatively simple but at the same time allow enough important information (oxygen concentration, temperature, pressure, *etc.*) to be obtained so that our understanding of the suppression actions of gas generators can be enhanced.

Judging from the responses from the participants during the discussion sessions and their subsquent feed-back, the objectives of the workshop set forth were met with varying degrees of success.

RECOMMENDATIONS

In light of the discussion at the workshop and the current status of gas generator technology for fire suppression, the following recommendations were made.

- A standard test fixture for evaluating fire suppression efficiency of gas generators should be developed. NIST is capable of supporting these efforts.
- The identification of a new class of next generation propellants (*e.g.*, cool and high nitrogen content in the effluent) and the characterization of thermophysical properties of propellants should remain the realm of propellant manufacturers and researchers because of their expertise in this field.
- Certification processes should be developed because they are critical to the advancement of the technology. The development may require extensive cooperation among various parties and many strategy sessions as more full-scale test results become available. NIST can act as a coordinator in such an effort, and if deemed necessary, NIST will sponsor workshops to address the certification issues.
- In view of its involvement in fire modeling and computational fluid dynamics, NIST should play an active role in the modeling effort to study gas generator performance.

• The push for the gas generator technology to other areas of applications requires the promotion of public awareness of such technology, and in this regard, NIST should be in a favorable position to play such role to identify other potential users because of its constant communication and interaction with the fire protection community.

APPENDIX A

Comments/Suggestions for Future Gas Generator Related R & D from Workshop Participants

(In alphabetical order) Mr. Glenn Harper, McDonnell Douglas

<u>General</u>: The following suggestions/comments for future Gas Generator fire fighting R & D have been prepared as a result of the USN and NIST sponsored workshops at NIST in June 1995. The primary requirements appear to be: understanding the extinguishing mechanisms, defining the concentration/distribution vs. time, simplified modeling to gain insight into concentration/distribution, verification of the applicability of small scale lab tests, additional applications, prioritization/allocation of R & D funds, and adequate interaction of the various interested parties. There appear to be two primary goals: understanding the process, and developing reasonably accurate engineering prediction tools for each technology in order to select the optimum technologies for deployment.

(1) <u>Gas Generator Combustion</u>: There was much discussion regarding the need for detailed research into the combustion process inside the generator. Although there is always more to learn about this process, much more is known about this subject than about hot inert gas distribution or the extinguishing mechanism. Future R & D should concentrate on the issues least understood because those are the areas of greatest risk.

(2) <u>Extinguishing Mechanism</u>: The F/A-18 E/F Engine Bay fire extinguishing tests at China Lake in 1994, though successful, are not fully understood. The first priority for future Gas Generator R & D should be to better understand the fire extinguishing phenomenon for those series of tests and also for the Dry Bay tests. To this end I suggest the following for all future Engine Bay testing until the process is well understood:

(a) Continue to push for the 100 ms response concentration sensor ASAP, for the 1995 V-22 tests if possible. If the local concentration of inert gases in the area of the fire are well below the minimum inerting concentrations, then the mechanism is not inerting and other measurements must be made to determine how the fire is extinguished. I would even accept slower response if that was all that was available. (This conclusion presumes that the 100 ms response time is adequate, which may be a false assumption.)

(b) Insure good time correlation between the video coverage and the extinguishing sequence.

(c) If possible, install high response instrumentation in the area of the fire to record pressures, temperature, velocity, flow direction, etc. Enough instrumentation to determine the extinguishing mechanism(s) should be installed if at all possible.

(d) If possible, instrument to sense a shock in the area of the fire.

(3) <u>Concentration Sensor</u>: O_2 sensing, over a broad range of concentrations, is preferred since the same device could then be used for any agent or generator; however, if sensing O_2 is much less sensitive, takes much longer to develop, or cost much more, it might be preferable to sense some other gases, especially for the near term testing. The 100 ms response seems fast enough to learn a lot about distribution in the next test series, especially since it is the only system currently available. Faster might be better but if

it is too late it is of no value. A study to really determine the required response time assuming both inerting and mechanical extinguishing might be valuable since current estimates seem to be based more on experience than analysis. We may need the 1 ms system for Dry Bay ballistic testing and even that may not be adequate.

(4) <u>Modeling</u>: There appears to be a real need for appropriate modeling to better understand the distribution process, to resolve the wide variation in test results between test site, and the ability to make reasonably accurate engineering predictions for sizing and trade studies. A simplified model that allows one to look at the general trends and provides ROM values is much more valuable now than a detailed CFD model that provides high accuracy but takes several man years to develop. A simplified model based on first order effects to address mixing, cooling, buoyancy, ventilation, transport time, etc. would be very helpful in all future Engine Bay testing, this fall if possible. (I would like to see the results of NIST modeling for Mr. Mike Bennett when they become available.) Perhaps a more complex CFD model could be developed to provide insight as a research tool, but if it takes as much time as Dr. Krier indicated it will be of little or no help to the industry. This is another area where the appropriate balance of resources is required. We must have some modeling, but determining the appropriate levels of expenditure, accuracy, and detail is the challenge.

(5) <u>Small Scale Tests</u>: The discussion of the Turbulent Spray Burner and the Turbulent Pool Burner (I believe Dr. Hamins used different names.) test results were interesting. I think working with Mike Bennett and NAVAIR to verify the applicability of these test approaches for evaluating both chemical agents and, if possible, adapting them to Gas Generators would be helpful in quickly developing and evaluating new propellants. In reality, most Engine Bay fires are a combination of both spray and pool fires and combining the results of both tests may provide the best correlation with full scale tests.

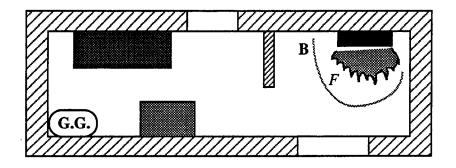
(6) <u>Other Applications</u>: There are likely to be applications for Gas Generators for fuel tank protection and perhaps for weapons bay protection, although one should check with the U.S. Army first to see the results of their ammunition bay testing.

(7) <u>Broad Interaction</u>: I encourage NIST to insure that the research/academic organizations involved in NIST out year programs have a mechanism in place to insure adequate interaction with the airframe, engine, fire extinguishing, government pyrotechnic, and Survivability & Vulnerability (S & V) communities to insure their R & D activities can be applied to our specific areas of concern in a timely manner with appropriate limits on the levels of complexity, effort, and accuracy.

(8) <u>Prioritization</u>: I encourage NIST to resist spending a disproportionate amount of NIST limited resources in detailed research on things already fairly well understood (Combustion inside the Generator for example.) as opposed to gaining insight into those areas about which little is known (Extinguishing mechanism or distribution of effluent gases thorough the bay for example.). it is better to obtain the first 50 % knowledge in an unknown area than the last 5 % knowledge in an area already fairly well explored.

(9) <u>Other Issues</u>: The impact of discharging Gas Generators into Engine Bays containing engines worth \$3 to \$ 10 mil. must continue to be considered. Clean-up, corrosion (especially in salt atmosphere, landing after post-shutdown cold soak, etc.), the "Blast Effect" on maintenance crews if accidental discharged, toxicity all need to be considered. Testing over broad range of temperatures, vibration/shock, etc. is also required since the combustion characteristics of all propellants are temperature dependent, some more than others, and there is some risk of "cracked grains" due to shock, temperature cycling, vibration, etc. which may result in severe over pressure when ignited.

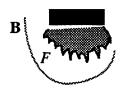
Dr. J.M. Heimerl, Army Research Laboratory


A Method to Attack Practical Extinguishment Problems

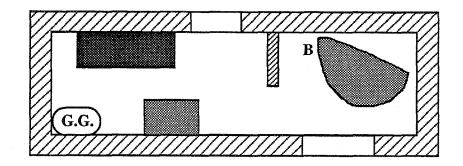
The flow diagram of Dr. Bill Grosshandler and the "living room" fire schematic of Prof. Herman Krier suggested the methodology to be discussed below.

Bill Grosshandler suggested that the overall problem could be broken down into a series of events such as:

Gas Generator \Rightarrow spatial & temporal flow \Rightarrow fire extinguishment.


Herman Krier presented a "living room" fire as an example of the complexities of a real life fire scenario.

The fire, F, is to be put out by the gas generator **GG**. There is some complex flow path that the extinguishing gases must take to reach the fire.


The proposed methodology isolates the fire from the rest of the environment and divides the original problem into two parts.

(1) Isolate the fire by inscribing a boundary, **B**.

Determine what values (or range of values) of critical parameters must be present at **B** to extinguish the fire. The parameters might include: temperature, pressure, species concentration (*e.g.*, diluent or "superagent"), and flow velocity. The extinguishing properties could be determined from experiment, modeling, or previous experience.

(2) Then, other flow codes (or perhaps, even experiments) could be used to determine the values of the parameters at the boundary, \mathbf{B} ,

and answer:

(1) whether the given, fixed GG could extinguish the flame, F (this answer relates to drop-in replacement for a current halogen extinguisher); or

(2) what arrangement of GG (*i.e.*, type of solid propellant, amount per container, number of containers, their locations) would extinguish F; or

(3) what is the best arrangement (e.g., with cost, time or total amount of propellant as constraints) to extinguish F.

The advantages of this methodology are:

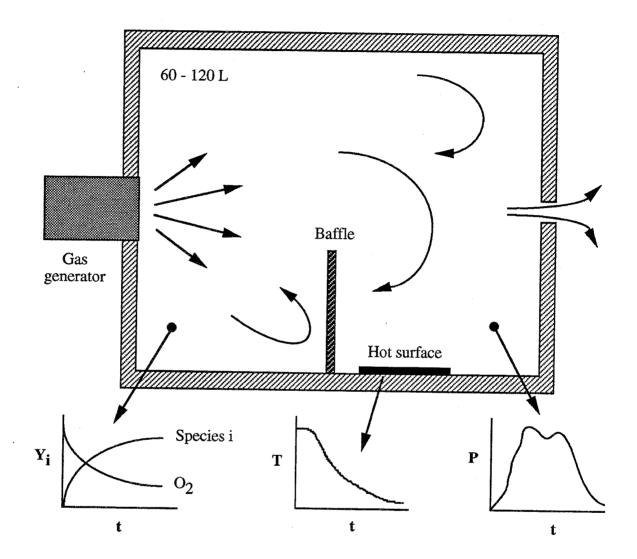
(1) it separates the system and its fire from the environment that contains the gas generator. To handle them together, either experimentally or in a code, can be a complex, expensive undertaking.

(2) it allows the user (of the system to be protected) to define the problem in a way that allows a relatively rapid solution. Detailed specifications of the system need not be present in codes (or experiments) employed to determine solution.

(3) even if the fire is so large or so hot that it strongly couples with and severely affects the flow contours in the surrounding environment, the methodology might still be useful if one were to include in the model a "black box" heat source bounded by \mathbf{B} .

One might think that a possible disadvantage of this methodology is the requirement the values of the critical parameters at **B** must be known. This may prove to be difficult in practice. However, one would have to know this information (or its equivalent) to determine whether **GG** is solution.

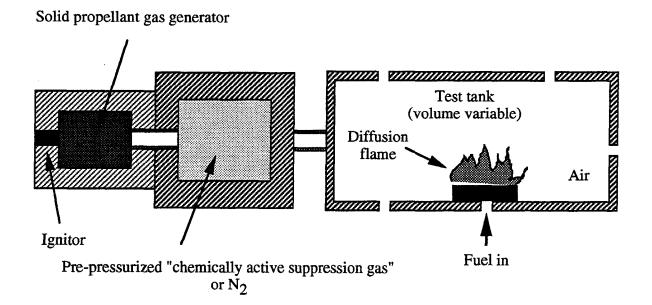
Prof. Herman Krier, University of Illinois, Urbana-Champaign Prof. Barry Butler, University of Iowa

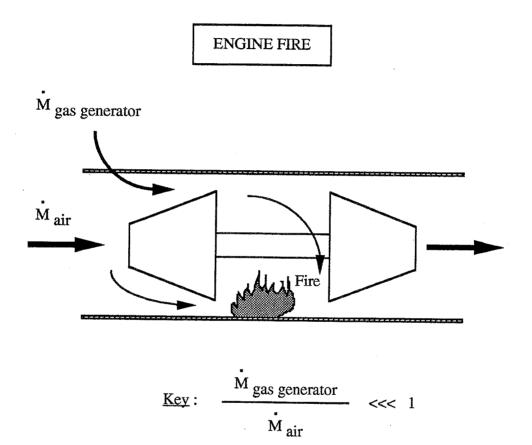

Key Concepts for Modeling Strategies

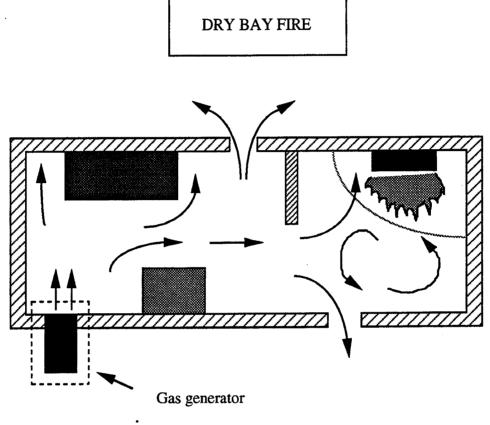
• Solid Propellant Gas Generator models exist, have been validated, and can be applied to "new" systems.

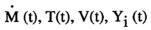
Input	Output
 Propellant information Hardware parameters Combustion behavior 	 * Mass flow (t) * Velocity (t) * Temperature (t) * Species concentration (t)
•	•
etc.	etc.

- Fires to be extinguished are flow specific (*i.e.*, wide variety of different flow conditions).
 - * Geometry (engine nacelles vs. dry bays vs. others)
 - * In-flow/out-flow
 - * Chemistry of flame (Damköhler number)
 - ٠
 - •
 - etc.
- The first is input to the second (gas generator output is choked flow).
- CFD codes for chemically reacting, high turbulence flow exist and are routinely used.
- Based on combustion fundamentals, criteria for extinguishment must be specified.
- Solve the 2-D, unsteady, chemically reacting flow specific to each "problem".
 - * Cold flow
 - * Hot flow


Modified Tank Test




- Small scale
- Fundamental understanding Yes Product development Yes
- Certification No
- Inexpensive Yes Repeatable Yes


A Potential Test Fixture

.

Prof. Kenneth K. Kuo, Pennsylvania State University

Fundamental Data Required

- Characterization of gas generator propellant burning behavior including:
 - Steady-state burning rate and product concentration
 - * $r_b = r_b (P,T_i)$
 - * Burning surface temperature, $T_s = T_s (P,T_i)$
 - * Temperature sensitivity, $\sigma_p = \sigma_p (P)$
 - * Combustion product concentration
 - Transient burning behavior

*

- * The effect of chamber pressure variations on burning rate
 - Characterization of pertinent combustion instability parameters such as $(\partial T_s/\partial T_i)_P$, acoustic admittance, etc.

Contributions from Participants in the Discussion Session moderated by Dr. William M. Pitts, NIST

Parameters of interest

- Shock measurements
- Velocity
- Pressure
- Concentration
- Temperature
- Flow visualization
- Radicals
- Flame/flow interaction
- Thermal cooling

APPENDIX B

Solid Propellant Gas Generators: An Overview and Their Application to Fire Suppression¹

Jiann C. Yang and William L. Grosshandler

Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 20899 U.S.A.

ABSTRACT

A solid propellant gas generator is essentially an airbag inflator without a bag. That is, the gas generated is discharged directly into ambience rather than into a bag. A typical solid propellant gas generator consists of solid propellant tablets which will, upon ignition, rapidly react to generate gas-phase combustion products and particulates, an ignitor to initiate the combustion of the propellant, a filter system to prevent or minimize the release of the particulates from the combustion reactions into the ambience, a heat transfer mechanism (normally the filter itself) to cool the high temperature combustion gas before being discharged into the ambience, and an exhaust mechanism to disperse the gas efficiently. In this article, an overview of the current status on solid propellant gas generators will be discussed, and potential areas for future research will be suggested.

The solid propellant used in an airbag inflator typically contains sodium azide (NaN₃), iron oxide (Fe₂O₃), and small amount of other proprietary additives. The principle gas-phase product as the result of the combustion of the NaN₃/Fe₂O₃ propellant is nitrogen, and the resulting temperature is in the neighborhood of 1300 K. Solid species such as sodium oxide (Na₂O) and ferrous oxide (FeO) are also generated during the combustion process. Since the product gas is mainly nitrogen, the extension of airbag inflator technologies to suppress fires is ideal and logical. The suppression action of a solid propellant gas generator is believed to be due mainly to the effects of oxygen displacement (dilution) by nitrogen and gas discharge dynamics (flame stretch). To a lesser extent, a thermal effect also plays a role. However, the actual extinguishment mechanism(s) are not precisely known. It is possible that the extinguishment mechanism depends on the distance between the gas generator and the fire. If the location of the gas generator is very close to the fire, the extinguishment mechanism is likely to be attributable to blowing out the fire by the exhaust from the gas generator.

There are basically two types of airbag inflator systems: (1) the conventional and (2) the pre-pressurized or gas-assisted. In a conventional system, the gas that is used to inflate the bag depends entirely on the combustion gas generated by the solid propellant. However, in a pre-pressurized or gas-assisted system, the high temperature gas as a result of the combustion of the propellant is first mixed with a pre-pressurized inert gas at ambient temperature before being discharged into a bag. Similarly, one can also conveniently classify solid propellant gas generators into two categories, depending upon their functions: (1) conventional and (2) hybrid. When a gas generator is used alone for fire suppression, it is termed

¹presented at the 1995 International Conference on Fire Research & Engineering, September 10-15, Orlando, Florida

"conventional." When it is used together with other liquid or powdered fire suppressing agents, it is termed "hybrid." In a hybrid system, the gas generator normally is used as a means to provide sufficient pressurization so that the expulsion of liquid or powdered agent from a storage vessel can be facilitated.

A typical sequence of events that occurs during gas generation for fire suppression using solid propellants can be described as follows. Upon detection of a fire, the ignitor located in the combustion chamber of the solid propellant gas generator is activated. The ignitor, which contains a small amount of pyrotechnic materials (*e.g.*, Zr/KClO₄), immediately releases high temperature gas and hot particulates *via* thermally initiated, exothermic chemical reactions of the pyrotechnic materials. The resulting temperature and pressure rises then initiate the solid propellant reactions near the ignitor, and a deflagration front rapidly propagates throughout the solid propellant bed. Very frequently, booster propellants, ignited by the ignitor, are used to facilitate the combustion of the main solid propellants. The high temperature and high pressure combustion gases, together with the condensed-phase products, then exit the combustion chamber through a filter before discharging into the ambience.

The attractiveness of using solid propellant gas generators in fire suppression applications lies in the fact that the system, when used alone, is considered to have no ozone depletion and global warming potential, and is physically very compact. Being a derivative from the airbag inflator technologies, there are voluminous research materials available in the literature. Another advantage is that since gases are generated *via* solid propellant reactions, the system can, in principle, be tailored to function over a period of few milliseconds (*e.g.*, for aircraft dry bay fire protection) to few seconds (*e.g.*, for aircraft engine nacelle applications) by manipulating the parameters that control the combustion mechanisms. In addition, the gas generators have very extended storage and service life. However, the toxicity of some of the by-products can not be ignored.

A review of previous research literature on airbag inflator technologies has suggested, through parallelism, the following areas for future research on solid propellant gas generators: (1) continuing search for better solid propellants, (2) better understanding of the suppression mechanism(s) of the product gases, (3) modeling and simulation of the thermochemistry and gas discharge dynamics, and (4) hardware optimization.

Sodium azide, which is used in the preparation of herbicides and in various organic syntheses, is the current principal chemical used in solid propellants for gas generators. Because of its potential health hazards (*e.g.*, its potential to lower blood pressure), current research has been focused on the "non-azide based" propellants by the airbag manufacturers. The pertinent thermochemical and thermophysical properties to be considered for any new propellant should include (1) propellant thermochemistry (flame temperature and chemical composition of combustion products) and stoichiometry (moles of gas produced per mole of propellant burnt), (2) propellant ignitability and burning rates under various conditions, (3) toxicity of combustion products, (4) stability of propellent during storage and transport, and (5) propellant thermal properties. In addition, the grain size and shape of the propellant and how the propellant is packed in the gas generator also play important roles in the performance of the gas generator. The suppression mechanisms of the combustion gases are the least understood because of the complexity of the gas discharge dynamics and turbulence interaction of the suppressants with the fires. Current

practice for studying the suppression efficiency of the propellent, at least in the dry bay and engine nacelle applications, is to use trial and error to determine the amount of propellants required to put out a specific fire. A better understanding of the suppression mechanisms would therefore be needed in order to determine the required amount of propellants in a systematic way.

Current computer codes for simulating airbag inflator performance may be used with some modifications to evaluate the performance of gas generators. Note that existing computer codes address almost exclusively the simulation of internal performance of airbag inflators and that chemical equilibrium is assumed to determine the products of combustion and flame temperatures. Since the gas generation processes are extremely rapid and over in such a short duration, chemical equilibrium may not be reached, and simplified or detailed chemical kinetics should be considered in future code development. In addition, the interaction of the exhaust gas from the gas generator with the ambience has to be taken into account in the modified codes.

Current or future airbag inflator technologies can definitively benefit the hardware optimization of gas generators. Current active areas of research on airbag inflator hardware appear to be focused on the improvement of filter design and gas cooling system. For solid propellant gas generators, research should also be focused on how to disperse the gas effectively upon leaving the generator.

Presently, the gas generator technique has been proposed to be used in uninhabited areas because of the detrimental effects of oxygen depletion and nitrogen inerting on humans. Current interest has been focused on the application of the technique to aircraft dry bay and engine nacelle fires. Recently, tests performed at the Naval Air Warfare Center in China Lake, California and Wright Laboratory in Dayton, Ohio have demonstrated the feasibility of using solid propellant gas generators to suppress simulated aircraft dry bay fires. Other potential areas of application have also been suggested by the manufacturers. These include, to name a few, warehouse fire protection, industrial explosion prevention, and race car and shipboard engines.

APPENDIX C

List of Participants

John Barley Pacific Scientific Energy Dynamics Division Tel: (914) 795-2047 Fax: (914) 795-2955

Don Bein UTRS Tel: (609) 782-0633 Fax: (609) 782-0518

David Bomse Southwest Sciences Inc. Tel: (505) 984-1322 Fax: (505) 988-9230

Roger Bullard Northrop Grumman Tel: (310) 332-2895 Fax: (310) 331-5028

Barry Butler University of Iowa Tel: (319) 335-5672 Fax: (319) 335-5669

Thomas G. Cleary NIST/BFRL Tel: (301) 975-6858 Fax: (301) 975-4052

William Elliot Santa Barbara Research Center Tel: (805) 562-4257 Fax: (805) 685-8227 Frank Fendell TRW Tel: (310) 812-0327 Fax: (310) 812-7589

Lyle Galbraith Olin Aerospace Tel: (206) 882-5769 Fax: (206) 882-5804

Richard G. Gann BFRL/NIST Tel: (301) 975-6864 Fax: (301) 975-4052

Lt. Mark A. Gillespie Wright Laboratory WL/FIVS Tel: (513) 255-6052 Fax: (513) 255-2237

T.J. Glad Aerojet Tel: (916) 355-4174 Fax: (916) 355-2019

Robert Glaser Walter Kidde Aerospace Tel: (919) 237-7004 Fax: (919) 237-4717

William Grosshandler NIST/BFRL Tel: (301) 975-2310 Fax: (301) 975-4052 Glenn Harper McDonnell Douglas Tel: (314) 233-6459 Fax: (314) 232-4141

Joe Heimerl WTD/ARL Tel: (410) 278-6111 Fax: (410) 278-6150

Garry Higgon ICI Explosives Tel: 011-44-1294-487612 Fax: 011-44-1294-487370

Angela Hightwalker NIST Molecular Physics Division Tel: (301) 975-2155 Fax: (301) 975-3038

Steven Hodges Santa Barbara Research Center Tel: (805) 562-4749 Fax: (805) 685-8227

Gary Holland Olin Aerospace Tel: (206) 885-5000 Fax: (206) 882-5804

James Homan NAVAIR Tel: (703) 604-3400, x-8687 Fax: (703) 604-4483 James Hoover NAWC/WPNS Research & Technology Tel: (619) 939-1645 Fax: (619) 939-2597

Doug Ingerson FAA Technical Center Tel: (609) 485-4945 Fax: (609) 646-5229

Herman Krier University of Illinois, Urbana-Champaign Tel: (217) 333-0529 Fax: (217) 244-6907

Kenneth K. Kuo Pennsylvania State University Tel: (814) 863-6270 Fax: (814) 863-3203

Bill Leach NAWC, Lakehurst Tel: (908) 323-1184 Fax: (908) 323-1989

Robert Levine BFRL/NIST Tel: (301) 975-6671 Fax: (301) 975-4052

Brent Marchant Morton International Tel: (801) 625-9327 Fax: (801) 625-4949 K.C. McNesby ARL Tel: (410) 278-6163 Fax: (410) 278-6150

Mark Mitchell Walter Kidde Aerospace Tel: (919) 237-7004 Fax: (919) 237-4717

Vahid Motevalli George Washington University Tel: (202) 994-5953 Fax: (202) 994-0238

Phil Pecgino ARL Tel: (410) 278-8737 Fax: (410) 278-8736

William M. Pitts NIST/BFRL Tel: (301) 975-6486 Fax: (301) 975-4052

Steven Pripps Morton International Tel: (801) 625-9468 Fax: (801) 625-4949

Philip Renn NSWC, Indian Head Tel: (301) 743-4447 Fax: (301) 743-4881 Bill Richardson Morton International Tel: (801) 625-8222 Fax: (801) 625-4949

Tim Riffel NSWC, Indian Head Tel: (301) 743-4829 Fax: (301) 743-4881

Greg Roberts Northrop Grumman Tel: (310) 332-2791 Fax: (310) 331-1051

Bill Seeglitz Pacific Scientific Energy Dynamics Division Tel: (520) 796-1100 Fax: (520) 796-2023

Terry Simpson Walter Kidde Aerospace Tel: (919) 237-7004 Fax: (919) 237-4717

Jack Snell NIST/BFRL Tel: (301) 975-6850 Fax: (301) 975-4032

Rick Suenram NIST Molecular Physics Division Tel: (301) 975-2165 Fax: (301) 975-3038 Francesco Tamanini Factory Mutual Research Corporation Tel: (617) 255-4930 Fax: (617) 255-4024

Gordon Taylor ICI Explosives Tel: 011-44-1294-487792 Fax: 011-44-1294-487370

Marco Tedeschi Naval Air Warfare Center Tel: (908) 323-1107 Fax: (908) 323-1989

Hardy Tyson NAWC/WPNS Survivability Tel: (619) 927-1244 Fax: (619) 939-2062 Charles Vaughan Olin Aerospace Tel: (206) 885-5010, x-5538 Fax: (206) 882-5744

David White Northrop Grumman Tel: (310) 332-0551 Fax: (310) 331-1051

Kim Wilson Olin Aerospace Tel: (206) 885-5000 Fax: (206) 882-5804

Jiann C. Yang NIST/BFRL Tel: (301) 975-6662 Fax: (301) 975-4052

APPENDIX D

Meeting Agenda

SOLID PROPELLANT GAS GENERATOR WORKSHOP June 28-29, 1995

National Institute of Standards and Technology Building 101, Lecture Room D Gaithersburg, MD 20899 USA

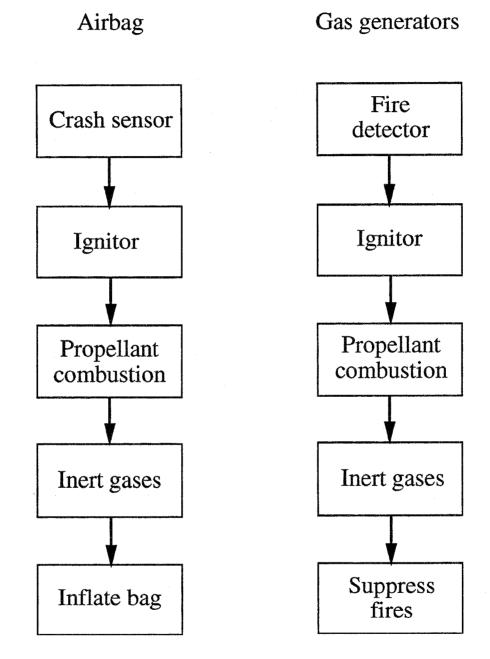
June 28, 1995	
8:00-8:30 AM	Coffee
8:30 AM	Jack Snell, Fire Program Manager Building and Fire Research Laboratory, NIST Welcome
8:40 AM	Jiann C. Yang, NIST Introductory Remarks
9:00 AM	Kenneth Kuo, Pennsylvania State University Fundamentals of Solid Propellant Combustion
9:50 AM	James Hoover Naval Air Warfare Center, China Lake Fire Extinguishing Pyrotechnics
10:20 AM	Break
10:40 AM	Herman Krier, University of Illinois Barry Butler, University of Iowa Modeling and Experimental Validation of Gas Generators
11:40 AM	Anthony Hamins, NIST Flame Extinction and Suppression
12:10 PM	Lunch
1:15 PM	William Pitts, NIST Species Concentration Measurements
1:45 PM	David Bomse, Southwest Sciences Oxygen Concentration Measurements

2:15 PM	Mark Gillespie, Wright Laboratory U.S. Air Force Inert Gas Generator Program
2:45 PM	Marco Tedeschi, Naval Air Warfare Center, Lakehurst Inert Gas Generators Used for Fire Suppression Abroad U.S. Naval Aircraft
3:15 PM	Break
3:35 PM	Philip Renn, Naval Surface Warfare Center, Indian Head Navy Qualification of Solid Propellant Gas Generators for Aircraft Fire Suppression
4:05 PM	Francesco Tamanini, Factory Mutual Research Corporation Explosion Suppression for Industrial Applications
4:35 PM	Moderator: Jiann C. Yang, NIST Discussion I: Other Potential Applications?
5:15 PM	Meeting Adjourn
June 29, 1995	
8:30 AM	Moderator: William L. Grosshandler, NIST Discussion II: What are the right test fixtures?
9:15 AM	Moderator: William Pitts, NIST Discussion III: What do we want to measure?
10:00 AM	Break
10:15 AM	Moderator: Herman Krier, University of Illinois Discussion IV: The need for modeling?
11:00 AM	Moderator: Jiann C. Yang, NIST Discussion V: Other research needs?
11:45 AM	William L. Grosshandler, NIST Concluding Remarks
12:00 Noon	Adjourn

.

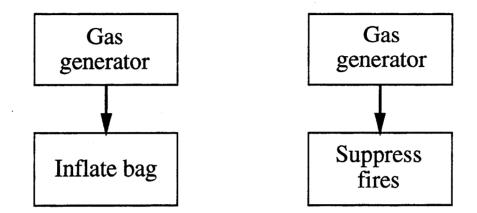
APPENDIX E

WORKSHOP PRESENTATIONS

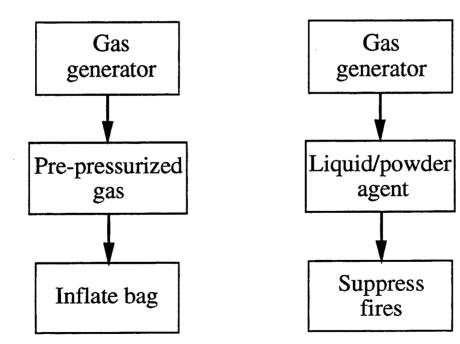

INTRODUCTORY REMARKS

Jiann C. Yang

Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 20899


Objectives of the Workshop:

- To identify what we know and don't know in gas generator technology for fire suppression
- To identify future research areas in gas generator technology for fire suppression
- To identify potential users and address their needs and concerns



Classifications

Conventional

Hybrid

Review of Airbag Technologies

• More than 10,000 patents internationally

<u>R & D Areas:</u>

- Propellant Research
- Filter Systems
- Airbag materials
- Overall System Designs
- Computer Simulation and Modeling of Airbag Deployment

Solid Propellant Gas Generators

- Search for new propellants

 Non-azide based
 Thermochemistry and stoichiometry
 Ignitability and burning rate
 Toxicity
 Storage stability

 Understand how they suppress fires
 - Dilution, chemical, thermal, or physical
- Modeling
- Hardware optimization

Filter, cooling, dispersion of combustion gases

Advantages of Gas Generators for Fire Suppression

- No Ozone-Depletion Potential
- Minimum / No Global-Warming Potential
- Stability
- Long Service and Storage Life
- Physically Compact

Applications of Gas Generators for Fire Suppression

Current: Engine Nacelle Fires Dry Bay Fires

Potential: Industrial Explosion Prevention Warehouse Fire Protection Race Cars Shipboard Engines

.....

FUNDAMENTALS OF SOLID PROPELLANT COMBUSTION

Kenneth K. Kuo

Department of Mechanical Engineering The Pennsylvania State University University Park, PA 16802

presented at

32

"Solid Propellant Gas Generator Workshop"

NIST Gaithersburg, MD 02899

June 28-29, 1995

ĩ

ACKNOWLEDGEMENTS

- I would like to express my deep appreciation for various solid propellant research projects supported by many U.S. Government organizations (such as ARO, ONR, AFOSR, NWC, BRL, AFPL) as well as many other research projects supported by various industrial companies (such as TC, Aerojet, Olin, RRC, Wyle Lab, ARC). Through these projects and many related works, I have gained useful knowledge and experience in solid-propellant combustion and ignition processes.
- I would and like to thank Professor Martin Summerfield, series editor-in-chief, for the opportunity for me to serve as co-editor of <u>Fundamentals of Solid-Propellant</u> <u>Combustion</u>, printed as Vol. 90 of AIAA Progress Series, November 1984.
- I would also like to thank many of my co-workers and graduate students at The Pennsylvania State University. Through their collaboration and dedication many interesting and important research results were obtained.
- Thanks to Dr. John C. Yang and Dr. William L. Grosshandler of NIST for their invitation for my participation in this workshop.

COMMENTS ON WORKSHOP TOPIC

- It is very exciting to see that solid propellants are bring considered for gas generator application in fire extinguishment.
- Great Engineering Challenge!!

Pennsylvania State University

GENERAL BACKGROUND OF SOLID PROPELLANTS

- (1) SOLID STATE SUBSTANCES WHICH CONTAIN BOTH OXIDIZERS AND FUEL INGREDIENTS
- (2) ABLE TO BURN IN ABSENCE OF AMBIENT AIR OR OXIDIZERS
- (3) NORMALLY USED TO GENERATE HIGH-TEMPERATURE COMBUSTION PRODUCTS FOR PROPULSION PURPOSES
- (4) CLASSIFIED INTO TWO DIFFERENT TYPES (HOMOGENEOUS AND HETEROGENEOUS) BASED ON DIFFERENCES IN THEIR PHYSICAL STRUCTURE

CLASSES OF PROPELLANTS

- Homogeneous
 - Uniform physical structure.
 - Fuel and oxidizer are chemically bonded together.
 - Major constituents are nitrocellulose (NC) and nitroglycerine (NG).
 - Also referred to as double-base propellants.
- Heterogeneous
 - Non-uniform physical structure.
 - Polymeric fuel binder and crystalline oxidizers.
 - Also referred to as composite propellants.

FUNDAMENTALS OF SOLID-PROPELLANT COMBUSTION

Edited by

Kenneth K. Kuo The Pennsylvania State University University Park, Pennsylvania

Martin Summerfield

Princeton Combustion Research Laboratories, Inc. Monmouth Junction, New Jersey

Volume 90 Progress in Astronautics and Aeronautics

Martin Summerfield, Series Editor-in-Chief Princeton Combustion Research Laboratories, Inc. Monmouth Junction, New Jersey

Published by the American Institute of Aeronautics and Astronautics. Inc. 1633 Broadway, New York, N.Y. 10019

Table of Contents

i-

Authorsxi
Preface
Acknowledgments
Chapter 1. Survey of Rocket Propellants
and Their Combustion Characteristics1
by N. Kubota
Performance of a Solid-Propellant Rocket Motor
Stable Combustion of a Rocket Motor
Temperature Sensitivity of Burning Rate
Thermochemical Properties of Propellant Ingredients
Thermochemical Properties of Propellant Combustion Products
Combustion Processes of Various Types of Solid Propellants
Double-Base Propellants
Ammonium Perchlorate Composite Propellants
Composite Modified Double-Base Propellants
Nitramine Composite Propellants
Burning Rate Controlling Factors of Solid Propellants
Combustion Characteristics Required for Solid Propellants and Gen-
eral Description of the Combustion Wave
Heat-Transfer Mechanism in Combustion Waves
Heat Transfer in Solid Phase
Heat Transfer in Gas Phase 40
Reaction Rate in Gas Phase
Burning Rate of Solid Propellant Calculated by a Simplified
Gas-Phase Model

It provides an excellent tutorial introduction of the performance of solid-propellant rocket motors and a general survey of solid-propellant combustion Characteristics.

Chapter 2. Chemistry of Ignition and Combustion of Ammonium-
Perchlorate-Based Propellants
by K. Kishore and V. Gayathri
Chemistry of Ignition
Sequence of Ignition
Theories of Ignition
Role of Oxidizer and Binder
Effect of Pressure
Effect of Oxidizing Atmosphere
Ignition of Composite Propellant Fuels by HClO ₄ Vapor
Preignition Reactions
Effect of Catalysts on Ignition
Chemistry of Combustion
Introduction to Combustion Mechanism
Surface Reactions
Subsurface Reactions
Gas-Phase Reactions
Effect of Catalysts on Propellant Combustion
Future Research Directions

presents the basic chemistry of ignition and combustion of AP. based propellants as well as the roles of oxidizers, binders catalysts, and ambients conditions in ignition and combustion.

ím

Chapter 3. The Thermal Behavior of Cyclotrimethylenetrinitramine

Chapter 5. The Incimal Della Hot of Cyclotimeta	
(RDX) and Cyclotetramethylenetetramitramine (H	(MX) 121
by T. L. Boggs	
Crystallography	
Sublimation of HMX	
Decomposition of the Solid RDX and HMX	
Liquefaction	
Decomposition of Liquid	
Pyrolysis of HMX	
Shock Tube Studies	
Ignition of HMX.	
Self-Deflagration of HMX and RDX	
Self-Deflagration Rate as a Function of Pressure	.
Self-Deflagration Rate as a Function of Pressure	
Sample Temperature	
Surface Structure of Self-Deflagrating HMX	
Chapter 4. Chemistry of Nitrate Ester and Nitram	ine Propellants 177
by R. A. Fifer	
Decomposition of Nitroceliulose	
Kinetics of Nitrocellulose Decomposition	

Catalysis of Nitrate Ester Propellants 191

consists of pertinent information on the thermal behavior of RDX and HMX and a clear delineation of the sublimation, pyrolysis, ignition, and self-deflagration of these nitramine ingredients

describes detailed kinetics of NC, HMX, and RDX decomposition Catalysis of nitraminc propellants, as well as flame-zone chemistry

2	0
- 1	ч

Chapter 5. Solid-Propellant Ignition Theories and Experiments 239

by C. E. Hermance
Introduction
Radiant Energy Ignition Sources
Shock Tube and Other Ignition Experiments
Theoretical Models of Solid-Propellant Ignition and Related Theory 266
Comments on Solution Methods
Solid-Phase Reaction Mechanism Theory
Theory of Ignition by Heterogeneous Reaction with External Oxidizer 281
Gas-Phase Theory of Solid-Propellant Ignition
Gas-Phase Theory-Shock Tube Cases
Gas-Phase Theory-Radiant Heat Input
by M. Kumar and K. K. Kuo
Ignition and Thrust Transients in Solid-Propellant Rocket Motors
Ignition Devices or Igniters
Physical Processes during Ignition Transient
Ignition Transient Models and Experiments
Flame Spreading over Solid Propellants and Fuels
Flame-Spreading Mechanisms
Flame-Spreading Theories and Experiments
Flame Spreading into Solid-Propellant Cracks and Flaws
Physical Processes during Flame Spreading and Combustion in Pro-
pellant Defects
Theories and Experiments on Flame Spreading in Propellant Cracks 34

Covers detailed description of various types of ignition experiments and theories, ignition phenomena and criteria.

į,

presents detailed discussions on flame spreading over the surface. of solid propellant. and into the defects of propellant grains.

Chapter 7.	Steady-State Burning of Homogeneous Propellants361
	by G. Lengelle, A. Bizot, J. Duterque, and J. F. Trubert
General	Behavior and Flame Structure of Homogeneous Propellants 367
Burning	Rate Laws: Influence of Additives
Detailed	Study of the Combustion Mechanisms in the Condensed Phase 375
Deg	gradation of the Propellant
Cor	ndensed-Phase Degradation Gases
Cor	ndensed-Phase Behavior of the Additive
Detailed	Study of the Combustion Mechanisms in the Gas Phase
Pri	mary and Secondary Flame Regimes
Prin	mary Flame Structure with/without Additives
Mechan	isms of Super-Rate and Plateau or Mesa Effects

Chapter 8.	Steady-State Burning of Composite Propellants
under Zei	o Cross-Flow Situation
	by K. N. R. Ramohalli
Various	Combustion Models of Composite Solid Propellants
The	Guirao-Williams Model for AP Combustion
The	Granular Diffusion Flame Model
The	Hermance Model for Propellant Combustion
	Beckstead-Derr-Price Model or the Model of Multiple Flames 443
Peti	te Ensemble Model
	The Statistical Flame Description
	Summary of the PEM Equation (Applied to Each
	Pseudopropellant)
Future I	Developments

presents useful information on the flame structure and combustion mechanism of homogeneous propellants, mechanism of super rates and Plateau or Mesa Effect

15 Gives detailed 20 treatment of various 34 models developed 43 for heterogeneous 58 propellants

Chapter 9. Combustion of Metalized Propellants	9
by E. W. Price	
Metals as Fuel Ingredients in Propellants	9
Metal and Oxide Properties	ł
Results of Controlled Experiments with Aluminum	l I
Propellant Combustion	j i
Effect of Aluminum on Propellant Burning Rate	
Combustion Products	ļ
Future Developments	;
Chapter 10. Erosive Burning of Solid Propellants	;
Theoretical Approaches to Erosive Burning	
Classification of Erosive Burning Theories	
Models Based on Phenomenological Heat-Transfer Theories 522	
Models Based on Integral Boundary-Layer Analysis	
Models Based on a Modification of the Propellant	
Combustion Mechanism	j.
Models Based on a Chemically Reacting Boundary-Layer	
Analysis	
Other Models	
Recent Theoretical Approaches	
Summary of Theoretical Work	

Recommendation for Future Work

offers. extensive descriptions and interpretations of the combustion phenomena of metalized propellants

Covers Various theoretical models which are grouped into different. Categories based upon the method of approach. Dresents erosive burning data observe Dhenomena, and basic mechanisms.

Chapter 11. Transient Burning of Solid Propellants	9 he have	
by K. K. Kuo, J. P. Gore, and M. Summerfield	provides basic	
Mechanism of Transient Burning		
Mathematical Description of the Transient Burning Phenomena		
Description of the Existing Models		
dp/dt Models		
Flame Description Approach		
Zel'dovich Approach		
Unsteady State Gas-Phase Models		
Experimental Apparatus Used by Various Researchers		
Results of Parametric Studies	g projette Chernet	
Future Direction		
	transient burning	
Chapter 12. Extinction Theories and Experiments	1 rates	
by L. De Luca	/ 0183	
Technical Background	⁶ D I J J	
Literature Survey on Dynamic Extinction		
Theoretical Results on Dynamic Extinction by Fast Depressurization . 67	° theories and	
Experimental Results on Dynamic Extinction by Fast	•	
Depressurization		
Dynamic Extinction by Fast Deradiation	Covane du la	
Extinction by Other Quenching Techniques		
Heat Sink		
Miscellaneous Quenching Techniques	8 fast depressuriza-	
Mathematical Formulation of the Problem	9 t	
Nonlinear Burning Stability of Solid Propellants		
Nonlinear Static Burning Stability	7 and various	
Nonlinear Dynamic Running Stability 715		
Numerical and Experimental Validation		
Conclusions and Future Work72	⁵ techniques.	
	yues.	

í.

Chapter 13. Experimental Observations of Combustion Instability 733
by E. W. Price
General Features of Instability
Gains and Losses741
Processes Contributing to Stability
Combustion Response
Measuring Combustion Response
Particulate Damping
Other Gains and Losses
Rocket Motor Instabilities
Bulk Mode Instability
Transverse Mode Instability
Axial Mode Instability
Fluid Dynamically Excited Oscillations
Effect of Propellant Characteristics on Combustion Instability
Summary and Recommendations

Chapter 14. Theoretical Analysis of Combustion Instability
by J. S. T'ien
Linear Analysis of Wave Motion
Governing Equations
Acoustic Energy in a Sound Field
Acoustic Admittance Function
Linear Analysis
Acoustic Amplification: Propellant Response Function
Estimate of Time Scales
Quasisteady Gas-Phase and Unsteady Solid-Phase Models
Nonsteady Gas-Phase Model
Velocity Coupling
Others
Acoustic Damping
Nozzie Response
Particle Damping
Others
Examples of Computing Linear Stability Boundaries
Nonacoustic Instability
Nonlinear Analysis
Comparison of Theory and Experiments

discusses experimentally observed Combustion instabilition in rocket motors. Covers techniques for the measurement. of Combustion response functions various modes of instabilities, effect of propellant Characteristics on Combustion instabilities

í

deals with theoretical analysis of combustion instability including linear analysis of wave motion, acoustic amplification and damping, nonacoustic instability nonlinear analysis' and predictive Copabilities of Various theories.

Chapter 15.	Smokeless Propellants
-	by E. Miller
Chemical	Origin of Smoke
Homoger	eous and Heterogeneous Nucleation of Smoke
Modeling	of Secondary Smoke
The	Dynamics of Secondary Smoke Formation
Opa	city Theory for Visible Light
•	Light Scattering
	Plume Visibility
Experime	ents in Secondary Smoke Formation
Faci	lities
SCE	Results and Comparison with Models
	Condensation Nuclei
	Smoke Measurements
AEI	C Results and Comparison with Models
Full	Scale Rocket Motor Tests
	hods for Reducing Smoke
	esearch Directions
Index to Con	atributors to Volume 90
List of Serie	s Volumes 1-90

contains detailed discussions of the chemical origins of Smoke secondary Smoke formation and its modeling, homogeneous and heterogeneous nucleation of Smoke, and Various methods of reducing Smoke of propellant products

Nonsteady Burning and Combustion Stability of Solid Propellants

Edited by Luigi De Luca Politecnico di Milano Milan, Italy

Edward W. Price Georgia Institute of Technology Atlanta, Georgia

Martin Summerfield Princeton Combustion Research Laboratories, Inc. Monmouth Junction, New Jersey

Volume 143 PROGRESS IN ASTRONAUTICS AND AERONAUTICS

A. Richard Seebass, Editor-in-Chief University of Colorado at Boulder Boulder, Colorado

Published by the American Institute of Aeronautics and Astronautics, Inc., 370 L'Enfant Promenade, SW, Washington, DC, 20024-2518

Table 1 List of ingredients used for double-base and composite propellants

Double-base propellant plasticizer (fuel and oxidizer) NG: nitroglycerin TMETN: trimethylolethane trinitrate TEGDN: triethylene glycol dinitrate DEGDN: diethylene glycol dinitrate plasticizer (fuel) DEP: diethylphtalate TA: triacetine PU: polyurethane binder (fuel and oxidizer) NC: nitrocellulose stabilizer EC: ethyl centralite 2NDPA: 2-nitrodiphenilamine burning rate catalyst PbSa: lead salicylate PbSt: lead stearate Pb2EH: lead 2-ethylhexoate CuSa: copper salicylate CuSt: copper stearate LiF: lithium fluoride high energy additive RDX: cyclotrimethylene trinitramine HMX: cyclotetramethylene tetranitramine NGD: nitroguanidine coolant OXM: oxamide opecifier C: carbon black flame suppressant KNO3: potassium nitrate K₂SO₄: potassium sulfate metal fuel Al: aluminum combustion instability suppressant Al: aluminum Zr: zirconium ZrC: zirconium carbide

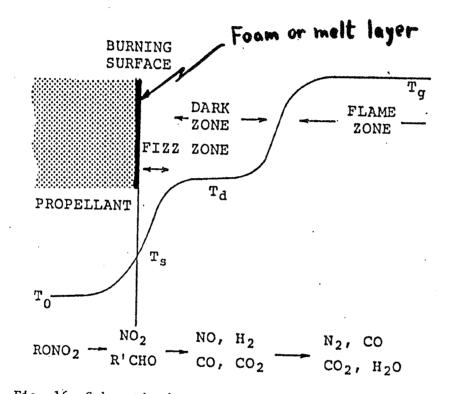
(Table 1 continued on next page.) 46

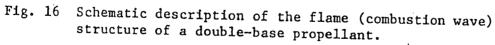
Table 1 (cont.) List of ingredients used for doublebase and composite propellants

```
Composite propellant
oxidizer
  AP: ammonium perchlorate
   AN:
        ammonium nitrate
   NP: nitronium perchlorate
   KP: potassium perchlorate
   RDX: cyclotrimethylene trinitramine
   HMX: cyclotetramethylene tetranitramine
binder
   PS: polysulfide
   PVC: polyvinyl chloride
   PU: polyurethane
   CTPB: carboxyl terminated polybutadiene
   HTPB: hydroxyl terminated polybutadiene
curing and/or crosslinking agents
   POD: paraquinone dioxime
   TDI: toluene-2,4-diisocyanate
   MAPO: tris{1-(2-methyl) aziridinyl} phosphine oxide
   ERLA-0510: N,N,O-tri (1,2-epoxy propy1)-4-aminophenol
   IPDI: isophorone diisocyanate
bonding agent
   MAPO: tris{1-(2-methyl) aziridinyl} phosphine oxide
   TEA: triethanolamine
   MT-4: adduct of 2.0 moles MAPO, 0.7 mole azipic acid,
          and 0.3 mole tararic acid
plasticizer
    DOA: dioctyl adipate
    IDP: isodecyl pelargonete
    DOP: dioctyl phthalate
 burning rate catalyst
    Fe<sub>2</sub>O<sub>3</sub>: ferric oxide
    FeO(OH): hydrated-ferric oxide
    nBF: n-butyl ferrocene
    DnBF: di-n-butyl ferrocene
    LiF: lithium fluoride
 metal fuel
    Al: aluminum
    Mg: magnesium
    Be: beryllium
    B: boron
 combustion instability suppressant
    Al: aluminum
    Zr: zirconium
    ZrC: zirconium carbide
```

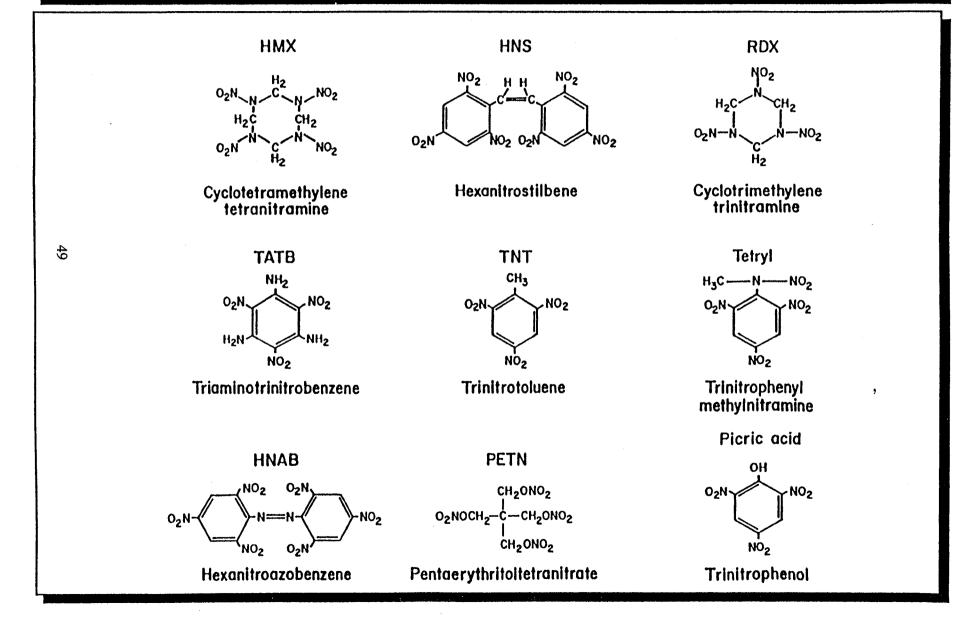
APPLICATIONS OF SOLID PROPELLANTS

SOLID PROPELLANTS HAVE BEEN USED FOR BOTH MILITARY AND COMMERCIAL PURPOSES.


- MILITARY APPLICATIONS
 - MISSILES
 - GUNS


•

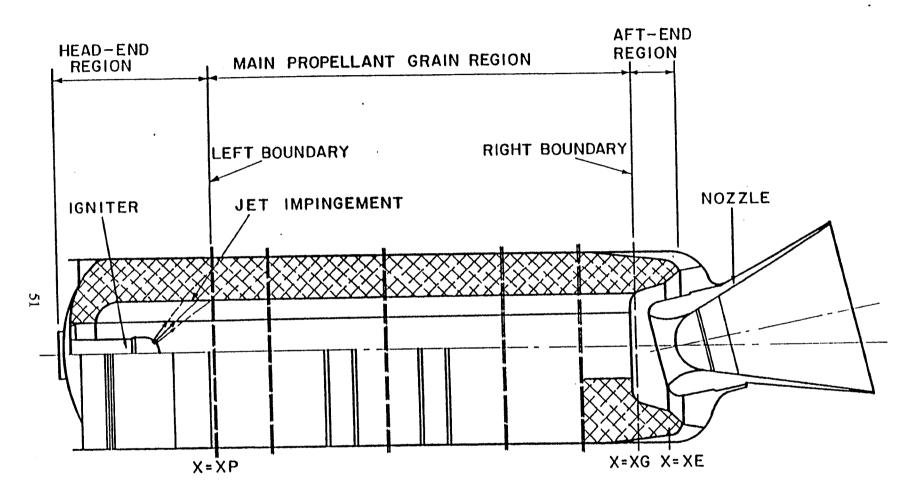
- AIR-BREATHING PROPULSION SYSTEMS, ETC.
- COMMERICIAL APPLICATIONS
 - ROCKETS FOR LAUNCHING EARTH SATELLITES
 - RAPID FILLING OF AIR BAGS
 - CONNECTION OF ELECTRICAL CABLES
 - EMERGENCY AIRPLANE CREW ESCAPE SYSTEMS
 - MINING
 - CONSTRUCTION, ETC.

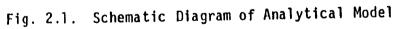

Table 1 (cont.) List of ingredients used for doublebase and composite propellants

```
Composite propellant
oxidizer
  AP: ammonium perchlorate
  AN: ammonium nitrate
   NP: nitronium perchlorate
   KP: potassium perchlorate
   RDX: cyclotrimethylene trinitramine
   HMX: cyclotetramethylene tetranitramine
binder
   PS: polysulfide
   PVC: polyvinyl chloride
   PU: polyurethane
   CTPB: carboxyl terminated polybutadiene
   HTPB: hydroxyl terminated polybutadiene
curing and/or crosslinking agents
   PQD: paraquinone dioxime
   TDI: toluene-2.4-diisocyanate
   MAPO: tris{1-(2-methyl) aziridinyl} phosphine oxide
   ERLA-0510: N,N,O-tri (1,2-epoxy propyl)-4-aminophenol
   IPDI: isophorone diisocyanate
bonding agent
   MAPO: tris{1-(2-methyl) aziridinyl} phosphine oxide
   TEA: triethanolamine
   MT-4: adduct of 2.0 moles MAPO, 0.7 mole azipic acid,
          and 0.3 mole tararic acid
plasticizer
   DOA: dioctyl adipate
   IDP: isodecyl pelargonete
   DOP: dioctyl phthalate
burning rate catalyst
   Fe<sub>2</sub>O<sub>3</sub>: ferric oxide
   FeO(OH): hydrated-ferric oxide
   nBF: n-butyl ferrocene
   DnBF: di-n-butyl ferrocene
   LiF: lithium fluoride
metal fuel
    Al: aluminum
   Mg: magnesium
Be: beryllium
    B: boron
 combustion instability suppressant
    Al: aluminum
    Zr: zirconium
    ZrC: zirconium carbide
```

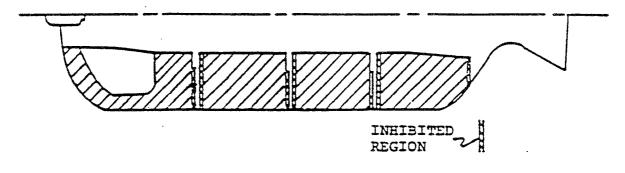

Several Commonly Used Solid Explosives

SOLID PROPELLANTS HAVE BEEN USED FOR BOTH MILITARY ANE COMMERCIAL PURPOSES.

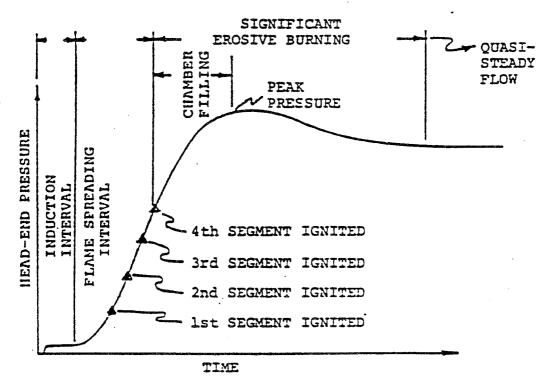

- MILITARY APPLICATIONS
 - MISSILES
 - GUNS


•

- AIR-BREATHING PROPULSION SYSTEMS, ETC.

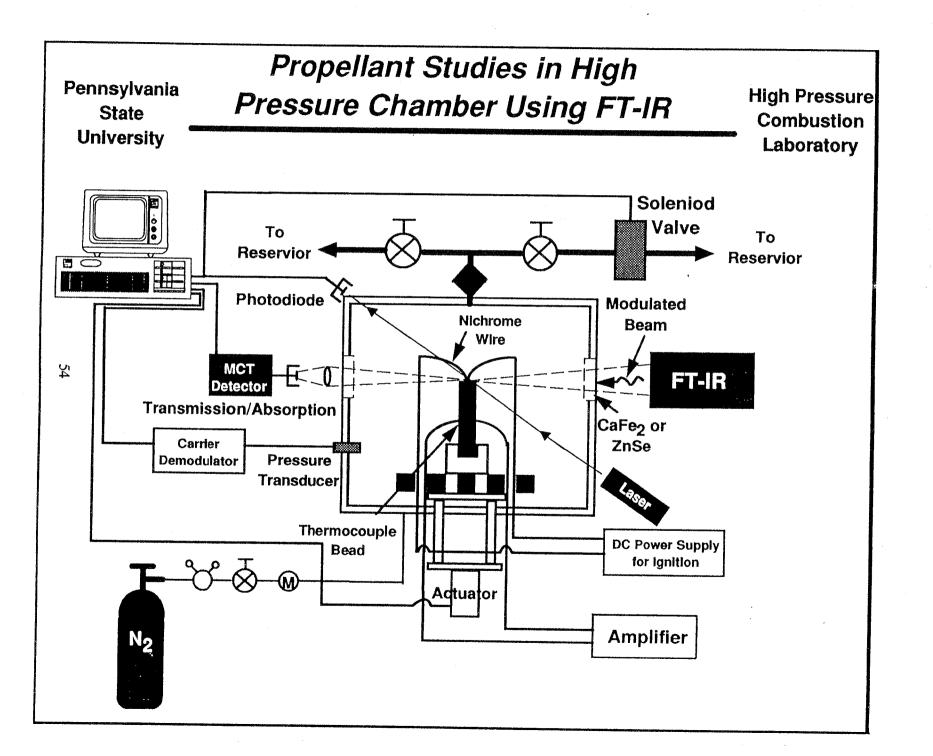

COMMERICIAL APPLICATIONS

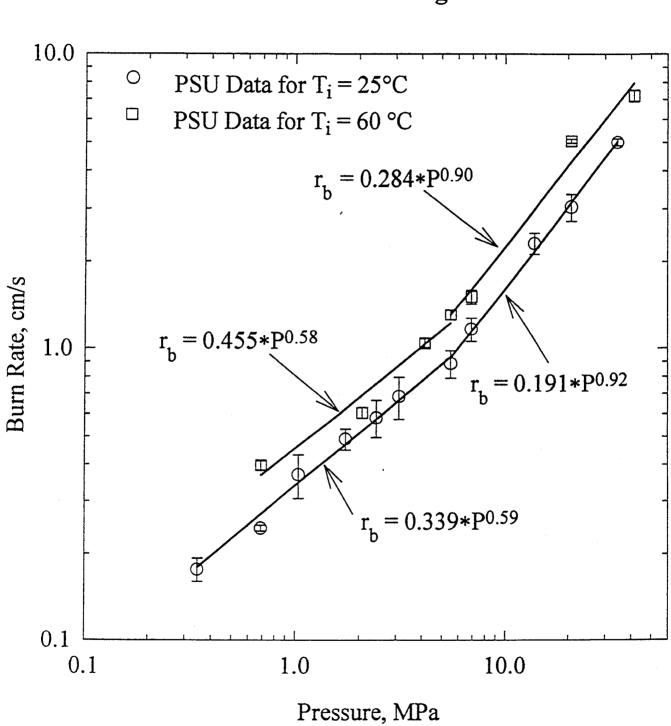
- ROCKETS FOR LAUNCHING EARTH SATELLITES
- RAPID FILLING OF AIR BAGS
- CONNECTION OF ELECTRICAL CABLES
- EMERGENCY AIRPLANE CREW ESCAPE SYSTEMS
- MINING
- CONSTRUCTION, ETC.



ITTIB Interim Report to Thickol, Y.C. Lu & K.K. Kuo

(a) Segmented rocket motor configuration


- (b) Significant ignition intervals.
- Fig. 2.5. Type of Segmented Rocket Motor and Time Intervals During Ignition Transient


Different Modes of Combustion

Transient Burning

S

- Thermal Pyrolysis and slow cookoff
- Ignition
- Flame Spreading
- Oscillatory Burning
- Burning under large magnitude pressure excursion
- Deflagration-to-Detonation Transition (DDT, SDT, XDT)
- Explosion (Thermal vs. Chain-Branched)
- Extinction
- Steady-State Burning
 - Deflagration
 - Detonation

JA2 Strand Burning Rates

APPLICABLE EQUATIONS

A one-dimensional steady-state energy balance equation can be written:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{k}\frac{\mathrm{d}T}{\mathrm{d}x}) - \rho_{\mathrm{p}} \cdot \mathrm{r}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{c}}\frac{\mathrm{d}T}{\mathrm{d}x} + \rho_{\mathrm{p}} \cdot \dot{\mathrm{q}}_{\mathrm{sub}} = 0 \qquad (1)$$

If the thermal properties are assumed to be constant, the energy balance equation can be integrated with the following boundary conditions:

$$\begin{array}{ll} x = 0 & T = T_{S} \\ x = -\infty & T = T_{O} \end{array}$$
(2)

to yield the following equation:

$$\frac{T - T_0}{T_s - T_0} = \exp(\frac{r_b \cdot \rho_p \cdot C_c \cdot x}{k})$$
(3)

where $-\infty < x \le 0$.

EQUATIONS (cont)

The definition of the thermal diffusivity of the propellant:

$$\alpha_{\rm P} = \frac{\rm k}{\rho_{\rm p} \cdot C_{\rm c}} \tag{4}$$

can be used to determine k, if Cc is assumed to be constant.

Definition of the thermal wave depth:

$$\delta_{\rm th} = -\frac{\alpha_{\rm p}}{r_{\rm b}} \cdot \ln(\frac{T - T_{\rm o}}{T_{\rm s} - T_{\rm o}}) \tag{5}$$

δth is usually defined to be where the temperature ratio is equal to 0.01. Therefore, the equation for the thermal wave depth:

$$\delta_{\rm th} = \frac{\alpha_{\rm p}}{r_{\rm b}} \cdot \ln(10^2) \tag{6}$$

The definition of the characteristic time of the propellant:

$$\tau = \frac{\alpha_{\rm p}}{r_{\rm b}^2} \tag{7}$$

EQUATIONS (cont)

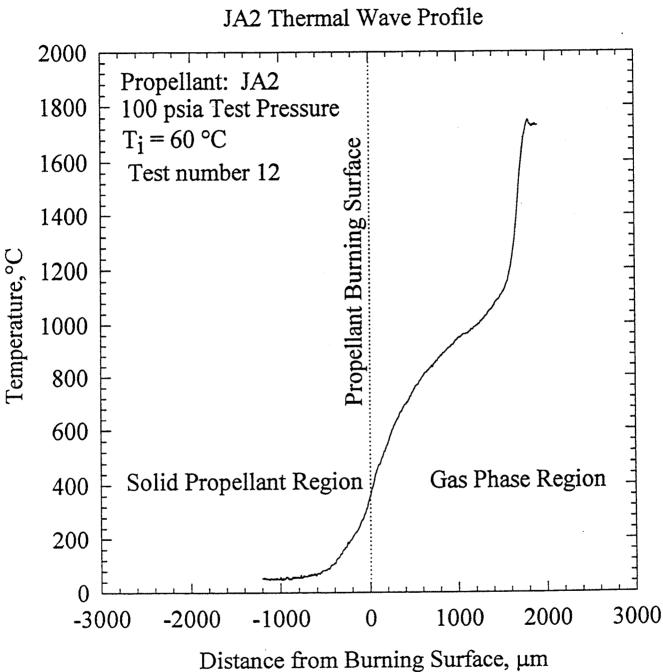
The sensitivity of JA2 propellant to changes in initial temperature can be deduced from the equation:

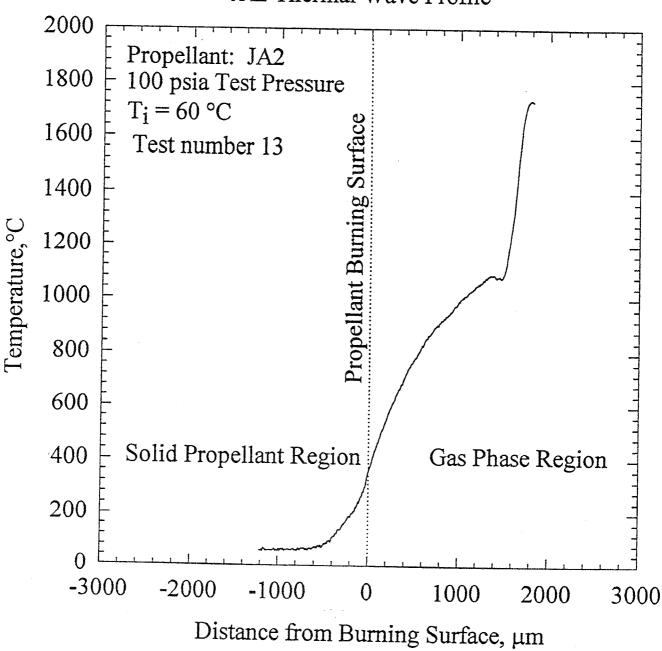
$$\sigma_{\rm p} = \frac{1}{r_{\rm b}} \left[\frac{\partial \cdot r_{\rm b}}{\partial \cdot T_{\rm ref}} \right]_{\rm p} = \left[\frac{\ln(r_{\rm b}) - \ln(r_{\rm b, ref})}{T_{\rm c} - T_{\rm ref}} \right]_{\rm p}$$
(8)

The pyrolysis law may be expressed in the form of a massburning rate:

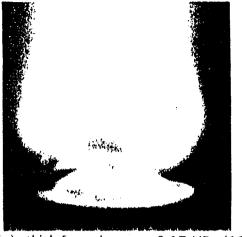
$$m_{b} = \rho_{p} \cdot r_{b} = \rho_{p} \cdot A \cdot \exp(\frac{-E_{a}}{2 \cdot R_{u} \cdot T_{s}})$$
(9)

when Ts becomes large, m will approach a maximum value:

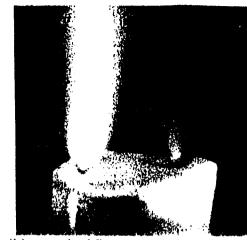

$$m_{b,max} = 1.8 \cdot 10^3 \frac{gm}{cm^2 \cdot sec}$$
 (10)


Using the following ratio, the burning surface temperature can be estimated:

$$\frac{m_{b}}{m_{b,max}} = \exp(\frac{-E_{a}}{2 \cdot R_{u} \cdot T_{s}})$$
(11)


St. Robert's Law of combustion:

$$\mathbf{r}_{\mathrm{b}} = \mathbf{a} \cdot \mathbf{p}^{\mathrm{n}} \tag{12}$$



JA2 Thermal Wave Profile

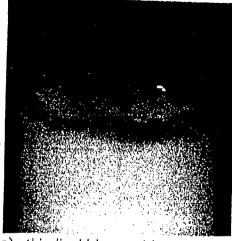
(a) thick foam layer at 0.17 MPa (10 psig)

6

(b) attached flames to carbonaceous patches at 0.51 MPa (60 psig)

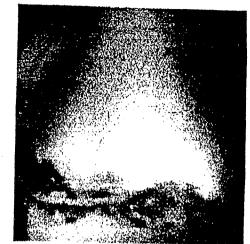
(c) multiple attached flames at 2.23 MPa (310 psig)

(a) particles in surface liquid layer at 0.65 MPa (80 psig)

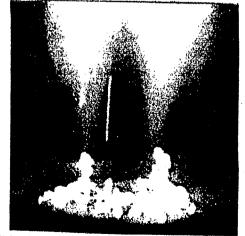


(b) flame attached to agglomerates at 1.23 MPa (165 psig)

(c) many points of attachment at 2.16 MPa (300 psig)


Fig. 3. Burning surface of M43 samples of 0.25 in. diameter


(a) thin liquid layer with particles at 1.13 MPa (150 psig)


(b) carbonaceous patches on surface at 2.44 MPa (340 psig)

(c) flame attachment to surface at 3.55 MPa (500 psig)

(a) glowing flakes with no visible flame at 0.38 MPa (40 psig)

(b) flame attached to flakes at 1.48 MPa (200 psig)

(c) nearly uniform flame attachment at 3.55 MPa (500 psig)

Fig. 5. Burning surface of JA-2 samples of 0.25 in. diameter

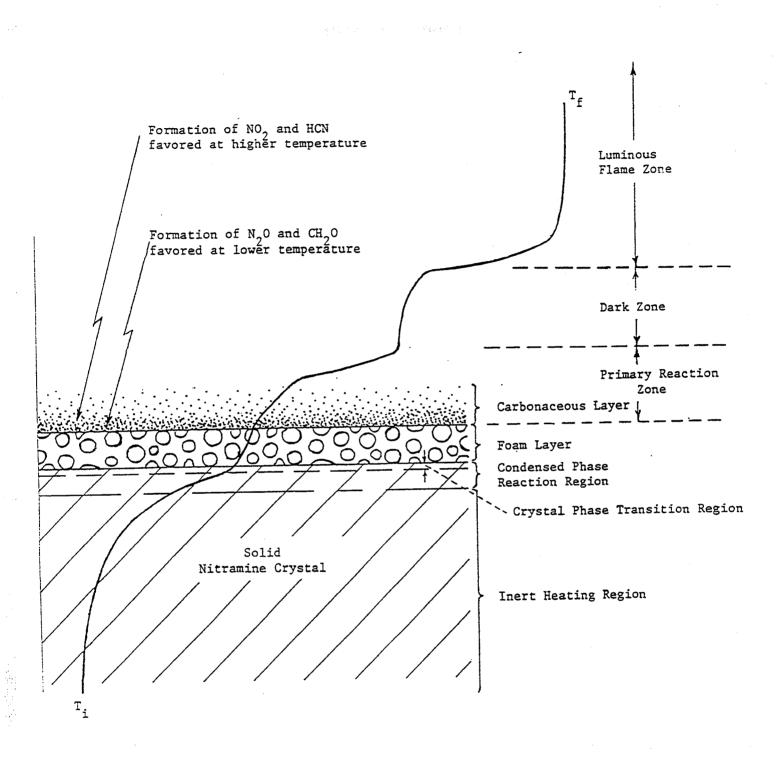
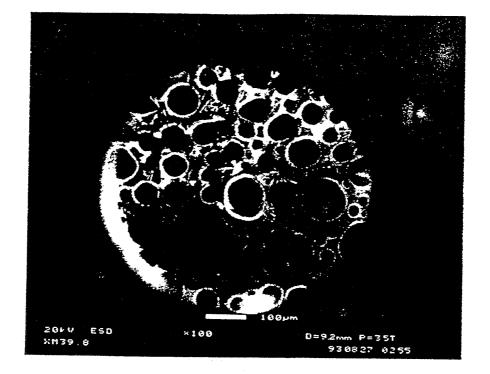



Fig. 1 A Schematic Diagram Showing Various Flame Zones and Condensed Phase Reaction Regions as well as a Typical Temperature Profile.

а

Ъ

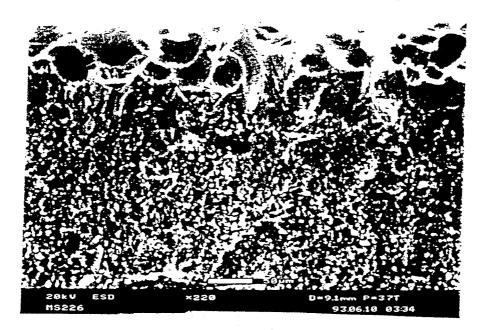
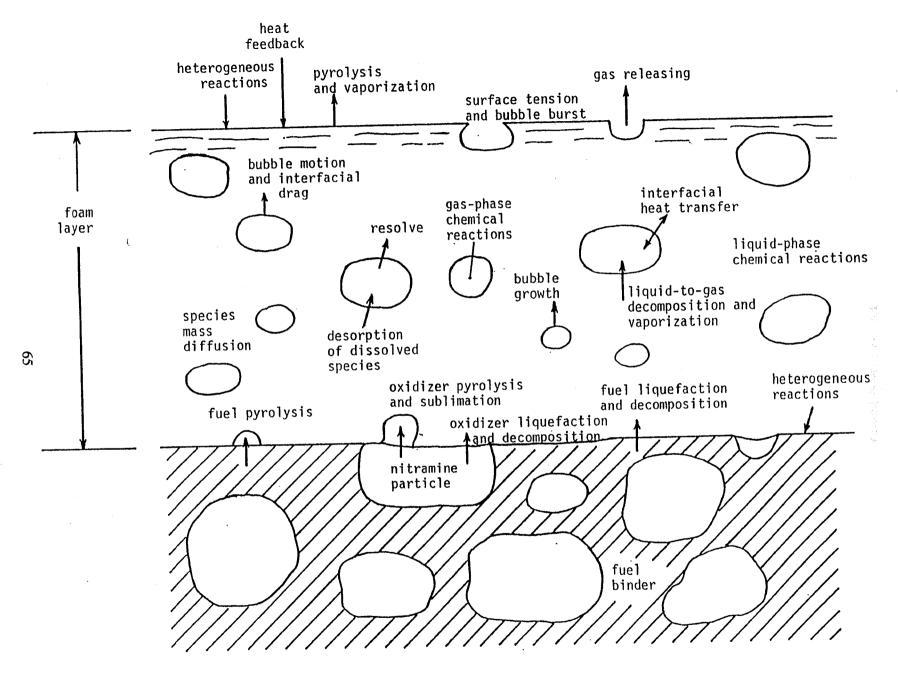
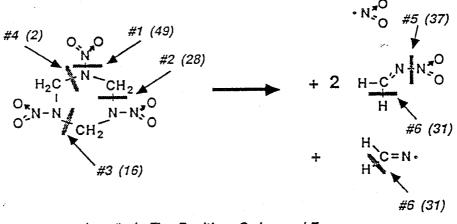


Figure 1: Typical micrographs for a) surface bubble analysis (XM39 at 1 atm and 300 W/cm²) and b) melt layer thickness determination (XM39 at 3 atm and 100 W/cm²).




Fig. 2 A Schematic Diagram Showing the Physicochemical Processes in the Foam Laver of a Nitramine-Based Solid Propellant.

.

•

Decomposition of RDX (C.Melius, 1990)

At Fast Heating Rates

-+- #n ($_{\Delta}E$) : Position, Order, and Energy of Chain Bond Breaking (Energy in kcal/mole)

Figure 10. Decomposition mechanism for RDX under rapid heating rates. The number indicates the order in which the bonds are broken. The bond breaking energies (in kcal-mol⁻¹) are given in parentheses. The final products are HCN, NO₂, and H.

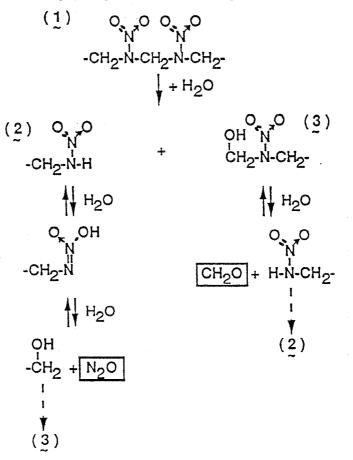
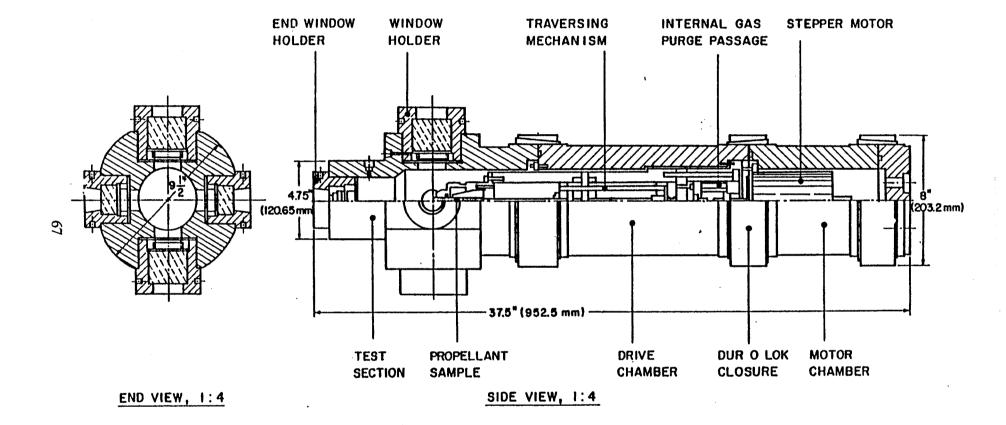



Figure 11. The water-catalyzed decomposition pathway for nitramines containing the $-(-CH_2N(NO_2)-)$ - subgroup. The initial step is the hydrolysis of the C-N bond in (1) to form the primary nitramine (2) and the hydroxymethyl species (3). The primary nitramine undergoes further decomposition to form N₂O and the hydroxymethyl species (3), which undergoes further decomposition to form CH₂O and the primary nitramine (2)

Fig. 1 Schematic Diagram of Single-ended Windowed Strand Burner

ł

Desirable Features of Energetic Materials

- Deliver high specific impulse and high impetus
- Generate low molecular weight combustion product gases
- Being environmental compatible

- Reduced emission levels of NO_x, SO_x, CO and other
- undesirable gases
- Reduced particulates
- Have long term storage capability
- Possess low vulnerability characteristic
 - Thermally stable
 - Reduced ESD hazards
 - Reduced impact sensitivity

Desirable Features of Energetic Materials (cont'd)

- High Reproducibility in Burning Characteristics
- Good Mechanical Properties
 - High dewetting stress
- B High fracture toughness
 - Low glass transition temperature
- Easy for Processing and Manufacturing
- Low Cost

Scientific Challenges in Combustion of Solid Propellant (SP)

- Extremely thin reaction zones [~ $O(100 \ \mu m)$]
- Regression rate depends upon the rate of heat release in the thin surface reaction zone and the heat feedback from adjacent gaseous flame(s).
- Surface reaction zone can not be characterized easily due to the complicated condensed phase structure:
 - Foam layer with numerous physical and chemical processes
 - Heterogeneous surface conditions
 - Deposition and expulsion of carbonaceous residues
 - Intermittent flame attachment to burning surface
 - Uncertainty in nucleation rate and initial bubble size distribution
 - Liquefaction process at the liquid/solid interface is a strong function of propellant formulation.
 - Thermal and transport properties of propellant ingredients and their intermediate products are difficult to characterize.

Scientific Challenges in Combustion of Solid Propellant (SP) (cont'd)

- Transient burning rate (rb) of SP could differ significantly from steadystate rb. Usually the parameters (e.g., σ_p , $\partial T_s / \partial T_i |_p$) required to determine the transient rb are not easily obtainable.
- Harsh environments for combustion diagnostics
 - High temperature and pressure
 - Multi-phase behavior of the reaction zone
 - Condensed phase decomposition and reaction
- Multiple reaction pathways

- Multiple ignition mechanisms (laser induced, conductive, shock wave induced, ESD, impact, friction, etc)
- Go/No Go ignition boundary of SP can vary significantly with the operating condition (such as degree of confinement).
- Complicated interactions between mechanical deformation and combustion processes

Various Non-Intrusive Combustion Diagnostics Techniques

- Laser-Induced Flourescence (LIF and PLIF) Techniques
- Coherent and Spontaneous Raman Spectroscopies
 - CARS
 - Degenerate Four-Wave Mixing (DFWM)
- Absorption and Emission Spectroscopies
 - FT-IR Spectroscopies
 - UV/Visible Spectroscopies
- Holographic and Microwave Interferometries
- Particle Diagnostics (PDPA, Laser Sheet Illumination, etc.)
- X-Ray Diagnostics and Image Analyses
- Flow Field Measurements and Visualization
 - LDV
 - Particle Image Displacement Velocimetry
 - Michelson Spectrometer
- Regression Rate Measurement Techniques

Suggested Approach for State-Of-The-Art Advancements

- Utilization of Advanced Diagnostic Techniques for Detailed Measurements
- Application of High-Speed Computational Facility for Simulation of Various Combustion Processes
- Encouragement of Interdisciplinary Approach and Strong Interactions Between Constituent Disciplines, Including:
 - Chemistry
 - Physics
 - Thermodynamics
 - Fluid Mechanics
 - Heat and Mass Transfer
 - Turbulence

- Material Sciences
- Instrumentation
- Mathematics
- Numerical Methods
- Mechanical Design
- Ballistics

No Advancements Can Be Achieved Without

• Research Funding \$??

- Long-Term Strategic Planning and Programs
- Continued Support of Specialized Personnel in this Area
- Cultivation of New Generation of Engineers and Scientists with Continued Stimulation

Solid Propellant Gas Generator Workshop National Institute of Standards and Technology June 1995

Fire Extinguishing Pyrotechnics

Jim Hoover, Russ Reed Combustion/Detonation Research Section

Vicki Brady, John Hitner Airframe, Ordnance and Propulsion Division

Leo Budd, Mike Gray, Marty Krammer, Hardy Tyson Weapons Survivability Laboratory

Naval Air Warfare Center Weapons Division China Lake

Unclassified

Goal and Objective

Goal from the Next Generation Plan (NGP):

"The program goal is to develop and demonstrate, by 2004, environmentally-friendly, user-safe processes, techniques and fluids that meet the operational requirements currently satisfied by halon 1301 systems in aircraft, ships, land combat vehicles, and critical command and control facilities."

Objective for China Lake Gas Generator Efforts:

Develop and demonstrate active, chemical and chemical precursor flame suppressing gas generators (FSGG) that comply with the NGP goal.

Ľ

Fire Science & Technology Panel FY95 Participants

Joe Benavides, NAWCWPNS Albuquerque	A28N103
Prof. Matt Kelleher, Naval Postgraduate School	Me/KK
Leo Budd and Hardy Tyson	418300D
Wayne Doucette and Gill Cornell	473A00D
Dr. Warren Jaul, Brenda Allen and Rodney Harris	473110D
Vicki Brady	473410D
Dr. Kelvin Higa, Dr. Rich Hollins and Dr. Curt Johnson	474220D
Thom Boggs	474300D
Dr. Jim Hoover and Dr. Russ Reed	474310D
Les Bowman and Dr. M.J. Lee	474320D
Dr. Jo Covino, Dr. Ilzoo Lee and Ross Heimdahl	474330D
Jay McClellan	528400D
Ross Davidson, Dick Rivers and Wil Simoneau	824220D

Fire Science & Technology Panel FY95 Accomplishments

- Coordinated local review of DDR&E proposal drafts "Next Generation Fire Suppression Technology" (\$48M/8 years)
- Conducted China Lake Fire S&T Workshop and established working group to promote Fire S&T work within NAWCWPNS
- Sponsored Fire S&T marketing brochure and electronic media describing China Lake RDT&E capabilities and expertise
 - Conducted Navy-wide Fire S&T Workshop (14 &15 Mar 95 at NASNI) attended by NAVAIR, NAVSEA, ONR, NRL, NAWCAD (Lakehurst and Warminster), NAWCWPNS, NPG and Federal Fire Dept.
 - Obtained NAVSEA sponsorship for Shipboard Magazine Fire Protection Program (\$2.5M over 5 years) and JTCG sponsorship for Pyrotechnic Fire Extinguisher R&D.
 - Developed networked teams (Industrial/Academic/Gov't labs) for pursuing major outside sponsorship (i.e., SERDP) and in-house discretionary projects
 - Participated in international Fire S&T meeting and NIST Workshop

79

Gas Generator Formulation Work History at China Lake

1979 High Nitrogen Binder (GAP) Work (Funded by ARC) Goal: No Ammonium Nitrate (AN) Significance: High nitrogen binders attractive for gas generators

1980s High Nitrogen Binder Work (Funded by ONR/ONT) Collaboration with Thiokol (Dr. Manser), later with Aerojet Goal: Alternative high nitrogen compounds - no AN Approach: demonstrate azidooxetanes as good as PEG E-4500 (Dow), tetrazoles and GAP

1979-1982 NAVAIR Gas Generator Technology Amoco MK-6 (N-28 comp.), AN/PE binder, 2000-2200°F, 0.06″/s Goal: 1500°F, 1″/s, noncorrosive, no particulates Approach: High nitrogen compounds yield less H₂O, CO, CO₂; new deflagration mechanism for azides and tetrazoles, driving force is high ΔH_f

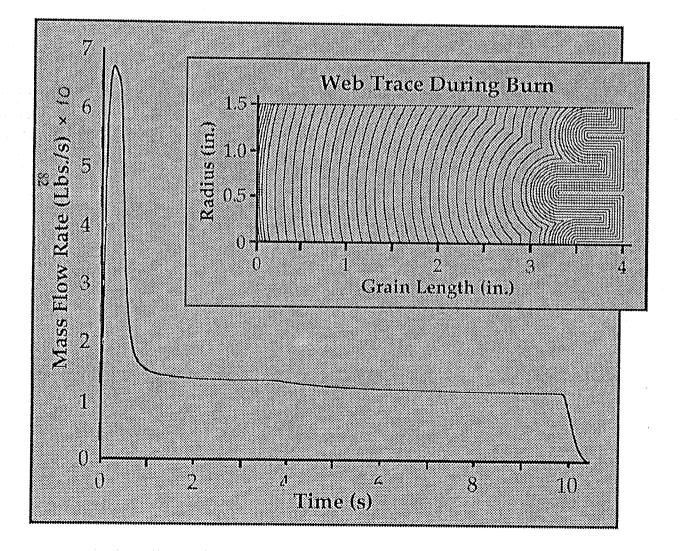
Gas Generator Formulation Work History at China Lake

1983-1985 NAVSEA Submarine Deballasting Gas Generators
 Goal: High N₂ (inert), noncondensable gases, tailorable sustained higher burn rate than AN (>0.5″/s)
 Approach: High nitrogen compounds with high nitrogen binders
 [∞] (i.e., hydroxyethyltetrazoles)

1987 Patent on Pyrotechnic Fire Extinguisher (PFE) Compositions

1992 Flame Suppressing Gas Generator (FSGG)

Gas Generator Comparison



	FSGG	Double Base	Am. Nit.	Olin
Composition	azides/prec.	NC/plast.	AN/rubber	propr.
Products ∞	>N ₂ /chem.	N ₂ /CO/CO ₂ H ₂ O/C	N ₂ /CO/CO ₂ H ₂ O	N ₂ (~50%)
Rel. Temp.	cool	hot	hot	hot
Deflagration	flameless	flame	flame	flame
Rel. Rate	fast	slow	slow	fast
Gas Quality	clean	dirty (C)	clean	filtered
Application		starter	SM/APU	Air Bags

FSGG-02 Propellant Concept and Calculated Burn Rate

1.5 Lb_m propellant Density:

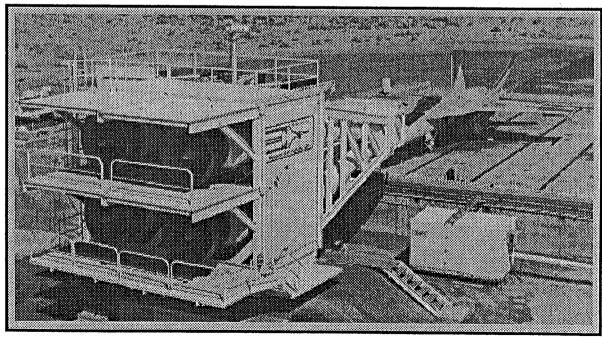
Initial Concept

 $0.0542 \text{ Lb}_{m}/\text{in.}^{3}$

CStar: 4000 ft./s

Burning Rate: 0.50 in./s @ 1000 psia

Slope: 0.50

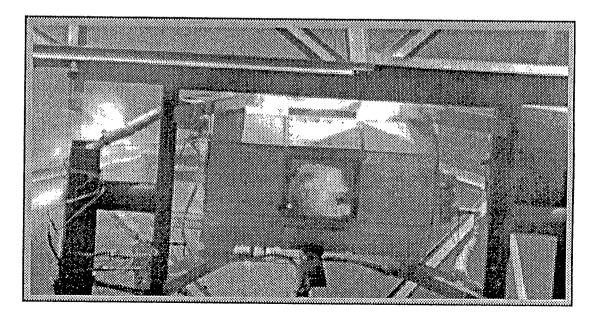

Weapons Survivability Laboratory Facilities

Test Equipment / Instrumentation / Ballistic Threats Test Sites / Fabrication Capabilities

[∞] Airflow Source: Bypass airflow ducted from 4 TF-33 P11 engines

Velocity Ranges: 160-550 knots over 18 ft.² 100-300 knots over 35 ft.² 40-120 knots over 110 ft.²

Rotatability: 360° to cover 6 test pads High Velocity Airflow System (HIVAS)

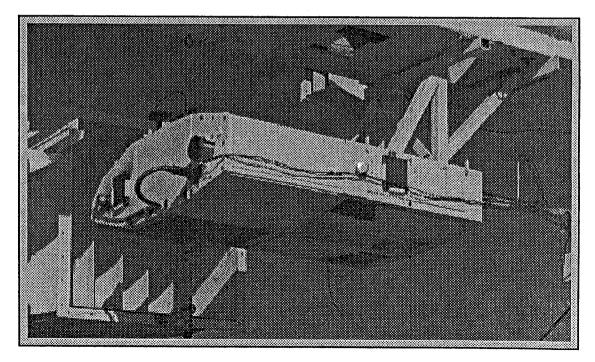

Testing Program: F/A-18 Dry Bay Simulator

Dates: April - June 1993

☆Program Sponsor(s): Navy, F/A-18

Technical Support: Northrop, McDonnell-Douglas, Olin

Significance: First demonstration of gas generator (Olin) effectiveness in real-scale scenario sim. Test Conditions: Real-scale F/A-18 dry bay simulator with fuel cell and clutter, HIVAS 450-500 knots, Halon 1301 and FM-200 baselines, Ballistic ignition (small arms, 12.7 - 30 mm), Olin gas generator hardware


Testing Program: V-22 Wing Dry Bay Simulator

Dates: Dec. - Jan. 1994 [∞] Program Sponsor(s): Navy, V-22 (CDR Curtis)

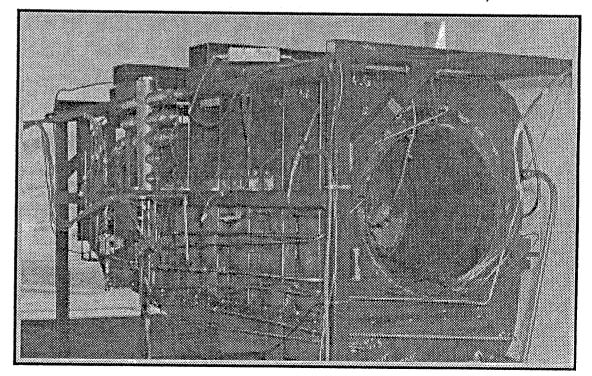
Technical Support: Bell-Boeing, Olin

Significance: Active suppression needed and demonstration of gas generator (Olin) effectiveness in real-scale simul. scenario Test Conditions:

Real-scale V-22 wing dry bay simulators (3) with fuel cell and clutter, HIVAS 250 knots, Halon 1301 and FM-200 (RFE) baselines, Ballistic ignition, Olin gas generator hardware

Testing Program: F/A-18 Engine Nacelle Simulator

Dates: Aug. - Nov. 1994


Program Sponsor(s): Navy, F/A-18 NAVAIR (Mr. Homan)

Technical Support: Northrop, McDonnell-Douglas, Olin

Significance: Demonstration of gas generator (Olin) effectiveness in real-scale scenario sim.

Test Conditions:

Real-scale F/A-18 engine nacelle simulator with clutter and air flow, Halon 1301 baseline, spark ignition and ballistic ignition wrap-up, Olin gas generator hardware (manifolded, unfiltered)

Future Gas Generator T&E at China Lake

- F/A-18 E/F Fuselage Dry Bay Fire Suppression Test, FY95 Sponsor: Navy (CPT Dyer)
 Tech Support, Northern McDarell Data 1001
 - Tech. Support: Northrop, McDonnell-Douglas, Olin
 - Real-scale E/F modified C/D model aircraft
 - Proof of concept for gas generators with ballistic ignition
 - Airflow (HIVAS) 450-500 knots
- V-22 Midwing Gearbox Fire Suppression Test, FY96 Sponsor: Navy (CDR Curtis)

Tech. Support: Bell-Boeing, Olin

Real-scale V-22 structure

- Proof of concept for gas generators
- Airflow (HIVAS) 250 knots
- AV-8B Dry Bay and Aft Wheelwell Fire Suppression Test

80

Fire Protection RDT&E Future Efforts

Continue Support of NAVAIR and NAVSEA Programs through:

- Weapons Survivability Laboratory
- ♦ Fire Research Office (Les Bowman)
- ◆ Fire S&T Networks Panel (multi-competency)

Continue Team Building Efforts through S&T Networks to address:

- DDR&E's Next Generation Plan BAA (SERDP type proposal)
- Market ILIR discretionary support for "Superagents" research
- Market support for scale-up and loading of FSGG formulations
- Unclassified/unlimited dist. information services via Internet (WWW, etc.)

Rapid, Low-cost, Total Quality Response to DoD Needs

Modeling and Experimental Validation of Pyrotechnic Gas Generators

Herman Krier The University of Illinois at Urbana-Champaign Urbana, Illinois

and

P. Barry Butler The University of Iowa Iowa City, Iowa

NIST Gas Generator Workshop Gaithersburg, MD

28 June, 1995

REFERENCES

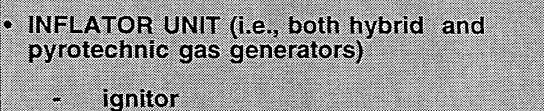
Butler, P.B., Krier, H.K., Faigle, E.M., Semchema, J.H., and Thompson, R., "Modeling Azide-Based Propellant Combustion in a Passenger-Side Automotive Airbag Inflator," The Combustion Institute Central States Meeting, April 26, 1992, Columbus, OH.

Butler, P.B., Kang, J., and Krier, H., "Modeling Pyrotechnic Combustion in an Automotive Airbag Inflator," 5th International Congress of the Groupe de Travail de Pyrotechnie, June, 1993, France.

Butler, P.B., Kang, J., and Krier, H., "Modeling and Numerical Simulation of the Internal Thermochemistry of an Automotive Airbag Inflator," Progress in Energy and Combustion Science, Vol. 19, 1993, pp. 365-382.

Butler, P.B., Kang, J., and Krier, H., "Numerical Simulation of a **Pre-Pressurized Pyrotechnic Automotive Airbag Inflator**," 5th International Congress of the Groupe de Travail de Pyrotechnie, June, 1993, France.

Berger, J.M., and Butler, P.B., "Equilibrium Analysis of of Three Classes of Automotive Airbag Inflator Propellants," Combustion Science and Technology, Vol. 104, No. 1-3, 1995, pp. 93-114.


Greenlee, C.L., and Butler, P.B., "Influence of Product Species Selection on Thermochemical Equilibrium Calculations, Part I: Energetic Materials," submitted to Propellants, Explosives, and Pyrotechnics, 1995.

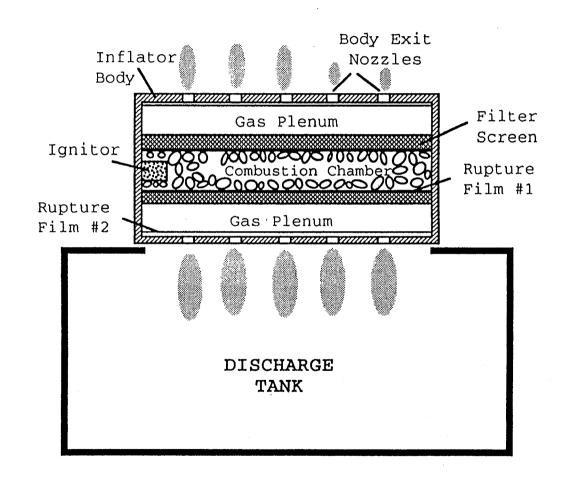
BACKGROUND

- CONSULTANTS TO AIRBAG INDUSTRY
- MODELING WORK
 - developed general-purpose gas generator models
 - validated performance of numerous inflators
 - used in design of new inflators
- EXPERIMENTAL WORK
 - cold-flow test apparatus
 - combustion test apparatus
 - ignition test apparatus
 - design of experiments (DOE)
- ADVANCED CONCEPTS
 - next-generation inflator designs

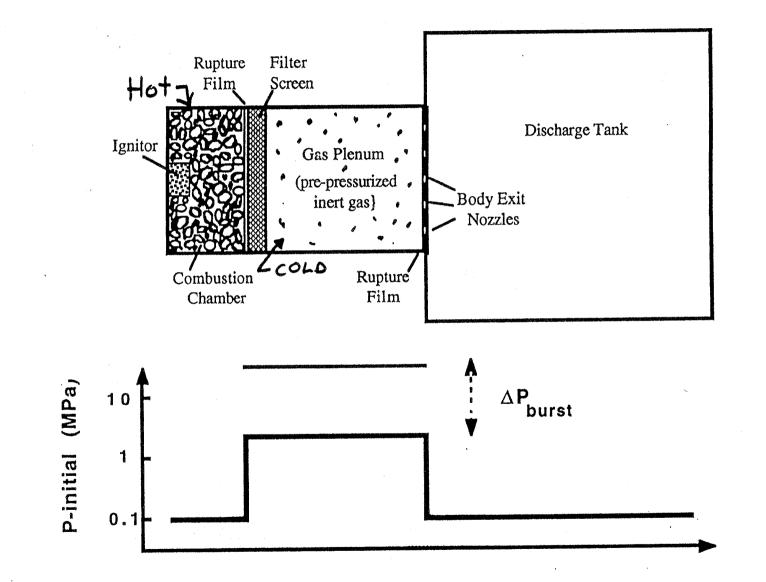
AIRBAG COMPONENTS

• CRASH SENSORS AND COMPUTER LOGIC

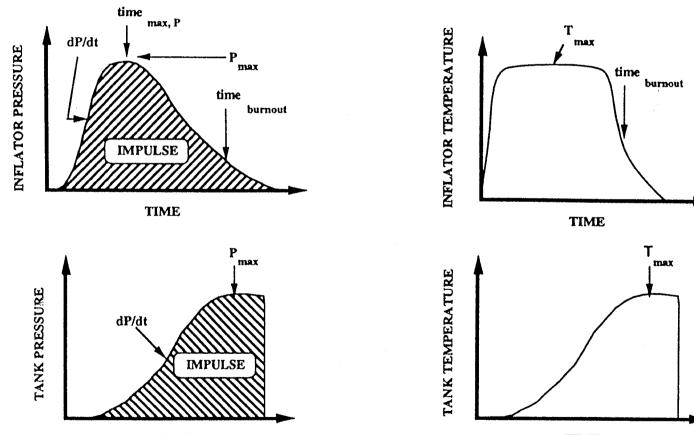
- propellant grains
- hardware items
 - particle filter
- BAG HOLDER AND EXTERIOR PADDING
- NYLON AIRBAG ASSEMBLY


ENGINEERING CHALLENGES

- IGNITOR RELIABILITY (output history, is it repeatable ?)
- TIMING OF EVENTS (pressure-time profiles)
- **PRODUCT CHEMICAL COMPOSITION**
 - tank gas
 - tank particulates
 - inflator slag (multi-phase mixture)
- AMBIENT OPERATING ENVIRONMENT
 - temperature
 - pressure
- AIRBAG DEPLOYMENT
 - dynamics of bag filling
 - thermal and mechanical response of bag as it opens
- **PROPELLANT LIFE (>15 years)**
- **PROPELLANT** DISPOSAL


GOALS AND OBJECTIVES

- DEVELOP A MODEL THAT DESCRIBES THE THERMOCHEMICAL EVENTS OCCURRING IN A GAS GENERATOR
- VALIDATE MODEL WITH EXPERIMENTS
- STUDY THE INFLUENCE OF MATERIAL PROPERTIES AND DESIGN PARAMETERS ON PERFORMANCE OF GAS GENERATOR
 - maximum inflator pressure, temperature
 - maximum tank pressure, temperature
 - tank impulse
 - pressure-time profiles
 - temperature-time profiles
 - tank gas composition
- COMPUTER PROGRAM FOR DESIGN OF NEW GAS GENERATORS


PHYSICAL MODEL OF GAS GENERATOR AND DISCHARGE TANK

GAS-ASSISTED PYROTECHNIC INFLATOR

GAS GENERATOR PERFORMANCE PARAMETERS

TIME

COMPUTER SIMULATION

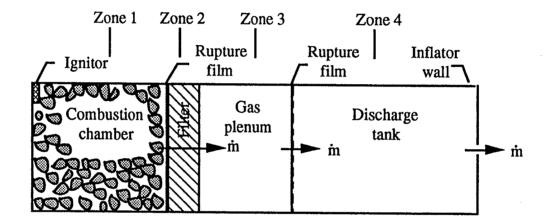
KEY FEATURES INCLUDED IN MODEL

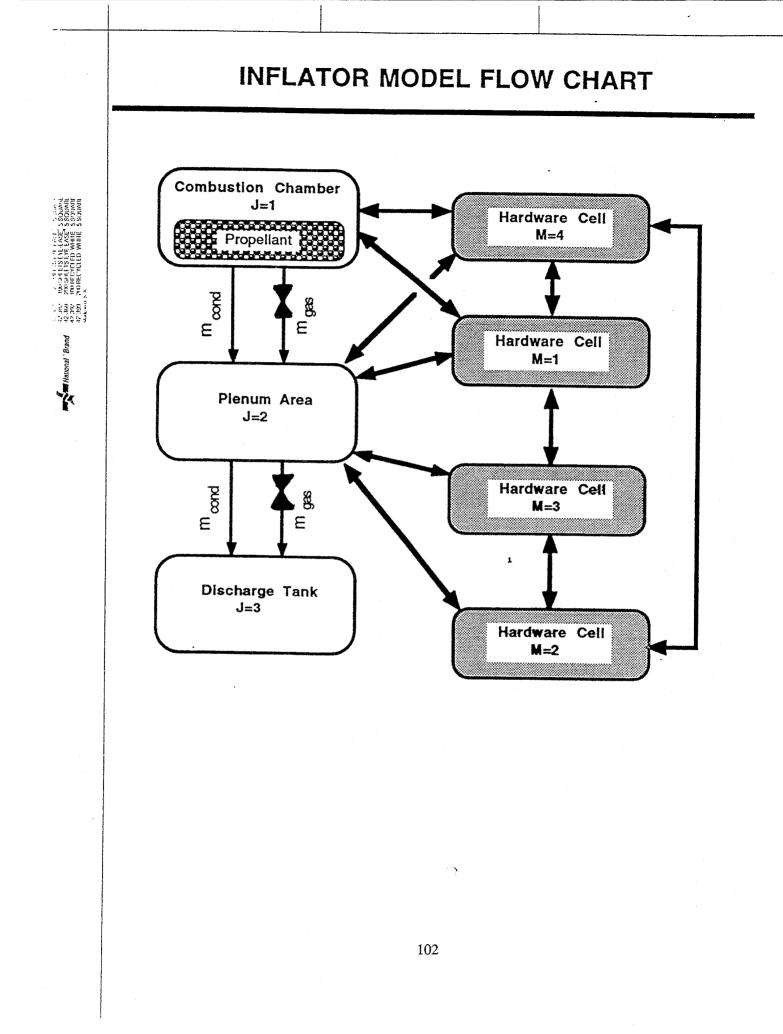
- ignition time delay (flame spreading)
- tracks individual species with time (g, s, l)
- grain geometry (form function) nozzle discharge flow rates
- filter collection process and gas flow restriction

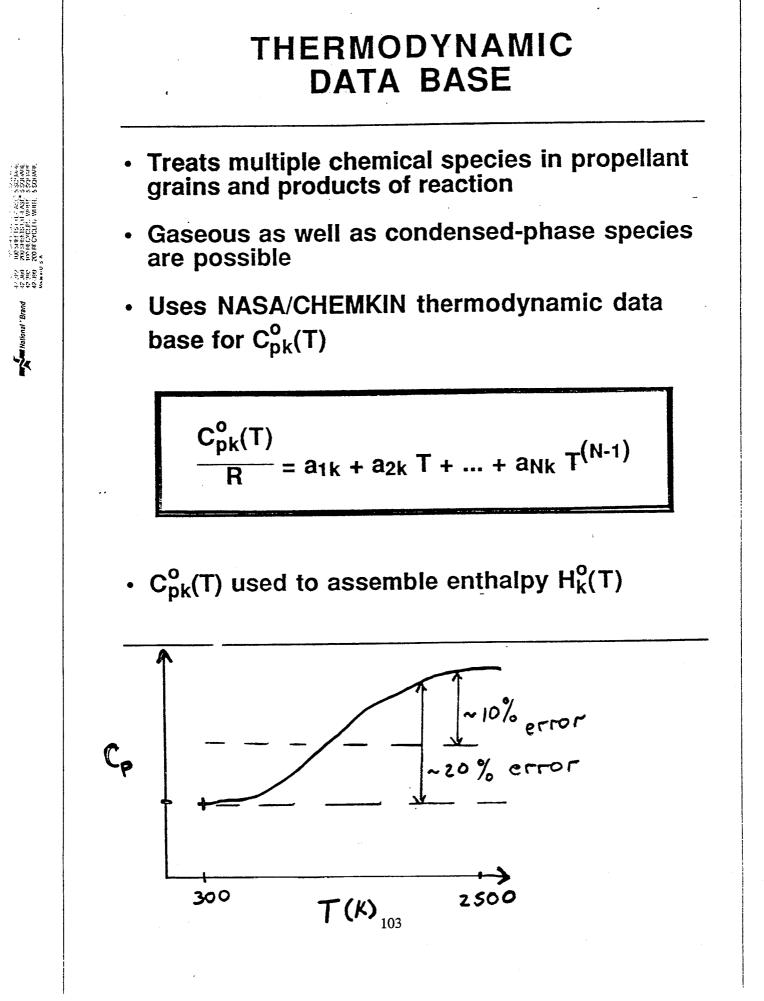
MODEL PREDICTING

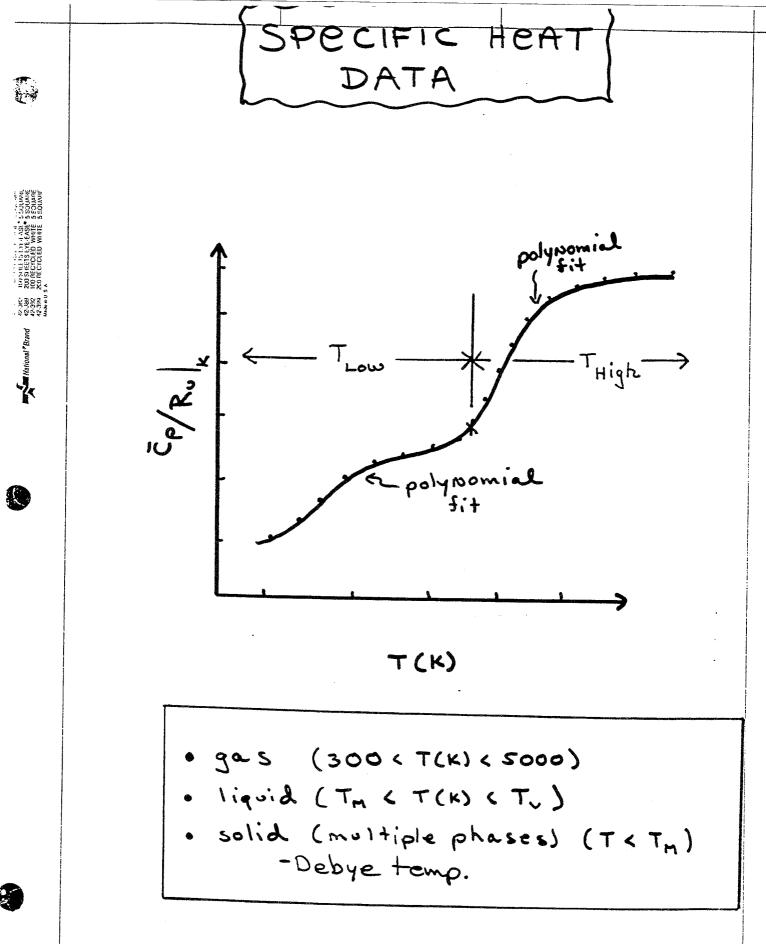
- $P_{J}(t), T_{J}(t), X_{J}(t)$
- heat exchange rates
- hardware temperatures
- propellant properties per time
- flow properties at exit nozzle
- EXPERIMENTAL VALIDATION DATA
 - ignition delay time
 - mass of collected particles in filter
 - $P_J(t), T_J(t), X_{JJ}(t = \infty), P_{JJ}(t = \infty)$
- NUMERICAL PROCEDURE
 - large system of ODE's (dT_i/dt, dm_k/dt, etc.)

 - solved using DVODE CPU time is 0.1 1 minute on HP-735

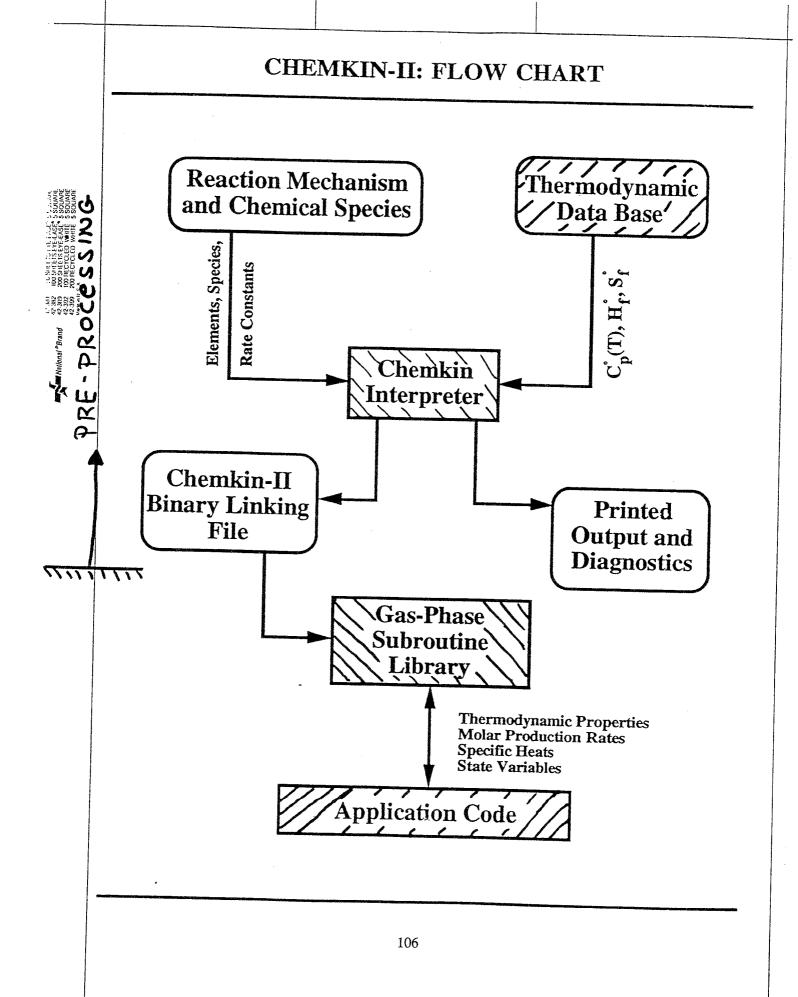

MODEL DESCRIPTION

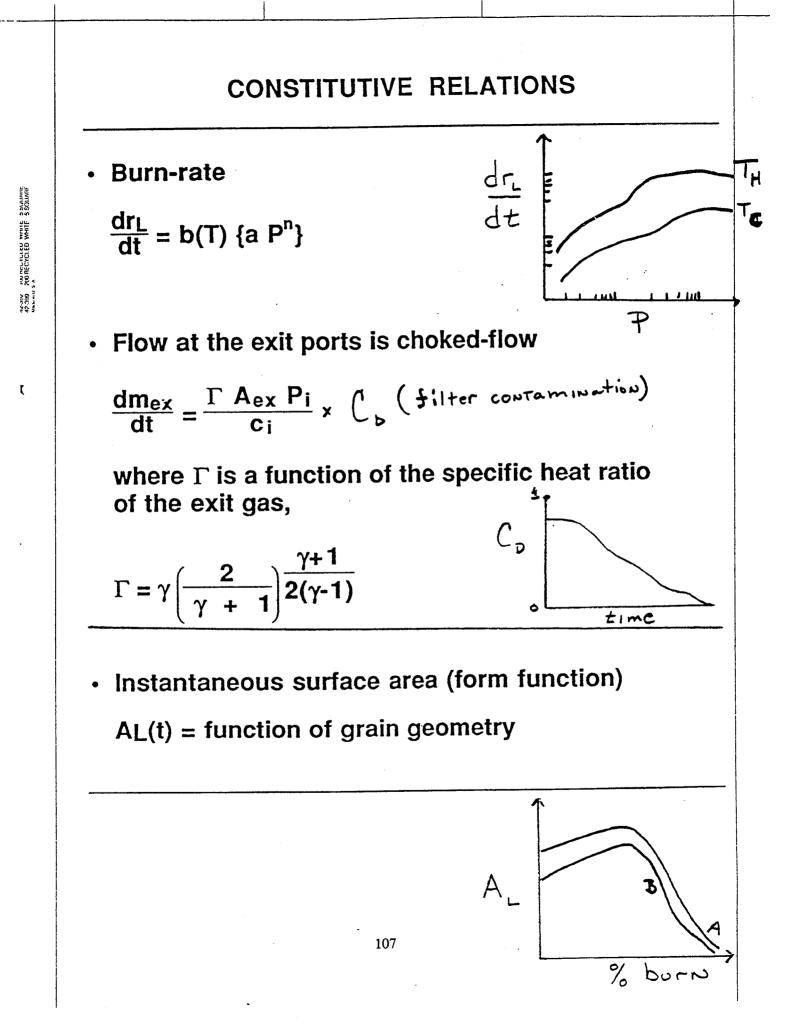

- BASED ON FUNDAMANTAL CONSERVATION LAWS (MASS, ENERGY)
- TWO MAJOR SUBSYSTEMS CONSIDERED:
 - gas generator assembly
 - discharge tank
- GAS GENERATOR ASSEMBLY INCLUDES:
 - body (metal hardware)
 - propellant grains
 - ignitor assembly
 - filter screen
 - thin metal foil for environmental seal and burst strength
- DISCHARGE TANK INCLUDES:
 - tank walls (heat loss)
 - mass discharged from inflator
- DIFFERENT MODES OF HEAT TRANSFER ARE CONSIDERED

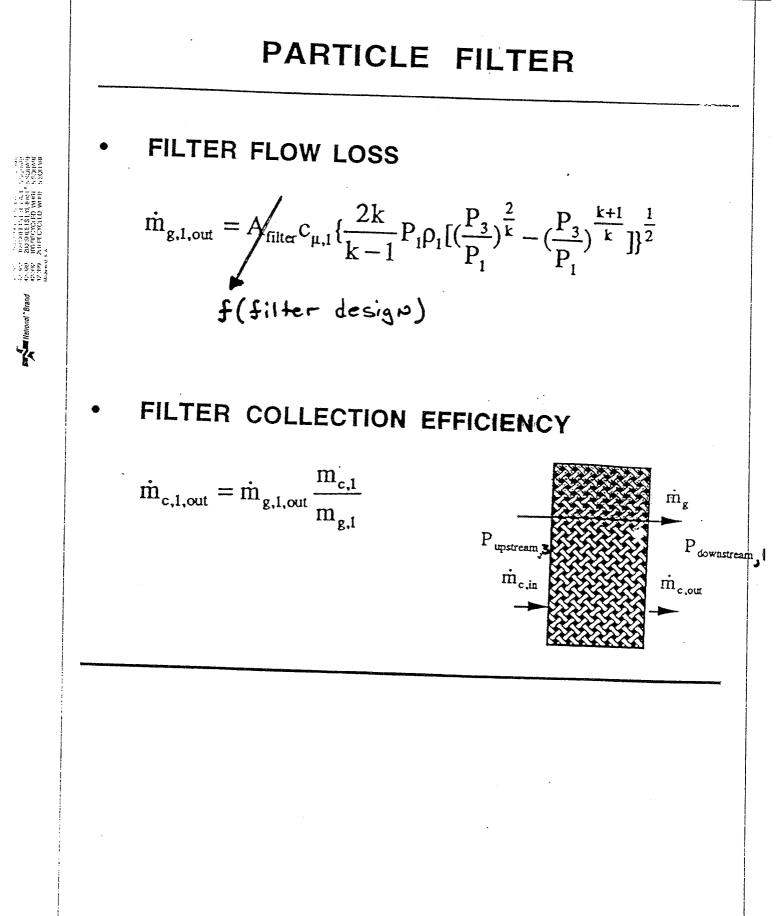

MODEL ASSUMPTIONS

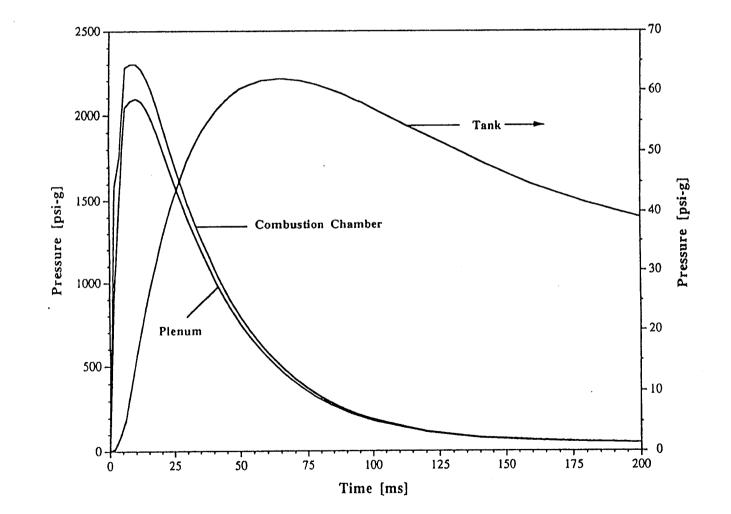

- FILTER DOES NOT COLLECT GAS SPECIES
- FILTER <u>DOES</u> COLLECT SOLID AND LIQUID PRODUCTS OF COMBUSTION
 - collection efficiency depends on filter design (mass, fiber size, etc.)
- GAS MIXTURE IS:
 - multiple species
 - $C_p(T)$
 - well-mixed, perfect gas
 - can be chemically reactive
- CONDENSED SPECIES ARE:
 - multiple species
 - $C_p(T)$
 - not compressible

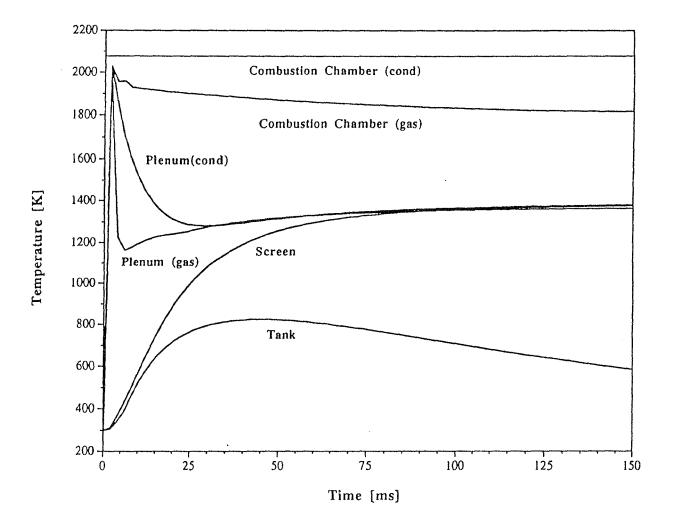
COMPUTATIONAL MODEL OF GAS GENERATOR AND DISCHARGE TANK

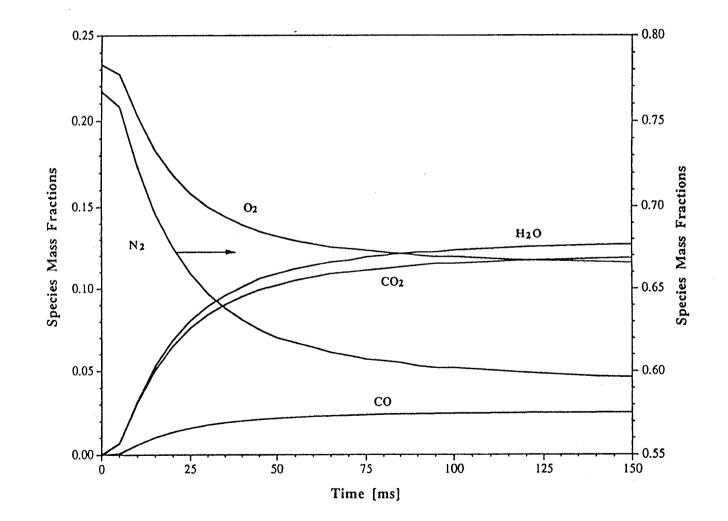


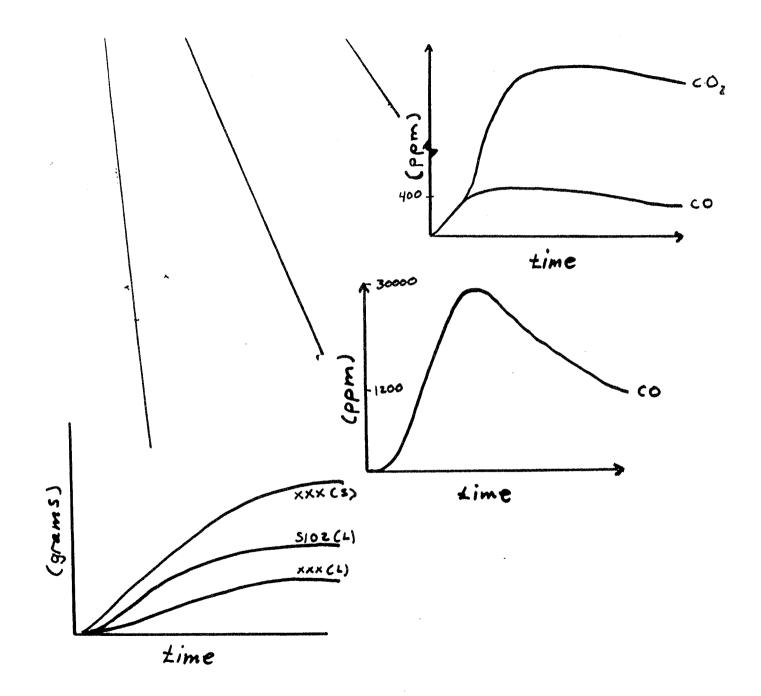


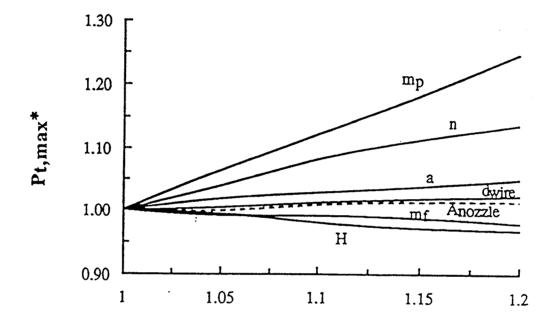


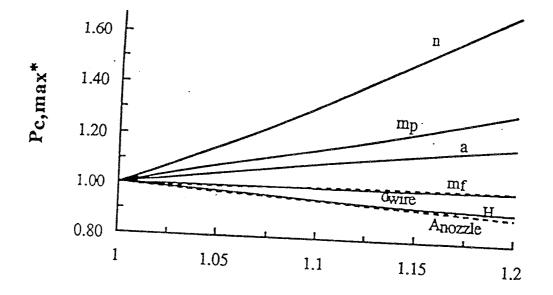

GAS-PHASE CHEMISTRY


Rxn number Symbolic representation 1. C+02<=>CO+0 2. C+OH<=>CO+H 3. HCO+OH<=>H2O+CO 4. $HCO+M \le H+CO+M$ 5. HCO+H <=>CO+H26. HCO+O<=>CO+OH 7. HCO+O<=>CO2+H 8. HCO+O2<=>HO2+CO 9. CO+O+M<=>CO2+M 10. CO+OH<=>CO2+H 11. CO+O2<=>CO2+O 12. HO2+CO<=>CO2+OH 13. H2+O2<=>2OH 14. O+OH<=>O2+H 15. O+H2<=>OH+H 16. $H+O2+M \le HO2+M$



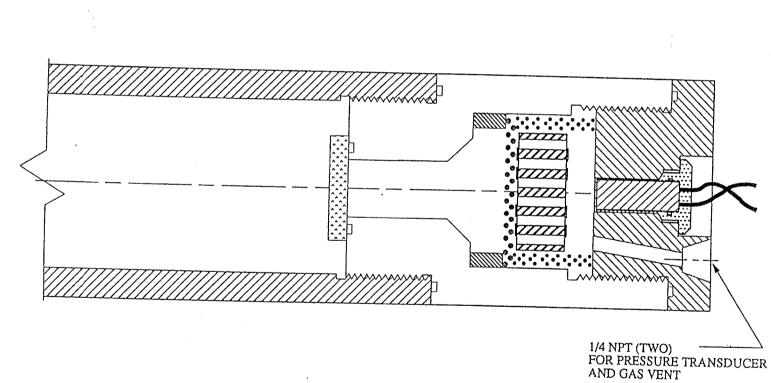






NECESSARY FOR MEANINGFUL INFLATOR SIMULATION PROGRAM

- DESCRIPTION OF PROPELLANT AND PRODUCTS CHEMICAL COMPOSITION
- TEMPERATURE-DEPENDENT SPECIFIC HEAT FUNCTIONS FOR ALL POSSIBLE SPECIES
- PRECISE SOLID PHASE PROPERTIES (V, DENSITY)
- SURFACE REGRESSION RATE (= F(P,T))
- SURFACE/VOLUME RATIO OF PROPELLANT DURING BURN
- IGNITION SEQUENCE OF THE PROPELLANT (COATING, SQUIB SIZE, TEMPERATURE, ETC.)
- FRACTURE OF GRAINS DURING RAPID PRESSURIZATION
- SOLID-PHASE THERMAL PROPERTIES (MODEL SLAG FORMATION)
- NOZZLE OPENING PROCESS (INCLUDED MULTIPLE NOZZLE SIZES TO AVOID SADDLING EFFECT)
- HEAT LOSS TO SCREENS
- DYNAMIC MASS-FLOW DISCHARGE COEFFICIENTS
- DEVELOPMENT OF EXPERIMENTAL PLAN IN PARALLEL WITH MODEL DEVELOPMENT

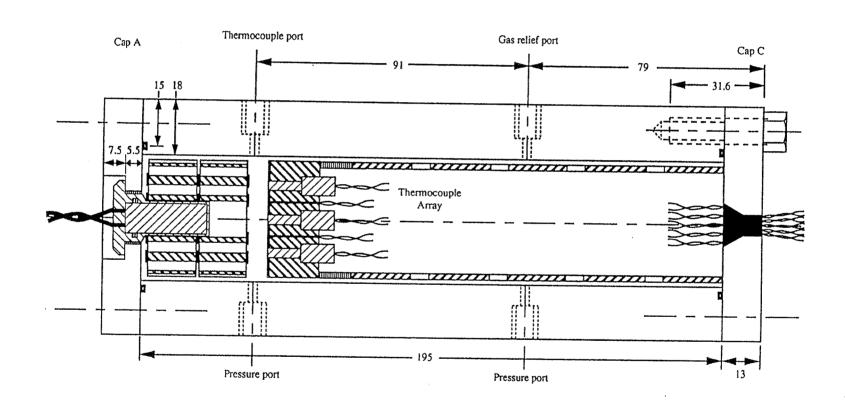

EXPERIMENTAL REQUIREMENTS

- DESCRIPTION OF PROPELLANT
 - chemical composition
 - grain geometry
 - burn-rate function
- ANALYSIS OF SPECIES REMAINING IN THE INFLATOR AFTER FIRING
- DYNAMIC PRESSURE MEASUREMENTS IN:
 - inflator body
 - discharge tank
- AFTER-FIRING INSPECTION OF HARDWARE FOR CONDENSED PARTICLES
- INDEPENDENT STUDIES OF THE FILTER COLLECTION EFFICIENCY
- INDEPENDENT STUDIES OF THE PROPELLANT IGNITION SEQUENCE

PROPELLANT CONCERNS

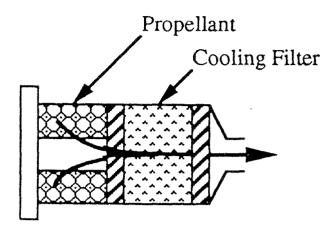
- PRODUCT CHEMICAL COMPOSITION
 - tank gas
 - tank particulates
 - inflator slag (multi-phase mixture)
- LIFE (>15 years)
- DISPOSAL
- PROPELLANT OUTPUT
 - hot vs. cold firing
 - squib can fracture propellant grains
- LABORATORY COMBUSTION STUDIES SHOULD REPLICATE ACTUAL GAS GENERATOR OPERATING ENVIRONMENT
 - high confinement (solids loading)
 - pressure variation's (14.7 4,000 psi)
 - possible slag build-up
 - flame spreading

COMBUSTION TEST APPARATUS

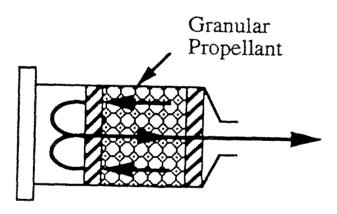


IGNITION CONCERNS

ACTION TIME


- hot vs. cold firing
- uniform performance of "similar" squibs some "good" gas-generating propellants require accelerant coatings
- IGNITOR OUTPUT
 - hot vs. cold firing
 - uniformity in performance of "similar" squibs
 - can fracture propellant grains
- IGNITOR LIFE
 - uniform performance after storage
- INDEPENDENT STUDIES OF IGNITOR AND **PROPELLANT IGNITION SEQUENCE ARE NECESSARY UNDER ALL OPERATING** CONDITIONS

IGNITION TEST APPARATUS



- COMPREHENSIVE GAS GENERATOR MODEL WAS DEVELOPED
- MODEL HAS BEEN APPLIED TO
 - conventional pyrotechnic inflators
 - hybrid inflators
- AGREEMENT WITH DATA IS EXCELLENT
- MODEL IS A USEFUL TOOL FOR DESIGN AND DEVELOPMENT OF:
 - new inflators (material properties, size, etc.)
 - new pyrotechnic compositions
 - propellant grain modifications
 - ignitors
 - new filter designs
- EXPERIENCE SHOWS THAT A RELIABLE EXPERIMENTAL DATABASE IS ESSENTIAL
- WE RECOMMEND THAT SOLID PROPELLANT FIRE EXTINGUISHMENT PROGRAM FOLLOW SAME METHODOLOGY

ALTERNATIVE DESIGNS

a.) Standard Scheme

b.) Self-cooling Scheme

ASPECTS OF FLAME SUPPRESSION

Anthony Hamins

Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 20899

OBJECTIVE

Give guidance on the performance of fire suppression systems in engine nacelles.

Compare Effectiveness of 3 Key Agents

Formula	Designation	IUPAC Name	
CF ₃ I		iodotrifluoromethane	
$C_2 HF_5$	HFC-125	pentafluoroethane	
C ₃ HF ₇	HFC-227ea	heptafluoropropane	

Testing Solid Propellant Gas Generators

1. What are key parameters controlling flame extinction?

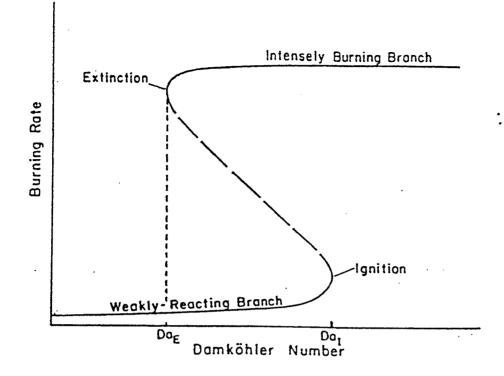
Flow Velocity

Air Temperature

Pressure

⁵ baffle height

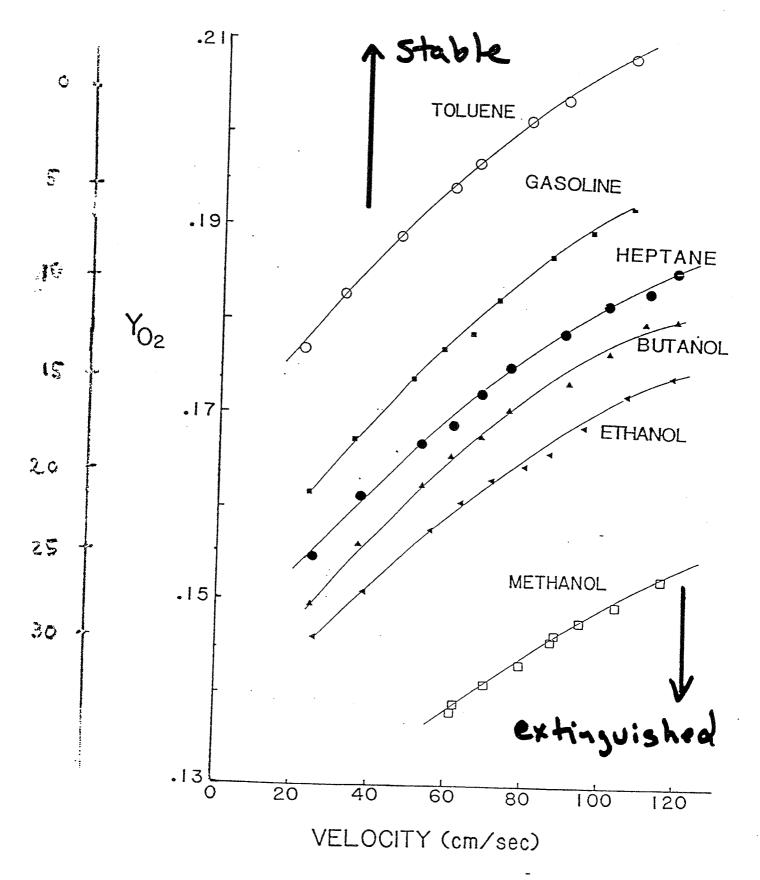
Agent

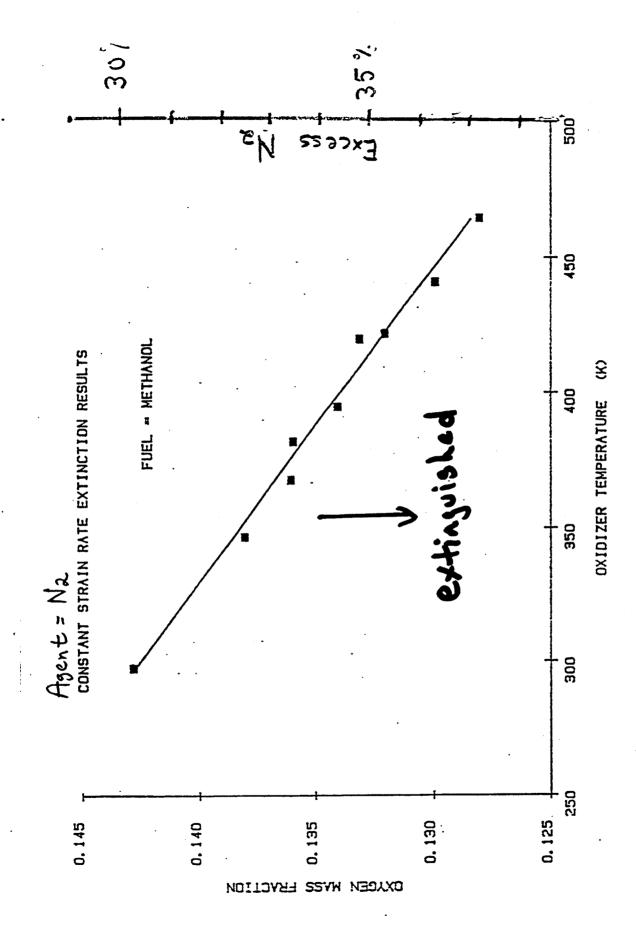

Fuel

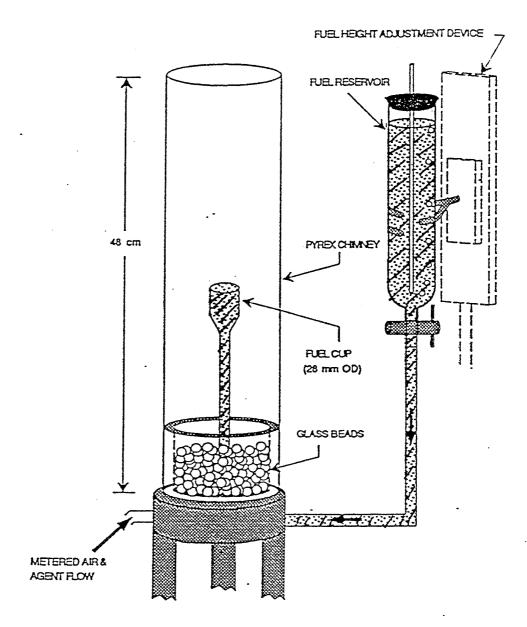
2. What is an appropriate test apparatus?

ASPECTS OF FLAME SUPPRESSION

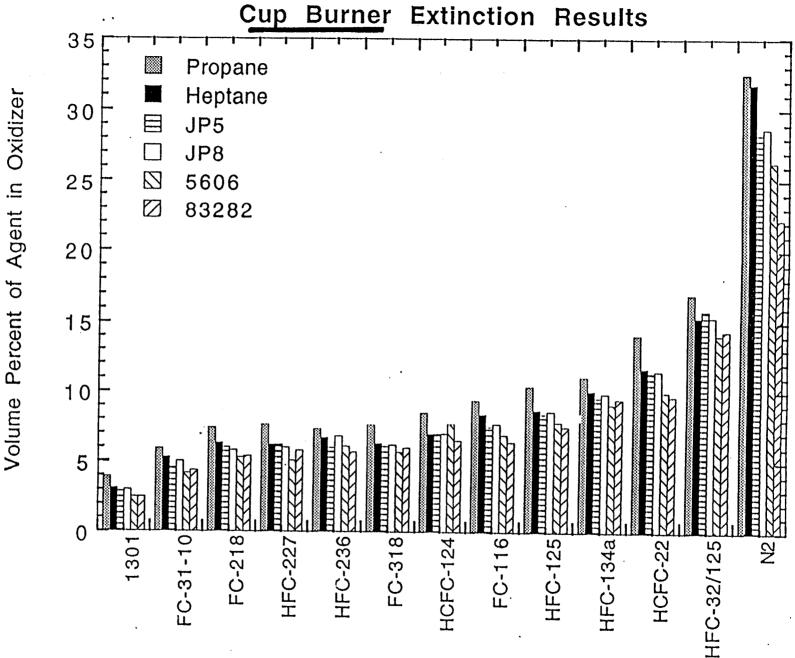
Suppression Tests

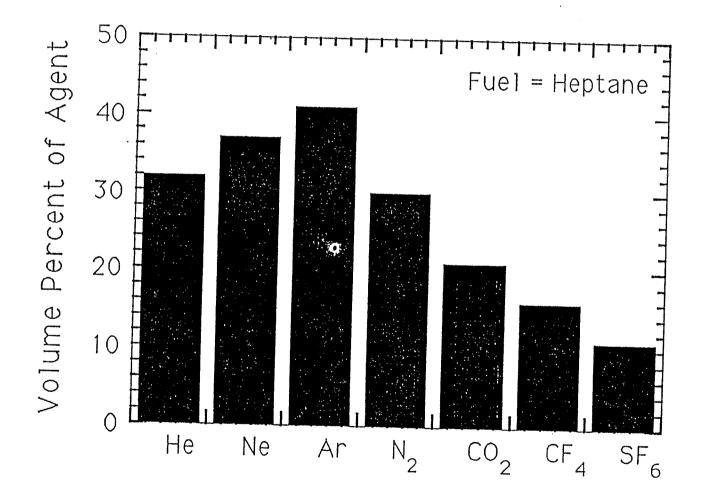

نم	Experiment	Flow Configuration	Type of Combustion	Flow Field
126	cup burner	coflow	non-premixed	quasi- laminar
	opposed flow diffusion flame	counterflow	non-premixed	laminar
	baffle stabilized spray flame	obstacle in middle of field	recirculation zone	turbulent
	baffle stabilized pool fire	obstacle against wall	recirculation zone	turbulent




Da =
$$\tau_{\rm F} / \tau_{\rm CR}$$
 = Flow Time / Chemical Reaction Time

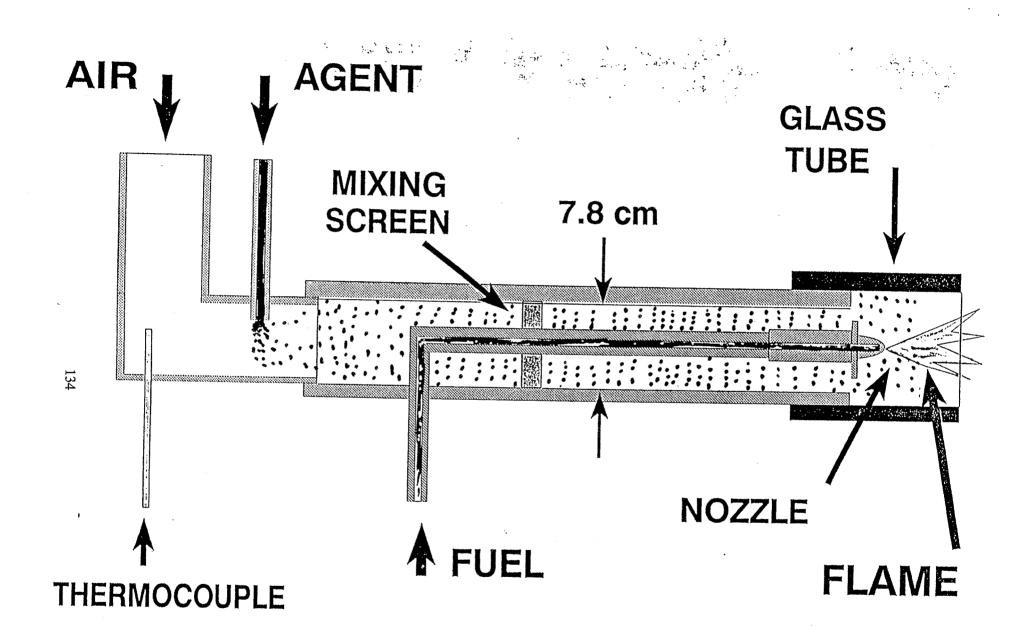
 $\tau_{\rm F} \propto 1/(\text{Velocity Gradient}) = 1/(U/L)$ $\tau_{\rm CR} \propto 1/(\text{Rate Constant}) = 1/(B \cdot \exp[-E/RT])$


Exuse N.

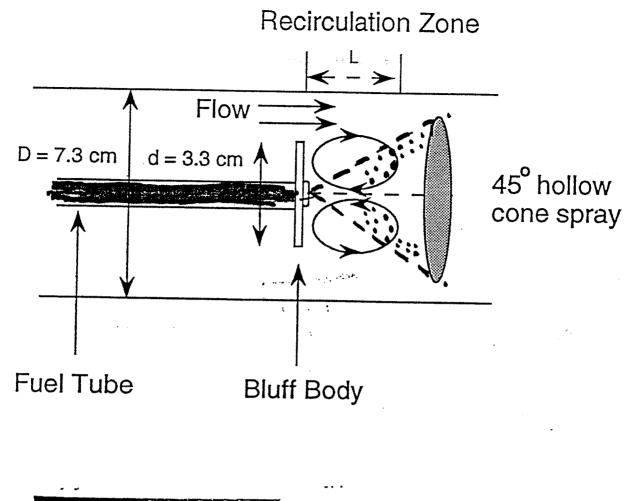


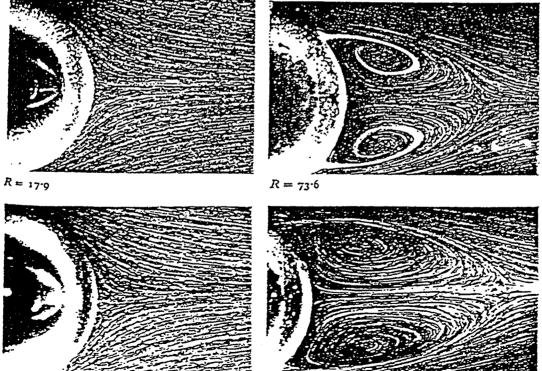
CUP BURNER

÷

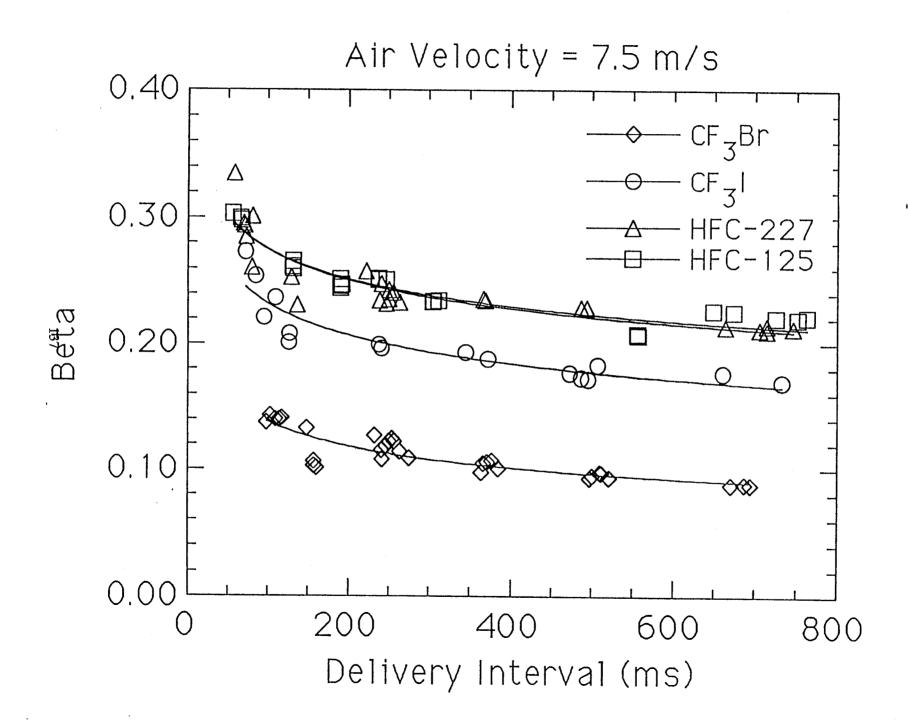


	Frame Scapiticy In a	a Recifculation Zone
	Parameter	increased Stability
	velocity	decreased
	temperature	increased
	pressure	increased
	turbulence	decreased
	equivalence ratio	flammability peak
	flame-holder size	increased
	flame-holder drag coefficent	increased
	geometric blockage	increased
	fuel volatility	increased
	atomization	finer


1


Flame Stability in a Recirculation Zone


۰. ۱



 $\begin{array}{c} R = 118\\ 135 \end{array}$

R = 25.5

Mass (g)

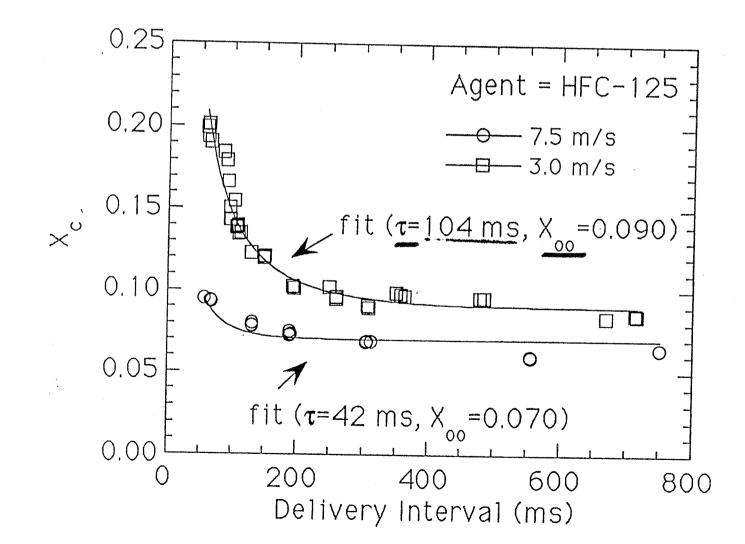
AGENT ENTRAINMENT INTO RECIRCULATION ZONE

• Predict X_i as function of Δt , Velocity

Assumptions

- To extinguish flame, $X_i(\Delta t) \ge X_c$.
- Zone length (L) assumed constant.
- Instantaneous mixing occurs.
- Spray characteristics unimportant.

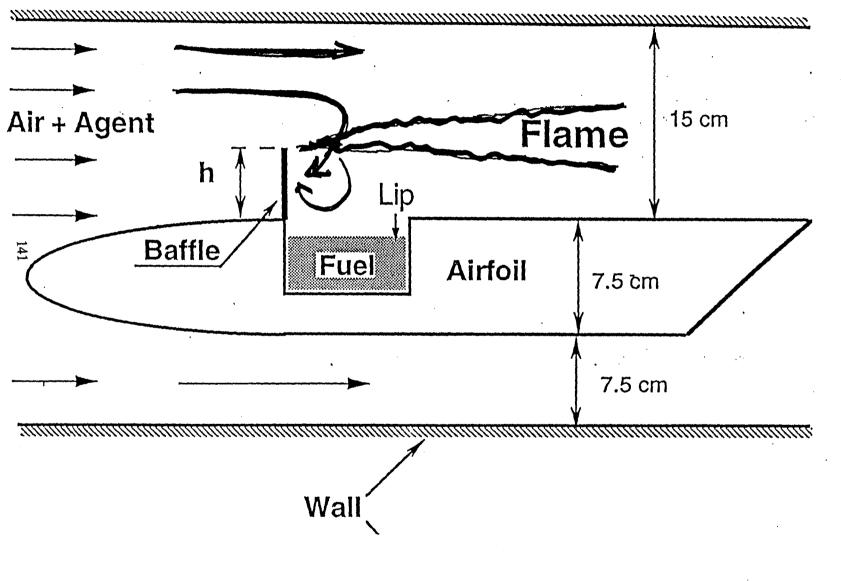
AGENT ENTRAINMENT INTO RECIRCULATION ZONE

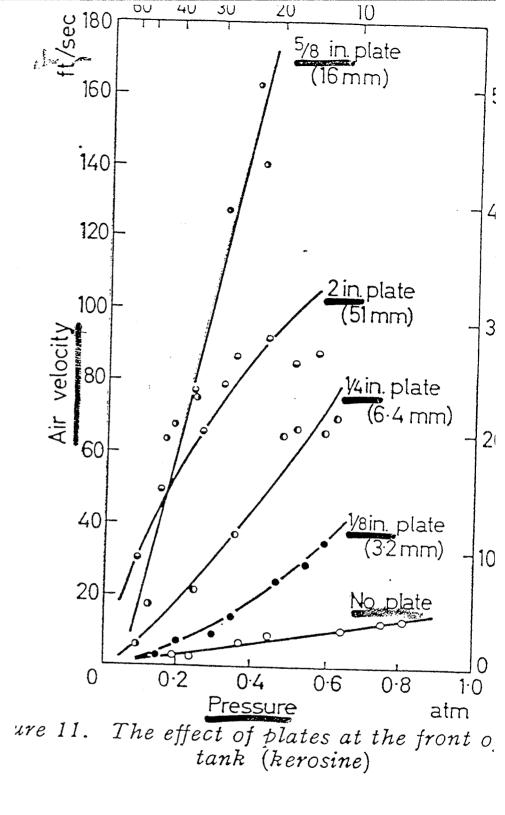

Results

$$X_{c}(\Delta t) = \frac{X_{\infty}(\Delta t \gg \tau)}{1 - e^{(-\Delta t/\tau)}}$$

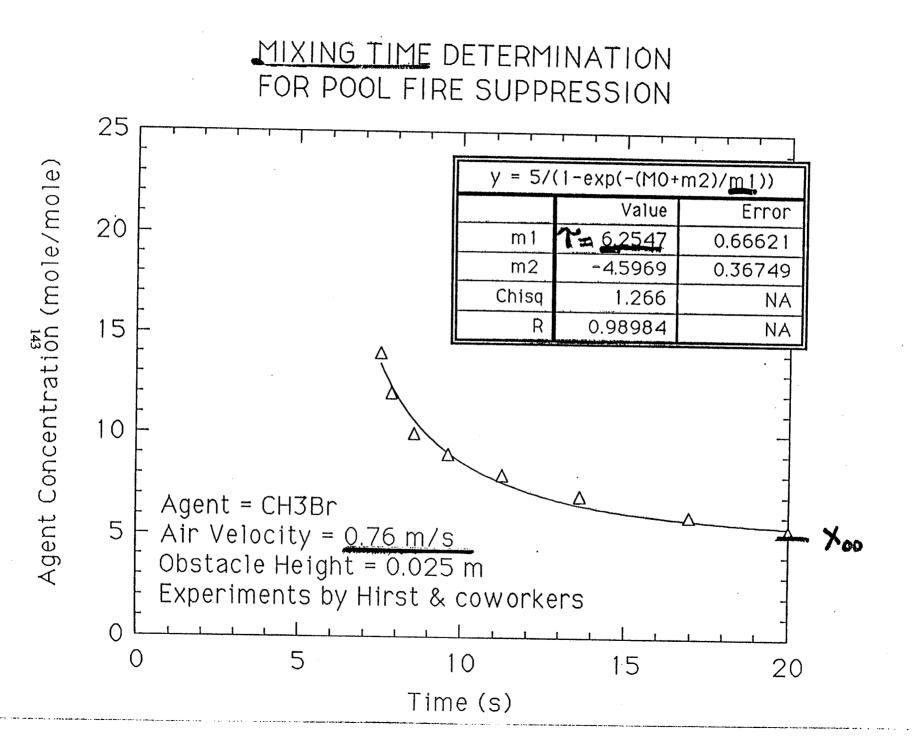
• $\Delta t = injection interval.$ • $\tau \approx L / V_{air}$ • $\Delta t_c \geq -\tau \cdot ln(1-X_{\infty});$ i.e. $\Delta t_c \propto \tau$

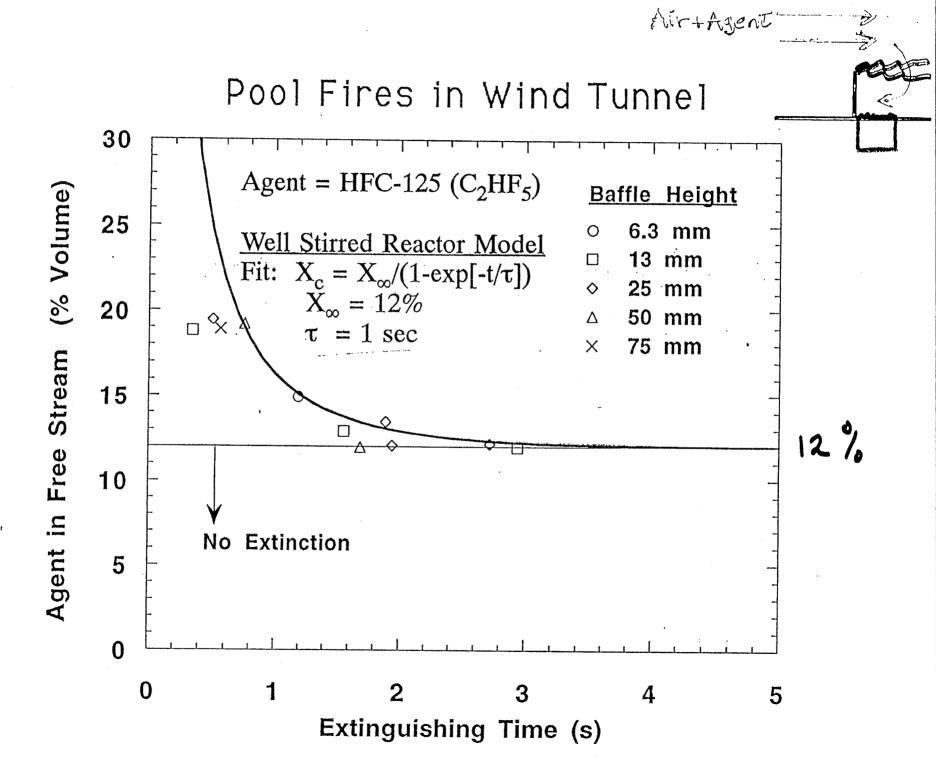
Limitations

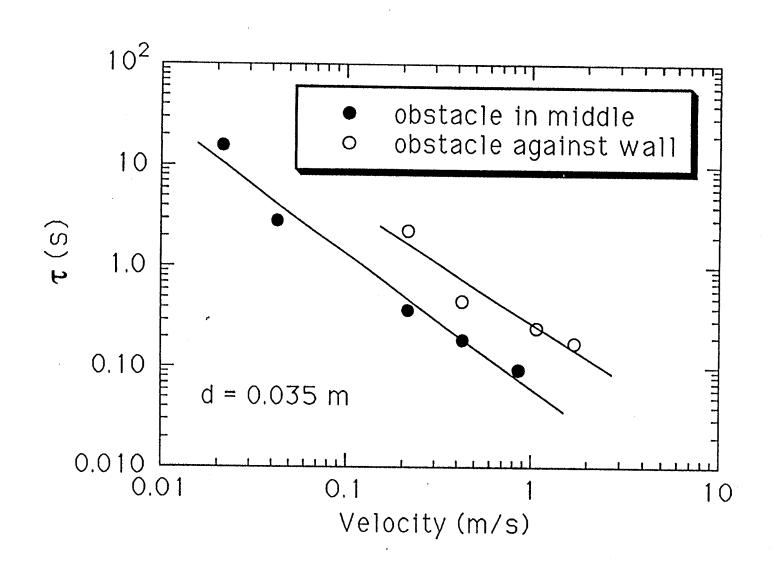

• X_{∞} is not predicted, but is a function of agent chemistry.


Avered M.

140


ł


Side Vew



1.5 miles = 1300

CONCLUSIONS

:.

146

In general, baffle stabilized pool fires are more <u>dangerous</u> than baffle stabilized spray fires because:

1. Long mixing times associated with agent entrainment into the recirculation zone of an obstacle against a wall.

2. Higher agent concentration is required to achieve extinction.

A fire of this sort may occur in an engine nacelle when a fuel puddle is located downstream of a rib.

• A fire with a heated oxidizer flow requires more suppressant to extinguish.

SPECIES CONCENTRATION MEASUREMENTS

William M. Pitts Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

Coworkers: George Mulholland, Brett Breuel, Dick Harris, Mike Glover, Darren Lowe, Steven Chung, Rik Johnsson, Yonas Makai (PL), David Hess (CSTL)

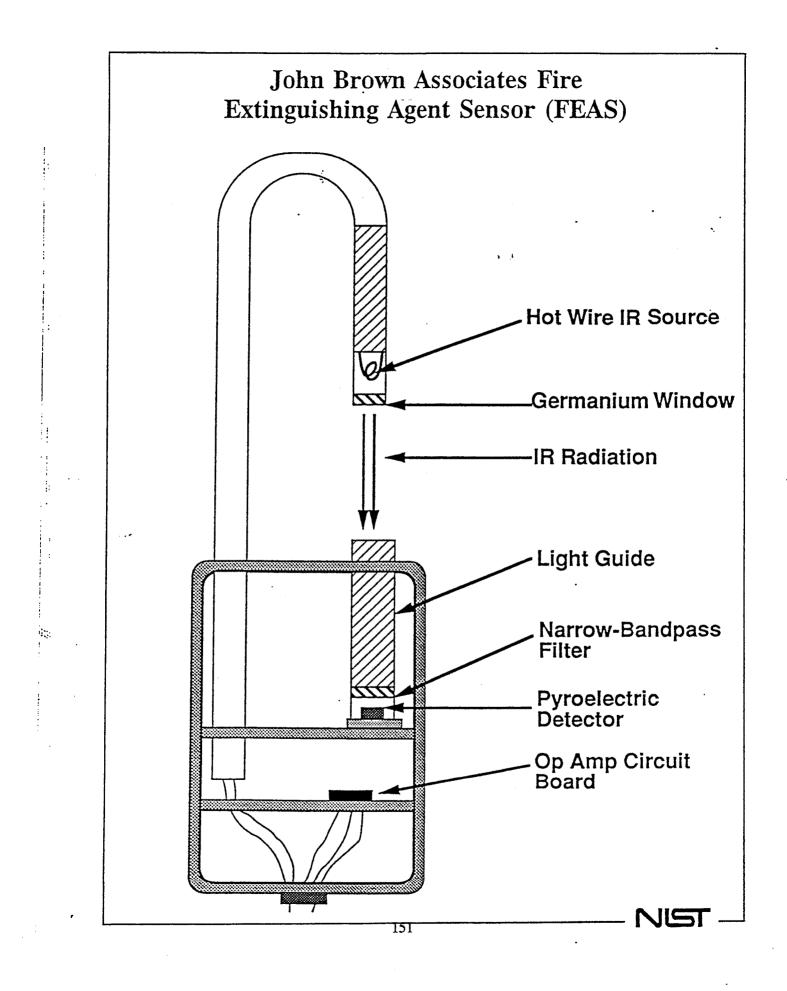
Solid Propellant Gas Generator Workshop NIST, June 28, 1995

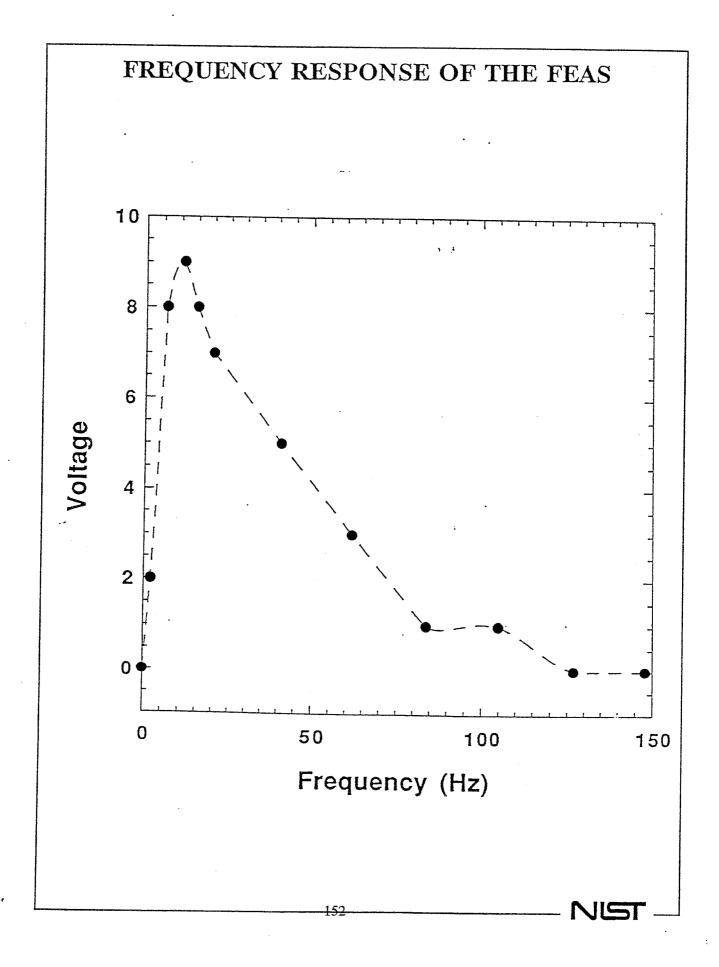
REAL-TIME CONCENTRATION MEASUREMENT

PROJECT OBJECTIVE

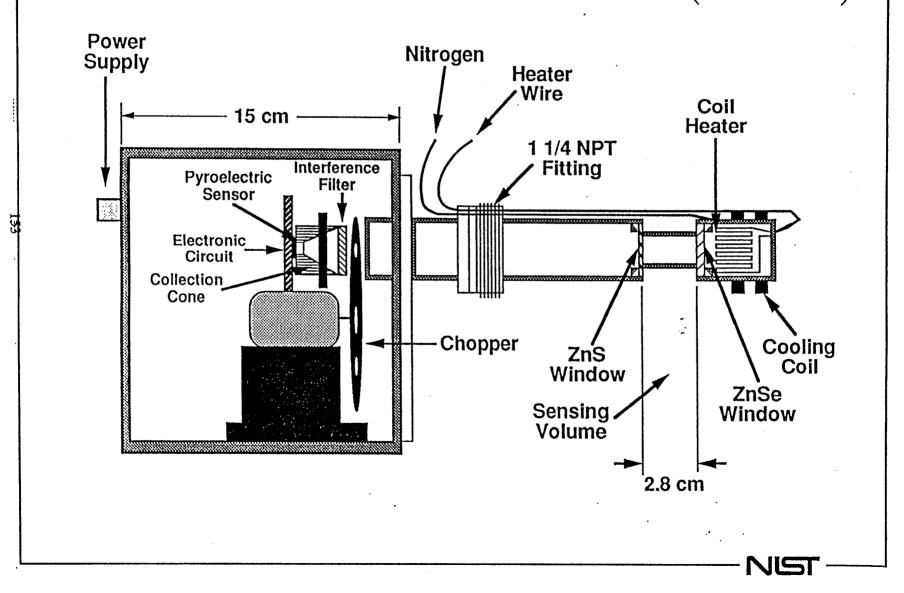
The objective of this effort is to evaluate possible methods for real-time measurements of concentrations of alternative fire fighting agents for drybay and nacelle fire applications. If one or more feasible approaches are identified early in the investigation, a demonstration system will be developed for characterization under actual test situations.

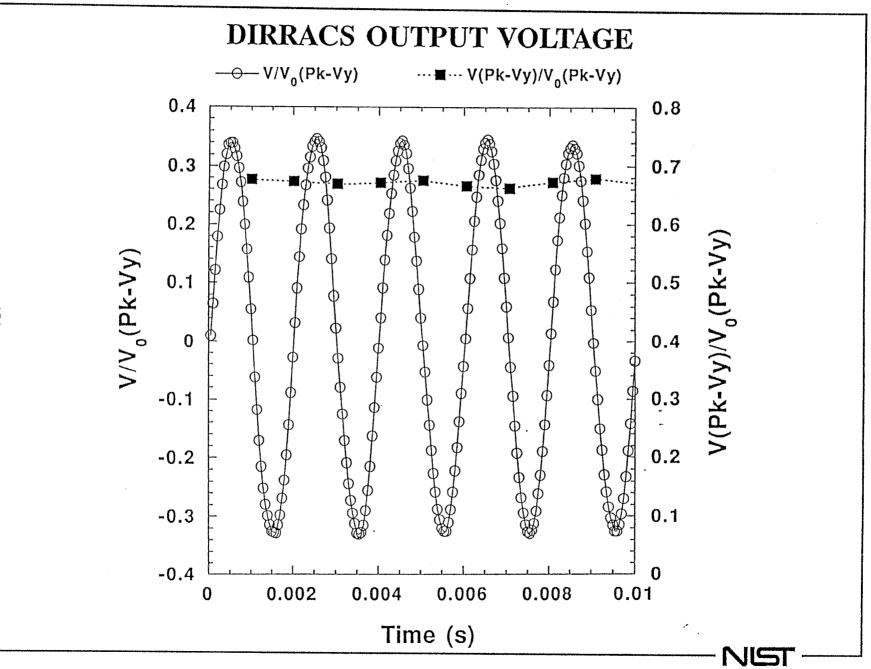
MAJOR TASKS

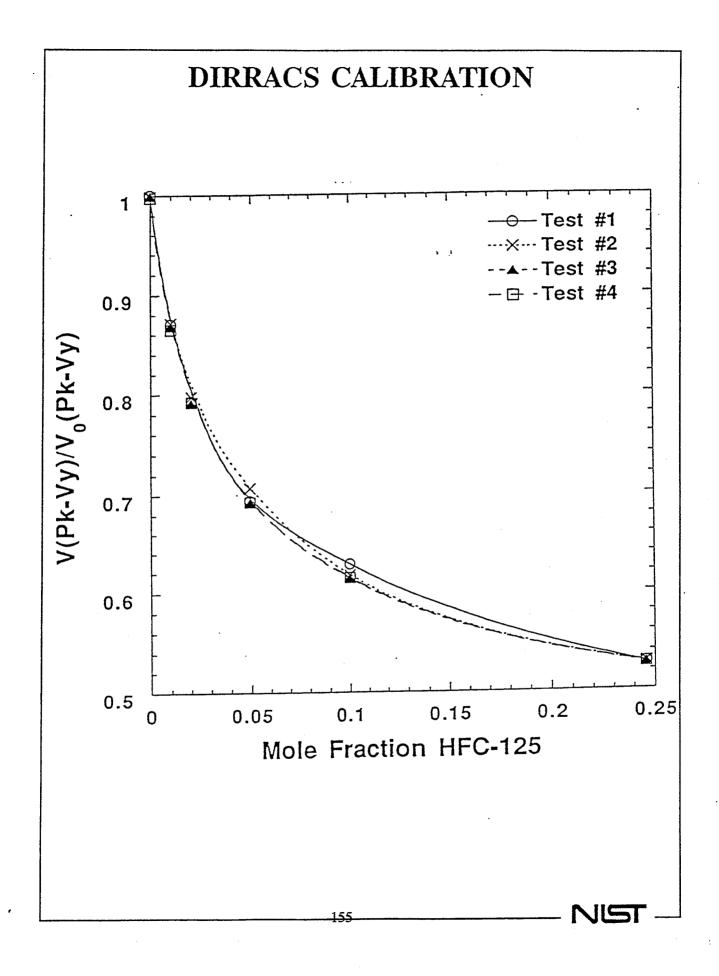

- 1. Review of the Concentration Measurement Literature
- 2. Evaluate and Test Instrumentation Developed with Air Force Funding
- 3. Evaluate and Test Hot-Film Probes
- 4. Development of Operating Procedures (Optional)

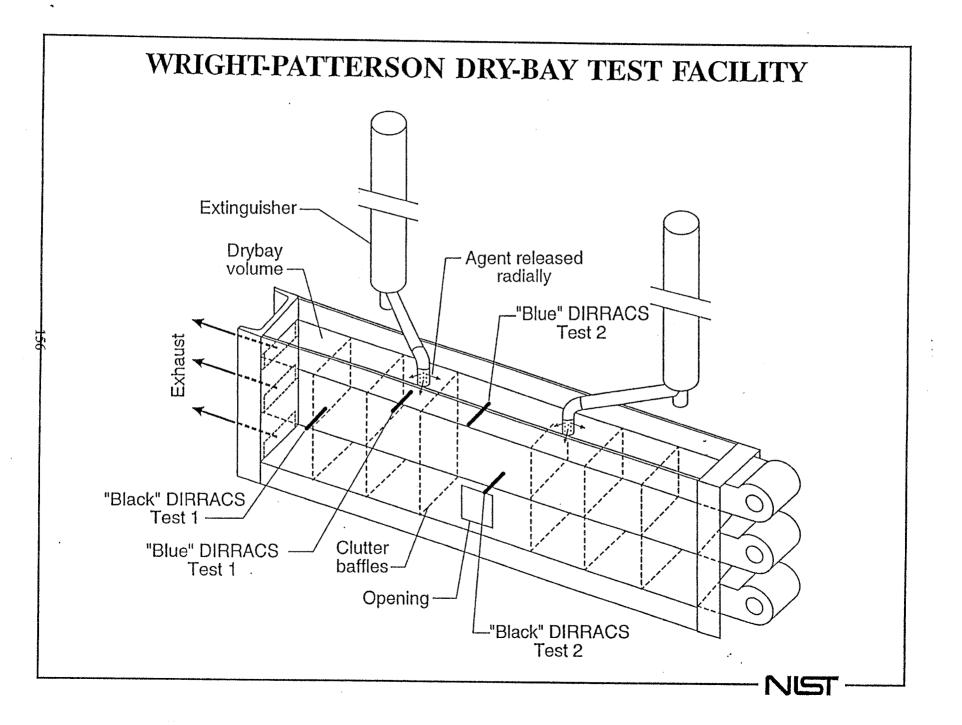

OUTLINE

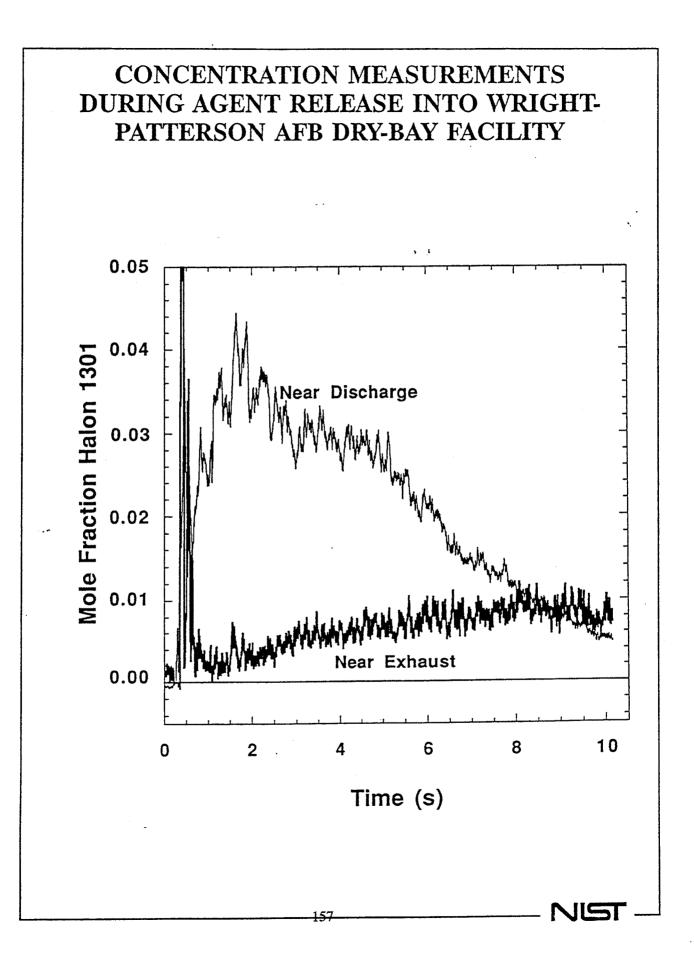
- 1. Introduction
- 2. Fire Extinguishing Agent Sensor (FEAS)
- 3. Differential Infrared Rapid Agent Sensor (DIRRACS)
- 4. Combined Aspirated Hot-Film/Cold-Wire Probe
- 5. Statham Analyzer and Halonyzer
- 6. Literature Review

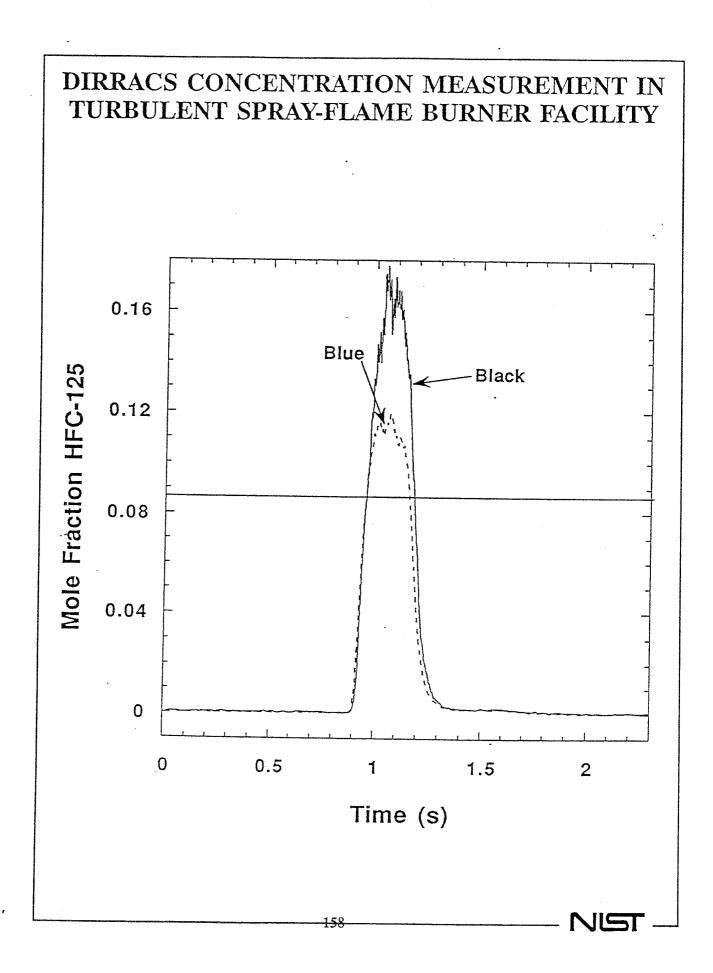

TIME RESOLUTION REQUIREMENTS


- Dry-bay application requires fire extinguishment in tens of milliseconds.
- In order to characterize concentration behavior must be able to make real-time measurements significantly faster than the event.
- A temporal resolution of one millisecond (1 kHz data rate) was chosen as design goal.
- Note that the required temporal resolution places constraints on spatial resolution.
- Compare current requirement with temporal response of existing Statham and Halonyzer instruments (0.25 s).

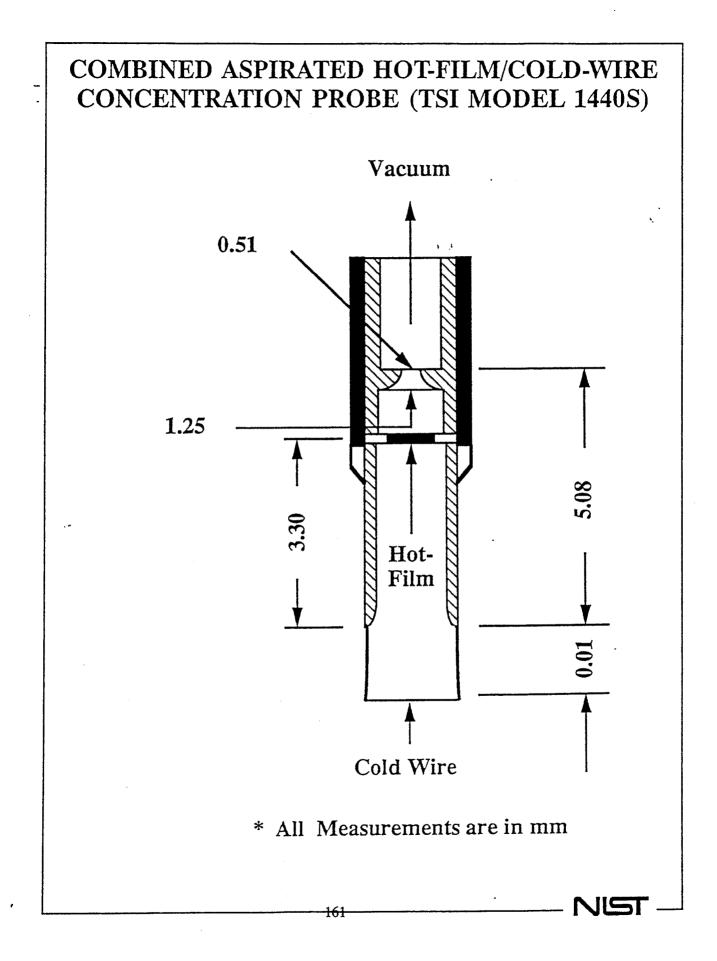


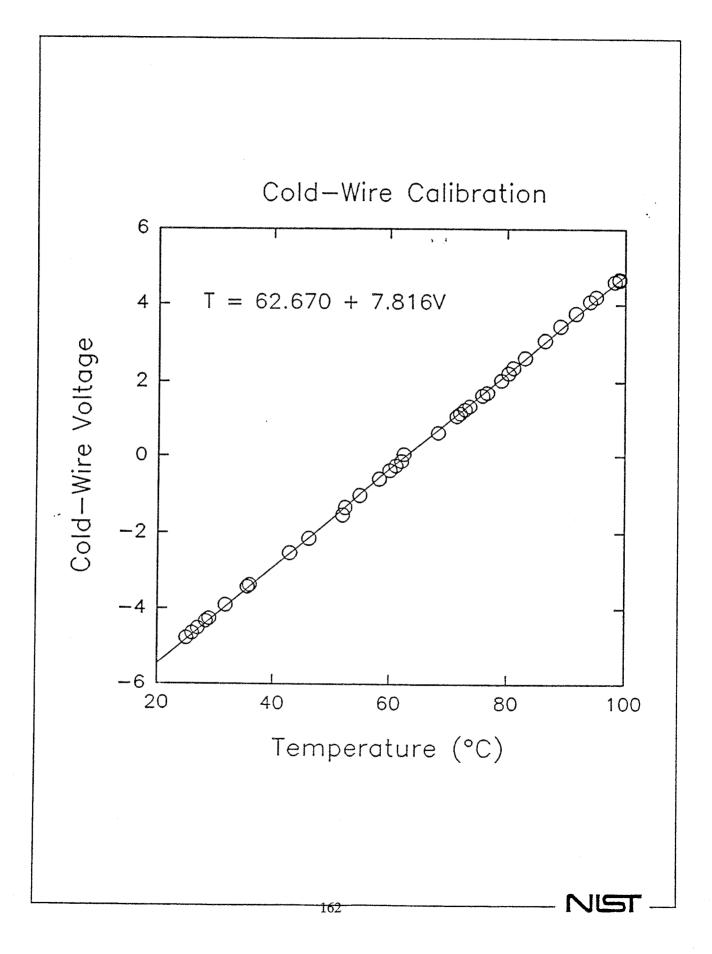


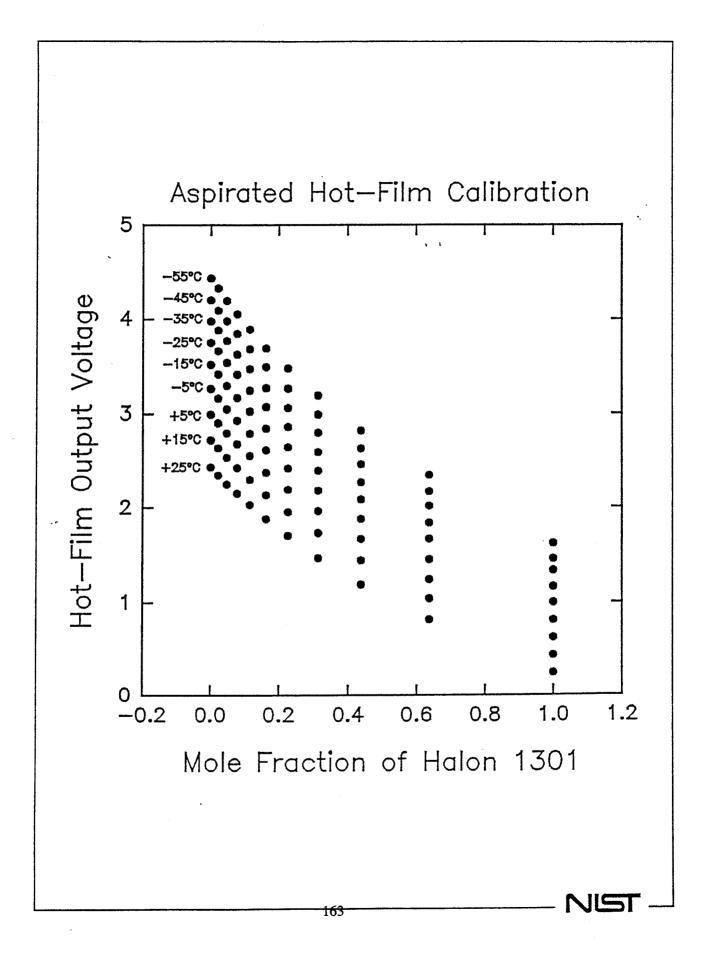

SCHEMATIC FOR THE <u>DIFFERENTIAL INFRARED</u> <u>RAPID AGENT CONCENTRATION SENSOR (DIRRACS)</u>

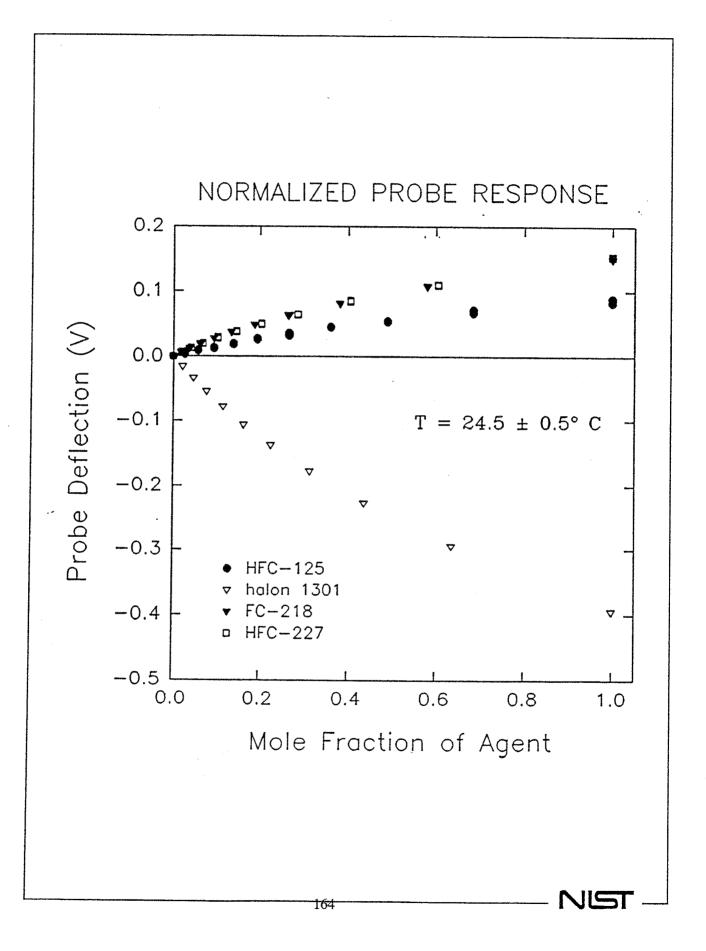


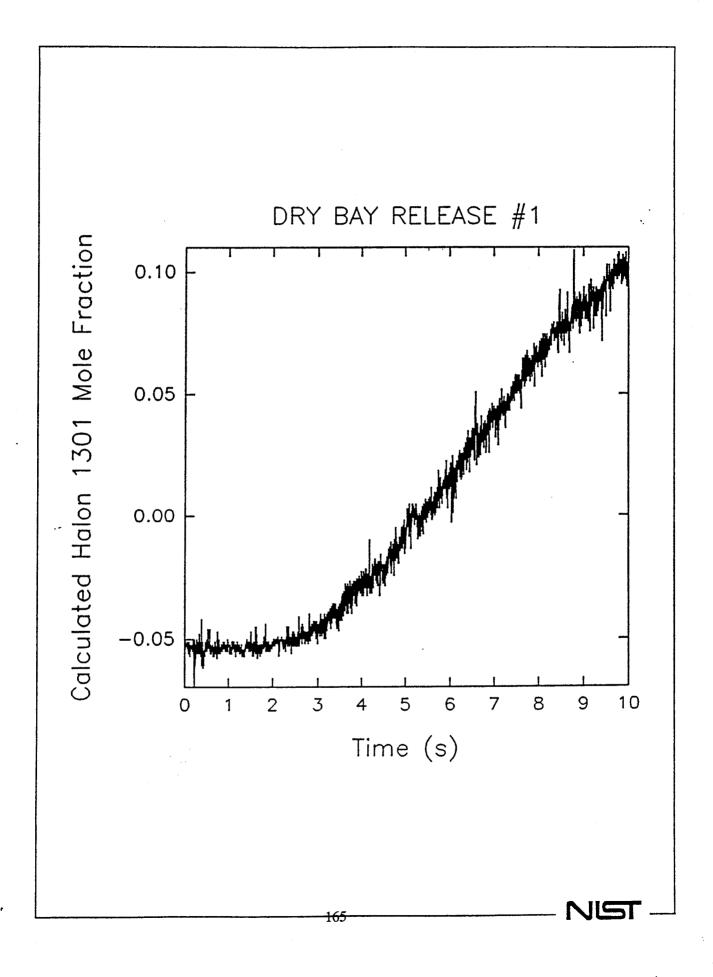
÷

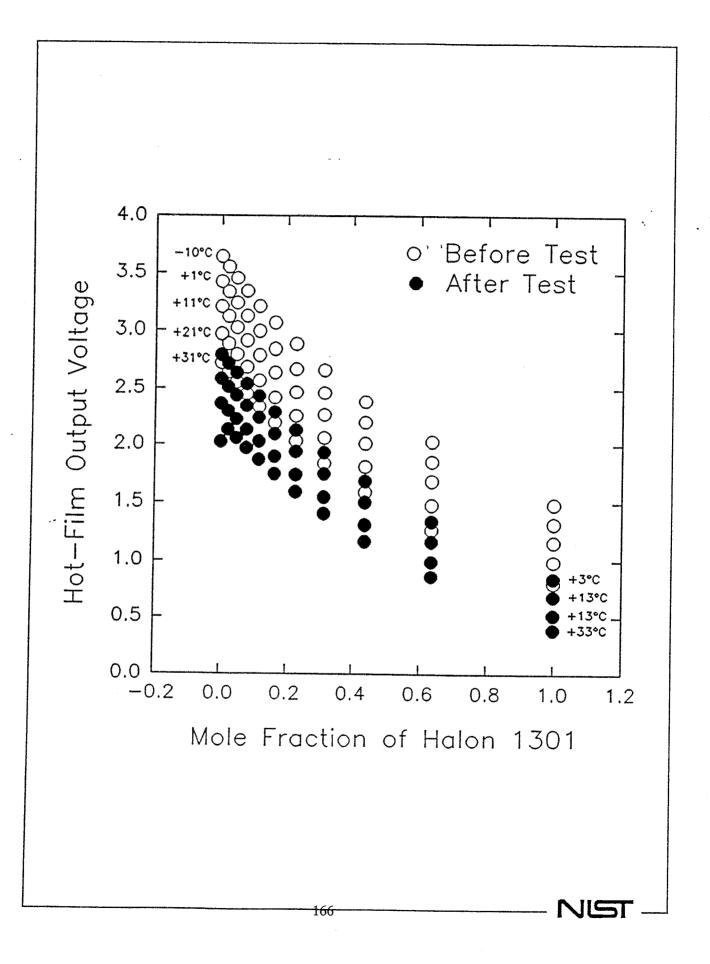


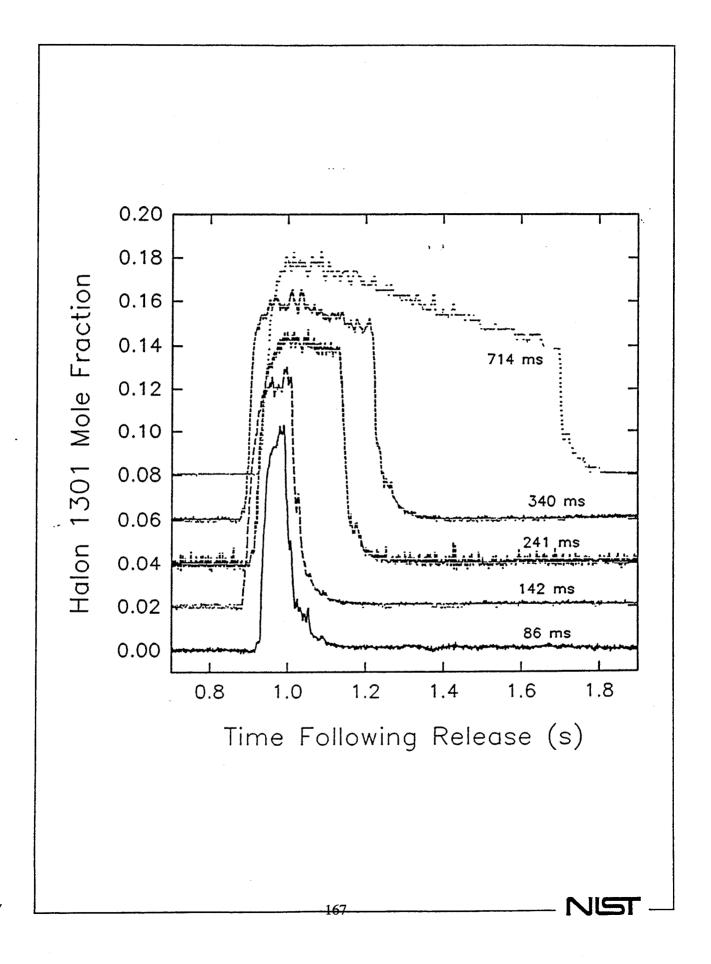

CURRENT STATUS OF DIRRACS

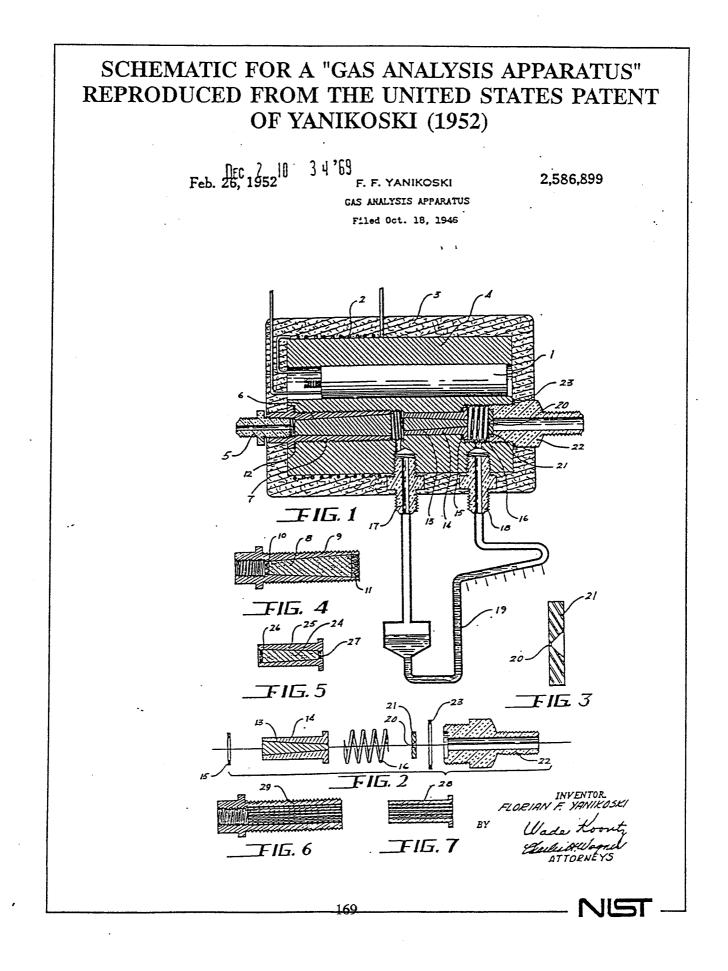

- Feasibility demonstrated.
- Sensitivity to flow velocity must be eliminated.
- Reduction of sampling volume is desirable.

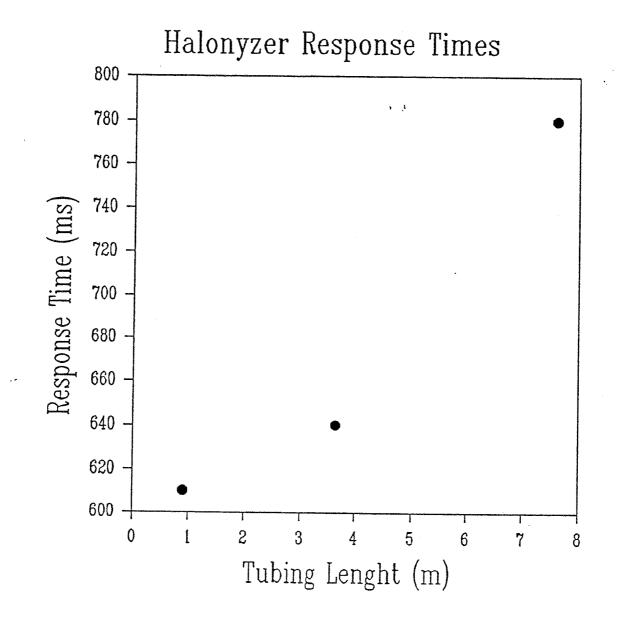

COMBINED ASPIRATED HOT-FILM/ COLD-WIRE CONCENTRATION PROBE


- Hot-film anemometer measures heat loss from heated cylinder, normally used for velocity measurement, but also responds to concentration and temperature variations.
- Volume flow rate through a choked orifice only depends on upstream pressure, stagnation temperature, and gas molecular weight.
- Placing hot-film in aspirated tube containing choked orifice eliminates most sensitivity to velocity and creates probe sensitive to concentration and temperature changes.
- Utilize a cold wire as a resistance thermometer to record temperature.
- Proper calibration of the combined aspirated hotfilm/cold wire probe allows concentration to be measured in binary mixtures.
- Sampling volume $\approx 1 \text{ mm}^3$, temporal resolution $\approx 1 \text{ ms}$









CURRENT STATUS OF COMBINED ASPIRATED HOT-FILM/COLD-WIRE PROBE

- Probe is subject to clogging during actual dry-bay tests (attributed to use of squib charge).
- Probe has an unexpected sensitivity to velocity fluctuations.
- Probe is capable of accurate measurements of agent concentration with high temporal and spatial resolution.
- Probe sensitivity depends on gas pairs considered.
- Additional development <u>might</u> lead to a probe which could be used in dry-bay and nacelle test facilities.

Response times for a Halonyzer concentration reading to change from 0 to 95% for a step increase in halon 1301 mole fraction to 100% as a function of sampling tube length. Data provided by W. Meserve and D. Van Ostrand of Pacific Scientific.

11.5 Literature Search For Additional Diagnostics for High-Speed Alternative-Agent
Concentration Measurement
11.5.1 Introduction
11.5.2 "Standard" Chemical-Analysis Techniques
11.5.2.1 Gas-Solid and Gas-Liquid Chromatography.
11.5.2.2 Mass Spectrometry.
11.5.2.3 Standard Optical Absorption Techniques.
11.5.3 Fiber-Optic-Based Measurements of Concentration
11.5.3.1 Introduction To Fiber Optics.
11.5.3.2 Spatially Resolved Absorption Concentration Measurements Using
Fiber Optics.
11.5.3.3 Other Fiber-Optic-Based Concentration Measurement Approaches.
11.5.4 Additional Optical-Based Techniques
11.5.4.1 Raman Spectroscopy.
11.5.4.2 Coherent Anti-Stokes Raman Spectroscopy (CARS).
11.5.4.3 Rayleigh Light Scattering.
11.5.4.4 Fluorescence Concentration Measurements.
11.5.4.5 Mie Scattering Concentration Measurements.
11.5.4.6 Specialized Concentration Measurements Based on Optical
Absorption.
11.5.4.7 Optical Speckle Technique.
11.5.4.8 Miniature Mach-Zehnder Interferometer.
11.5.5 Acoustic Absorption
NST

. .

-

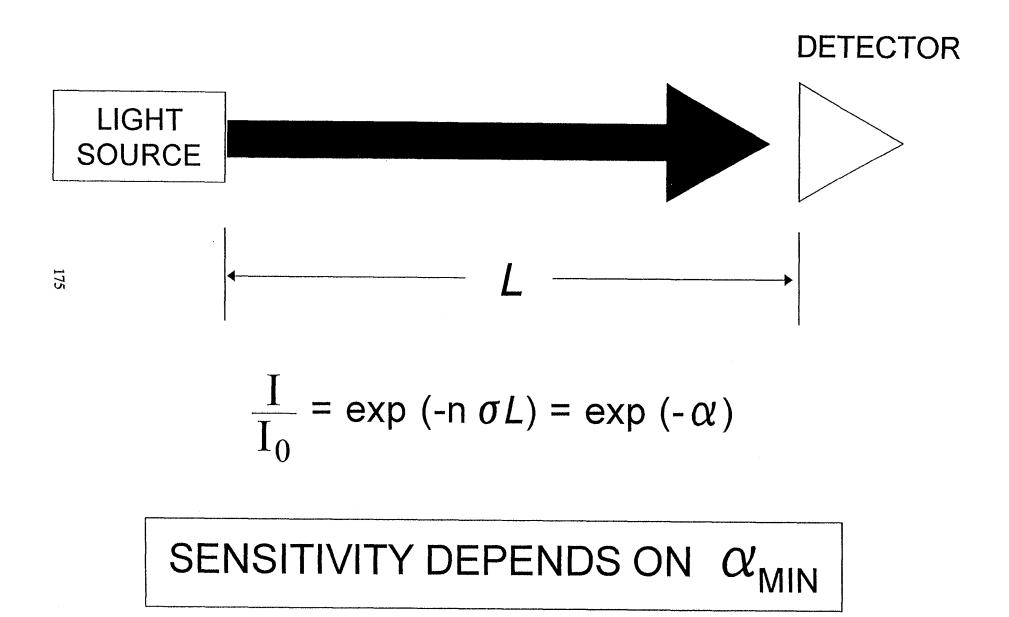
TECHNIQUES RECOMMENDED FOR CONSIDERATION BASED ON LITERATURE REVIEW

Time-resolved mass spectrometry.

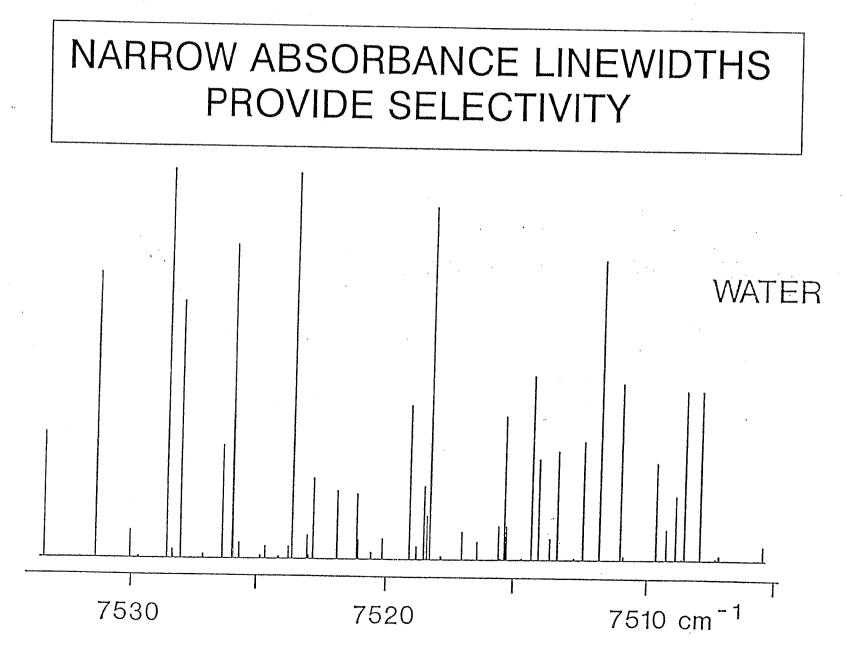
Mid-infrared absorption used in conjunction with fiber optics for spatial resolution.

Near-infrared absorption used in conjunction with fiber optics for spatial resolution.

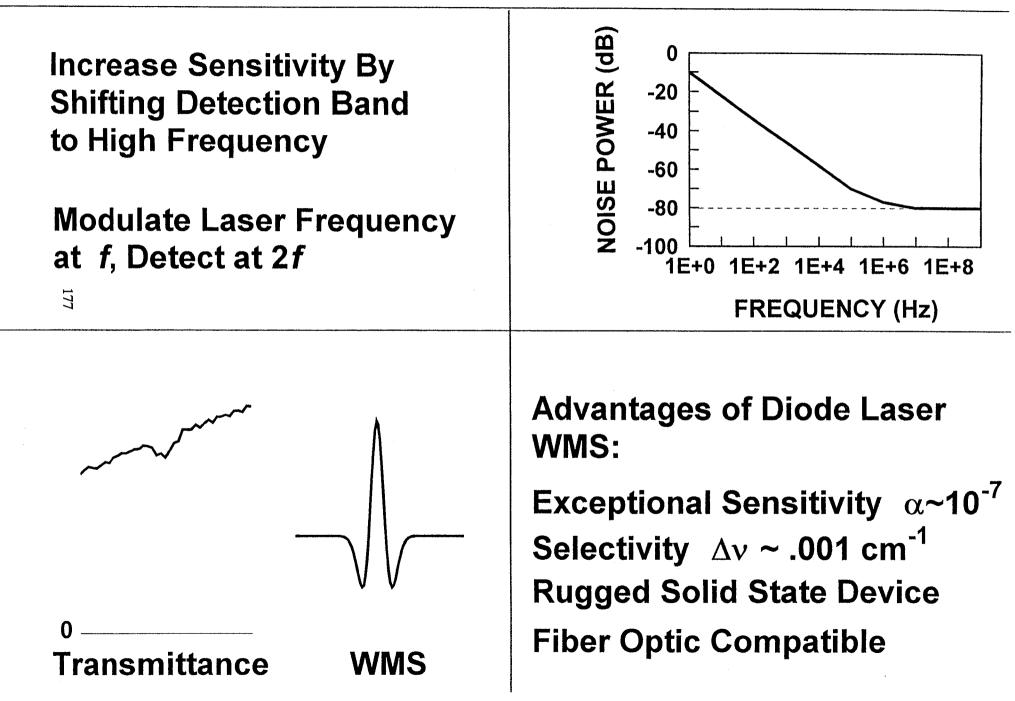
OXYGEN CONCENTRATION MEASUREMENTS USING DIODE LASERS

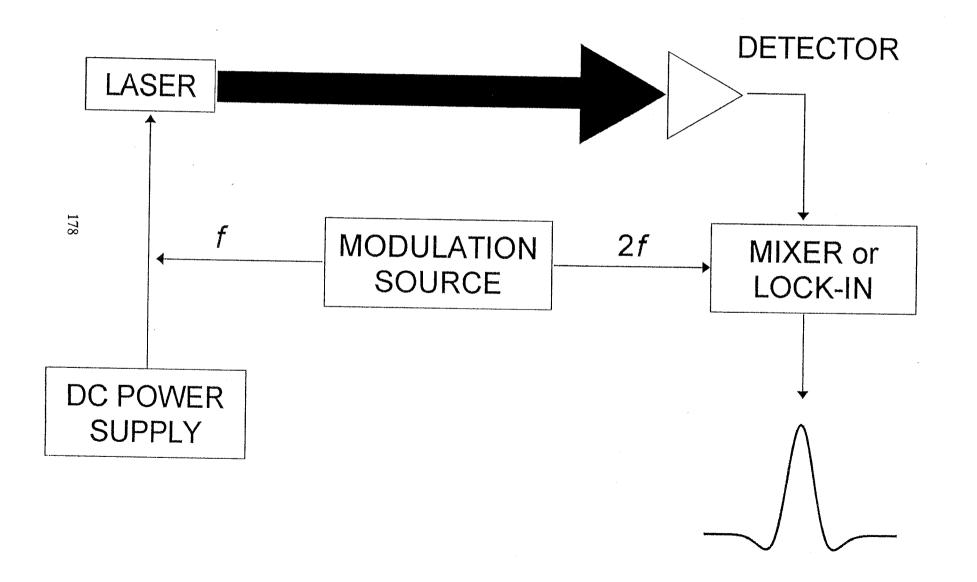

David Bomse Southwest Sciences, Inc. Santa Fe, NM 505-984-1322

Gas Generator Workshop NIST June 28, 1995


WHY USE DIODE LASERS?

- High selectivity avoids interferences
 + O₂, CO, CO₂, H₂O, HF, NO, NO₂, HCN, HCI
- High sensitivity
 - + trace gas detection, OR
 - + rapid response
- Remote sensing using fiber optics or open paths
 - + intrinsic safety
 - + probe harsh environments


OPTICAL SPECTROSCOPY


OPTICAL SPECTROSCOPY

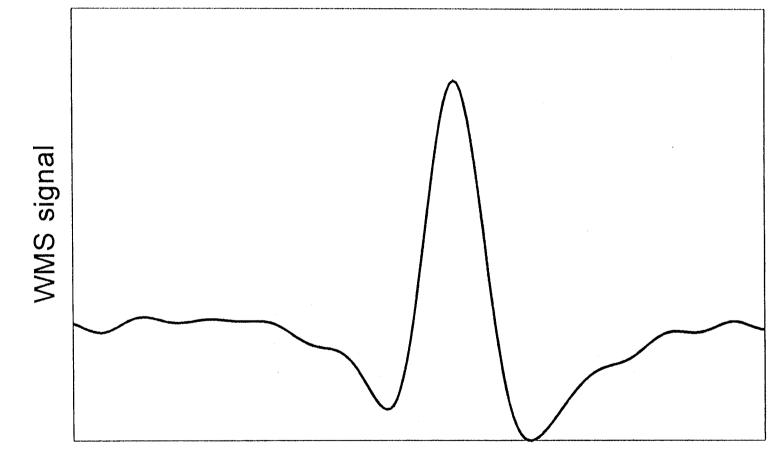
WMS DETECTION

WAVELENGTH MODULATION SPECTROSCOPY

• 10 cm path length & 10 msec response time

GAS	DETECTION LIMIT	LASER WAVELENGTH
02	800 ppm	(761 nm)
HF	0.17 ppm	(1321 nm)
CO	275 ppm	(1565 nm)
CO ₂	430 ppm	(1602 nm)
HCI	0.75 ppm	(1740 nm)
HCN	25 ppm	(1548 nm)
NO ₂	90 ppm	(760 nm)

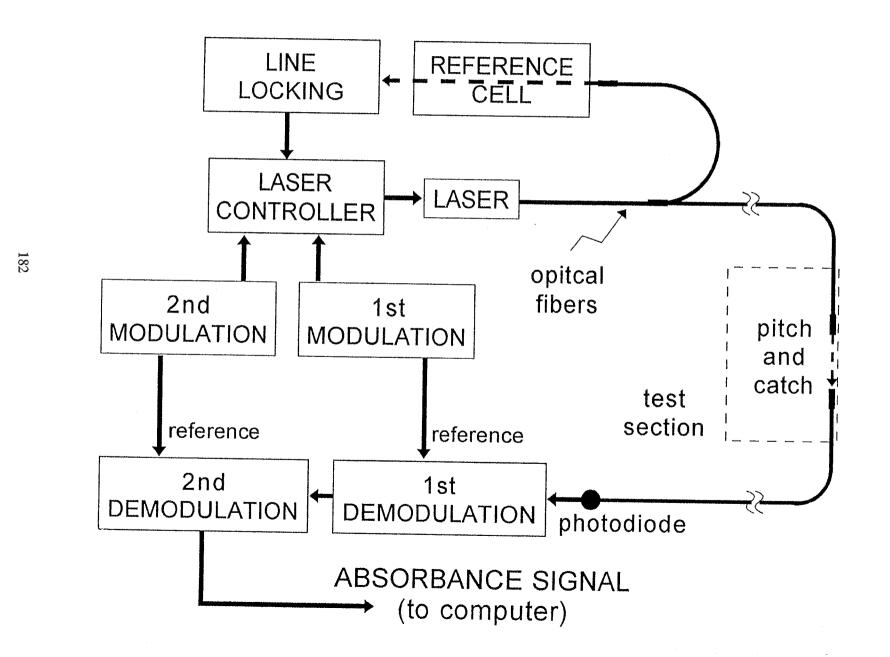
FIELD APPLICATIONS


• Airborne hygrometer

• Methane fluxmeter

• Microgravity combustion experiments

Industrial open path monitor


Oxygen in 1 atmosphere air 20 cm optical path 10 msec response time

Laser wavelength

Southwest Sciences, Inc. Santa Fe, NM 505-984-1322

INSTRUMENT DESIGN USES PATENT-PENDING DUAL MODULATION

USAF SPGG Advanced Development Program

- I. Structure
 - A. Phase I
 - B. Phase II
 - C. Phase III
- II. Issues
- III. Conclusions
- IV. Questions

Structure of the Program

Phase I

--optimization for transport aircraft

--testing/modifying in AENTF at Wright-Patt

184

Phase II

--system tests

--testing at Davis-Monthan AFB

Phase III

--flight testing at Edwards AFB

--final report preparation

Phase I

Optimization

--test bed will be CFM-56 engine found on

KC135-R

- Testing at AENTF
 - --many conditions within an engine nacelle will
 - be simulated

--analysis of physical relationships

- » nacelle volume vs. propellant required
- » airflow rate vs. propellant required
- » air temperature vs. propellant required
- --data obtained on concentrations

Phase II

System tests

- --safety of flight
- --analysis of effects of employment
- --vibration
- --maintainability
- --reliability
- --personnel safety

--location and distribution of generators Davis-Monthan tests

- --hang engine on aircraft wing
- --simulate flight conditions
- --test overpressurization, corrosion

Phase III

Flight testing

- --flight demonstration vs. qualification
- --in-flight discharge
- --verify system compatibility
- --long-term effects on propellant

ISSUES

- need data for transport aircraft
- long distribution distances, > 40 ft
- hot engine casings causing reignition
- chemical vs inert gas generator
- physical relationships with gas generators
- retrofits--bottle shape, size
- overpressurization
- inadvertent discharge, personnel safety, etc.
- concentration measurements

Conclusions

Technology output

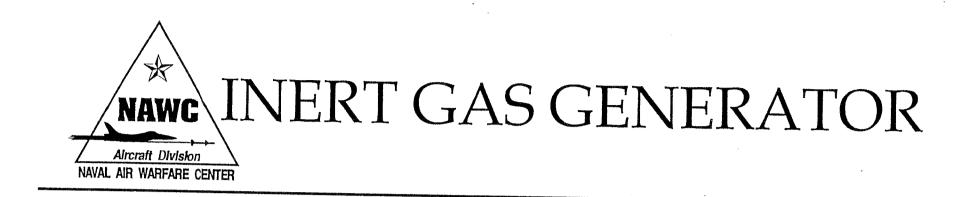
- --methodology to be used for all future large aircraft applications
- --design information on propellant config. and arrangement for cubic ext. spaces
- --data on plumbing size for distribution and mitigation of overpressurization
- --flow rate requirements
- --effects of agent release on surrounding engine structure
- --sizing for different fire conditions
- --guidance on maintenance, safety, and aircraft integration

INERT GAS GENERATORS Used for Fire Protection Aboard Navy Aircraft

Sponsored By: James Homan Naval Air Systems Command Presented By: Marco Tedeschi Naval Air Warfare Center Aircraft Division Lakehurst June 28, 1995

AIRCRAFT FIRE PROTECTION APPLICATIONS

F/A-18 E/F

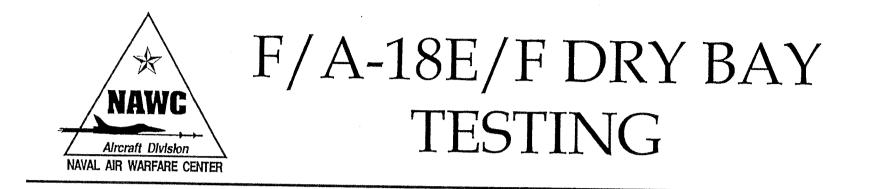

ENGINE NACELLE
DRY BAY

V-22

DRY BAY

191

Naval Air Warfare Center


- DEMONSTRATED (AIRBAG) TECHNOLOGY
- FIRE EXTINGUISHING MECHANISM
- PROPELLANT CONSTITUENTS AND EFFLUENTS
 Generator Efficiency
- ♦ GAS GENERATOR CONSTRUCTION
 - Casing Construction & Propellant Processing

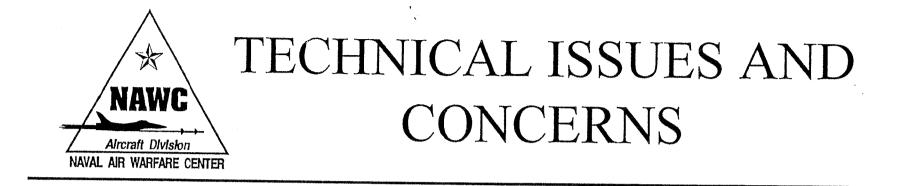
193

F/A-18E/F ENGINE NACELLE TESTING

- TEST ARTICLE CONFIGURATION
- ♦ TEST CONDITIONS & PROCEDURES
 - Variable Distribution, Sequence, Number of Generators
- ♦ RESULTS AND CONCLUSIONS
 - Four 11b Generators @ 1500 ms

DRY BAY SIMULATOR CONFIGURATION

▼ ◆ TEST CONDITIONS & PROCEDURES

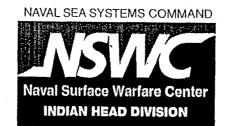

- Variable Threat, Number & Locations of Generators
- ♦ RESULTS ANDCONCLUSIONS
 - 7 Generators Sequenced 2,2,2,1 @ 10 ms intervals
 - 50% Effluent by Molar Dispalcement Method

V-22 DRY BAY TESTING

TEST SET-UP AND CONDITIONS TEST PROCEDURES

- Various Dry Bay and Gas Generator Sizes
- ♦ RESULTS AND CONCLUSIONS
 - 525g Mid-Wing, 250g Aft Cove Generators
 - 100% Effluent Concentration By Molar
 Displacement

- ◆ CORROSIVE BY-PRODUCTS
- ♦ SINGLE GRAIN PERFORMANCE
 - Decrease Pill Erosion, Lower Weight, Manufacturability, and Performance Concerns
- ♦ SYSTEM QUALIFICATION / EFFLUENT CONCENTRATION


– Gas Measured with 'Continuous' Response

CONCLUSIONS

- ♦ PROVEN HIGH EFFECTIVENESS
- MINIMAL WEIGHT & VOLUME IMPACT TO AIRCRAFT
- ♦ REDUCED MAINTENANCE
- ♦ ENVIROMENTALLY RESPONSIBLE
- ♦ FUTURE NAVY AIRCRAFT
- NEW APPLICATIONS

Navy Qualification of Solid Propellant Gas Generators for Aircraft Fire Suppression

Presented to the National Institute of Standards and Technology Solid Propellant Gas Generator Workshop 28-29 June 1995

by Philip Renn, Code 5210R Indian Head Division, Naval Surface Warfare Center Indian Head, Maryland 20640

CAD/PAD Department

(Cartridge Actuated Devices/Propellant Actuated Devices)

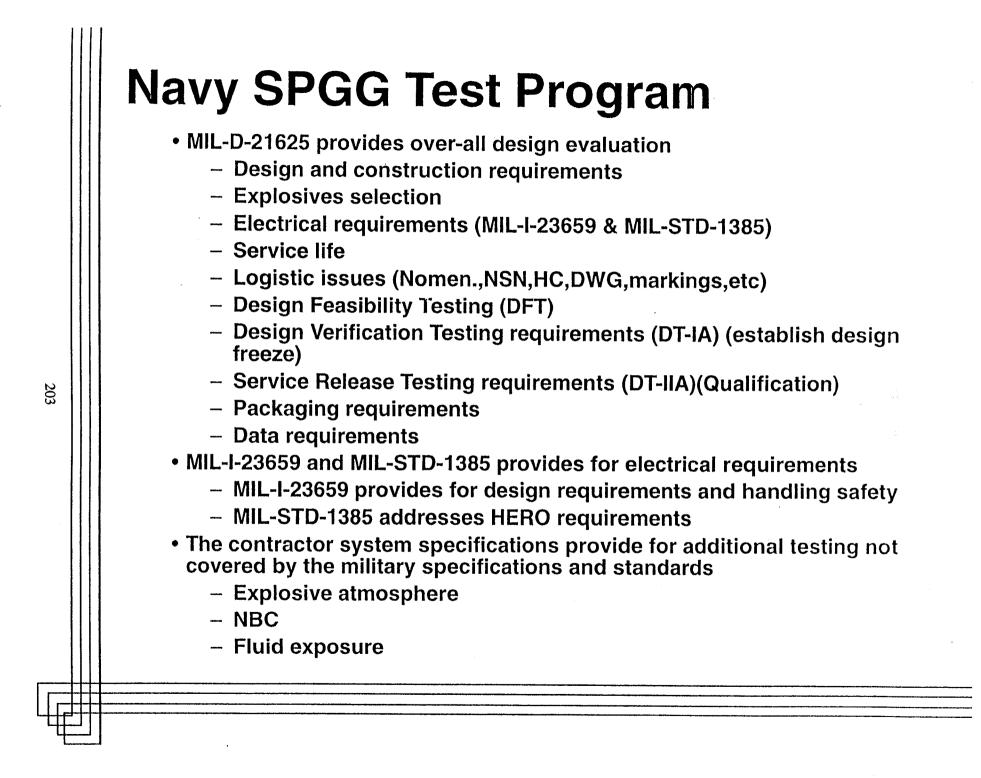
- Lead service activity providing life cycle engineering support
- Designated Joint Program Office (JPO) for CAD/PAD
- Acquisition management including engineering support
- Energetic materials support
- Destructive and non-destructive testing
- Technical consultation/monitoring for customer projects
- Quality evaluations

Objective

200

 To present how NAVSURFWARCEN Indian Head Division, the lead service facility is handling the service release or qualification of the SPGG as an electro-explosive device for aircraft fire suppression applications.

Solid Propellant Gas Generators are Federal Stock Class 1377 Items


• Per Handbook H-2 SPGG are FSC 1377 items

Cartridge and Propellant Actuated Devices and Components.

- Safety-in-flight explosive items
- Escape system explosive components (mechanical, gas, ballistic, electric, laser)
- Fire extinguisher cartridges
- Stores separation cartridge
- Thrusters
- Explosive bolts
- Cutters, guillotines
- Initiators
- Gas Generators (pressurization, flotation)
- Explosive loaded devices not specifically classified elsewhere.

FSC 1377 items are tested to the requirements of:

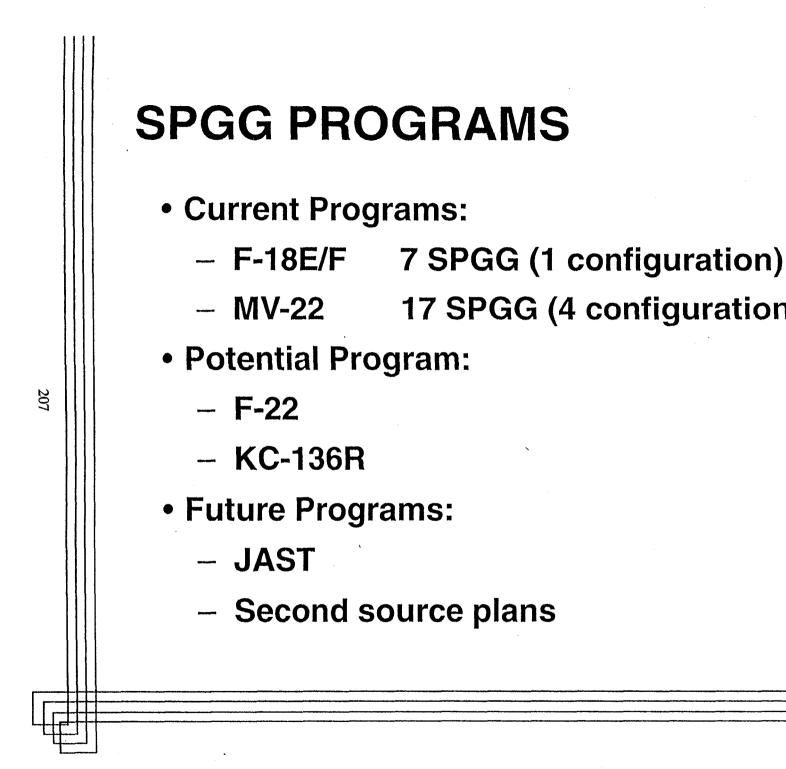
- MIL-D-21625 Design and Evaluation of Cartridges for Cartridge Actuated Devices.
- MIL-I-23659 Initiators, Electric, General Design Specification for
- MIL-STD-1385 Preclusion of Ordnance Hazards in Electromagnetic Fields; General Requirements for
- Specific aircraft system specification additional requirements
- MIL-STD-2000 Propellant, Solid, Characterization of
- NAVSEAINST 8020.5A Qualification and Final (Type) Qualification Procedures for Navy Explosives Materials

Hazards Of Electromagnetic Radiation on Ordnance (HERO)

- MIL-STD-1385 primary HERO specification
- NAVSEA OD 30393 HERO Design Guide
- HERO referenced in MIL-I-23659 and MIL-D-21625
- Naval Surface Warfare Center, Dahlgren is HERO authority for Navy
- HERO driven by shipboard EM/RF environments

204

 HERO addressed at system, component and handling levels


Explosive Hazard Classification

- CFR 49 Parts 100-199 Transportation
- NAVSEAINST 8020.8B DOD Ammunition and Explosives Hazard Classification Procedures
 - Joint DOD Explosive Safety Review Board
- Current SPGG HC is 1.3C (Class B) from DOT
- Goal SPGG HC is 1.4C or S

- Less restrictive storage requirements
- Less costly transportation

Service Life Assignment

- Initial 3 years install life and 5 years total life
- Additional testing required to support extending initial installed life\total life
- Navy philosophy is demonstrated reliability verses predicted reliability
- Quality Evaluation (QE) testing of stockpile and fleet returned assets used to support increase in service life.

17 SPGG (4 configurations)

EXPLOSION SUPPRESSION FOR INDUSTRIAL APPLICATIONS

by

Franco Tamanini Research Division, Explosion Section Factory Mutual Research Corporation

Prepared for Presentation at the Solid Propellant Gas Generator Workshop National Institute of Standards and Technology Gaithersburg, MD, June 28-29, 1995

GENERAL BACKGROUND

PROTECTED SYSTEMS

- * Laminar and turbulent vapor/air mixtures (Propane typical).
- * Dust explosions for ST 1 & 2 dusts ($K_{st} \leq 300$ bar m/s).
- * Test data for volumes up to about 250 m³.
- * Proprietary design methods developed by hardware manufacturers.

TYPICAL CHARACTERISTICS

- * Several types of agents used, including powders (Sodium bicarbonate, Mono-ammonium phosphate), water and pressurized liquids (Halon replacements). Water unsuccessful in suppressing gas explosions.
- * Suppressant quantities of 5-30 liters per unit. Several units may be required for one installation.
- * Suppression system activated by UV or pressure detector.
- * Pressurizing agent, typically nitrogen, at 40-60 bar (600-900 psi).
- * Activation time: 1-2 msec. Agent delivery time: 10-100 msec.

EXPLOSION SUPPRESSION RESEARCH AT FMRC

GOAL

Develop an understanding of the mechanisms of explosion suppression and establish the effectiveness of new agents, or new delivery methods, in suppressing high-challenge explosions.

• COMPLETED WORK

- * Carried out suppression tests in the 2.5-m³ pressure vessel for nearstoichiometric methane/air mixtures using mono-ammonium phosphate (MAP), sodium bicarbonate (SB), and water as suppression agents.
- * The two powder agents (MAP and SB) were found to be successful at suppressing explosions in both quiescent and turbulent mixtures.
- * No successful suppressions obtained with water.

WORK IN PROGRESS

* Perform additional gas explosion suppression tests by experimenting with novel delivery methods to maximize the effectiveness of water as a suppression agent. Propellant-based gas generators seen as presenting a means to improve effectiveness of water.

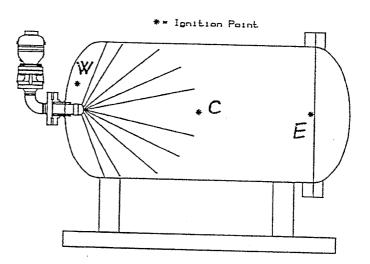
EXPLOSION SUPPRESSION RESEARCH AT FMRC

• EXPERIMENTAL FINDINGS

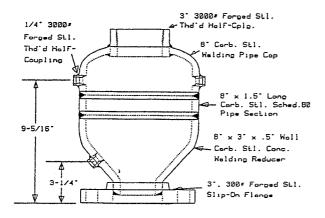
* Inerting concentrations of the two powder agents from 20-liter sphere tests with a 10% methane/air mixture:

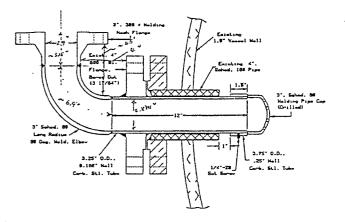
Sodium bicarbonate (Ansul Plus 50C):975 g/m³Mono-ammonium phosphate (Ansul Foray):575 g/m³

* Suppression tests in the 2.5-m³ vessel performed for the following parameters:

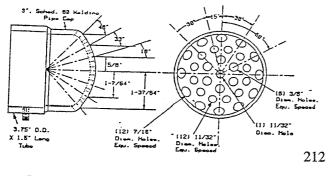

Amount of suppression agent:3 KgPressure of driver gas (nitrogen):50 bargDetection pressures:1, 3, 5, 8 psig (0.07, 0.21, 0.34, 0.55 barg)Mixture conditions:Laminar ($u_1 = 0.42-0.58 \text{ m/s}$)Turbulent ($u_{teg} = 1.14-1.71 \text{ m/s}$)

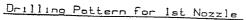
- * For the single concentration used (1,200 g of agent per m³ of protected volume), the two powder agents (SB and MAP) found to be always successful in suppressing the explosion and to have similar effectiveness.
- * Failure by the water to achieve suppression in most runs. No appreciable improvement from the use of nozzle with smaller injection holes and addition of CO_2 to the nitrogen charge. Full unvented pressure developed by explosions where suppression failed.
- * Location of the ignition source found to have a small effect on the performance of the suppression system. Surprisingly, mixtures ignited behind the injection nozzle are the easiest to suppress.
- * Increased challenge to the suppression system due to presence of turbulence in the mixture, leading to higher suppressed pressures.

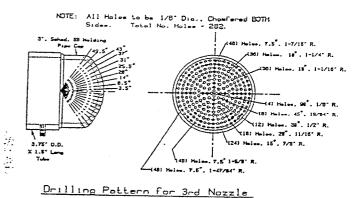

EXPERIMENTAL FACILITY

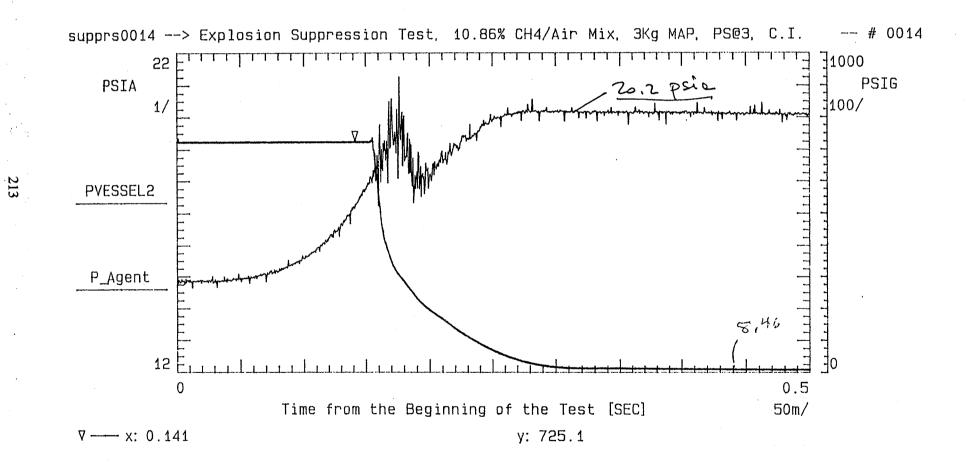

1. FMRC 2.5-M³ FACILITY

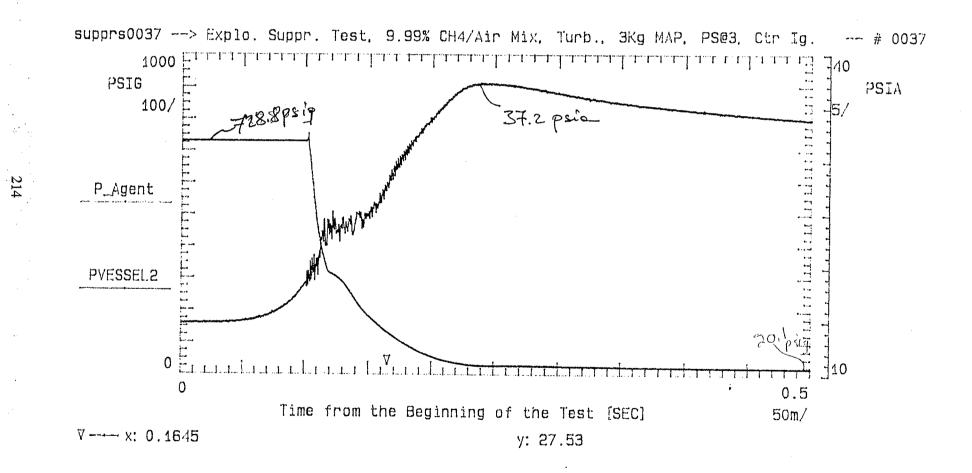
3

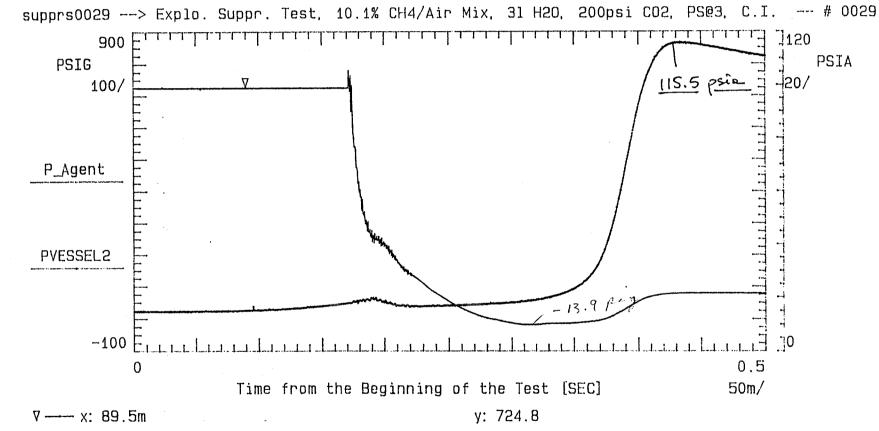

2. SUPPRESSION VESSEL/PIPING






3. INJECTION NOZZLES





A

Anna I

ENHANCEMENT OF WATER AS SUPPRESSION AGENT

• SUPPRESSION MECHANISMS

- * Combination of direct interaction of the suppression agent with the flame front, and inerting of the unburnt mixture.
- * Water droplets produced by the delivery system estimated to have a diameter in the range 100-150 μm.
- * Droplets 10 times smaller (10-15 µm) are needed for water to be effective as an inerting medium.
- * Pre-heating of the water charge may provide a means to enhance fragmentation of the stream and, therefore, extinction effectiveness.

DISSOLVED GAS/STEAM FLASHING

- * At pressures of 15-20 bar, water dissolves an equal volume of carbon dioxide. No improvement in extinction effectiveness found by the use of carbonated (200 psi of CO₂) over plain water.
- * Equivalent amount of volume expansion can be obtained by steam flashing of about 0.7% of a water charge (corresponding to about 4°C of superheating).
- * Water superheated to 200°C (392°F) would produce a flashed fraction of about 18% (Steam inerting of a 2.5-m³ volume achieved with 3 liters of "hot" water).

USE OF SOLID PROPELLANT GAS GENERATORS IN INDUSTRIAL EXPLOSION SUPPRESSION SYSTEMS

POTENTIAL ADVANTAGES

- * Storage of suppression agent at ambient pressure (and temperature) up to the time of system activation.
- * Ability to preheat the agent during deployment (improved fragmentation, partial flashing of charge).
- * Non-decaying pressure during agent delivery for faster deployment at fixed maximum design pressure.

POTENTIAL DISADVANTAGES

- * Higher cost than traditional systems based on pressurized driver gas.
- * DOT classification of propellant (storage, maintenance, handling, etc.)
- * Burden of proof of new technology.

NIST-114 U.S. DEP	(ERB USE ONLY)				
(REV. 6-93) NATIONAL INSTITUTE OF STAN	ERB CONTROL NUMBER DIVISION				
MANUSCRIPT REVIEW AND	PUBLICATION REPORT NUMBER CATEGORY CODE NISTIR 5766				
INSTRUCTIONS: ATTACH ORIGINAL OF THIS FORM TO ONE (1) CO THE SECRETARY, APPROPRIATE EDITORIAL REVIEW BOARD	PUBLICATION DATE NUMBER PRINTED PAGES November 1995				
TITLE AND SUBTITLE (CITE IN FULL)					
Solid Propellant Gas Generators: Proceedings of the 1995 Workshop					
CONTRACT OR GRANT NUMBER TYPE OF REPORT AND/		VERED			
AUTHOR(S) (LAST NAME, FIRST INITIAL, SECOND INITIAL)					
Yang, Jiann C. and Grosshandler, William L., Editors	X NIST/GAITHERSBURG NIST/BOULDER JILA/BOULDER				
LABORATORY AND DIVISION NAMES (FIRST NIST AUTHOR ONLY)					
Building and Fire Research Laboratory, Fire Science I	Division				
SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (S					
PROPOSED FOR NIST PUBLICATION	ONOGRAPH (NIST MN)	LETTER CIRCULAR			
	ATL. STD. REF. DATA SERIES (NIST NS				
	DERAL INF. PROCESS. STDS. (NIST FIP				
	ST OF PUBLICATIONS (NIST LP)	OTHER			
	ST INTERAGENCY/INTERNAL REPORT (
PROPOSED FOR NON-NIST PUBLICATION (CITE FULLY) U.S. FOREIGN PUBLISHING MEDIUM					
		X PAPER CD-ROM			
OTHER (SPECIFY)					
SUPPLEMENTARY NOTES					
ABSTRACT (A 2000-CHARACTER OR LESS FACTUAL SUMMARY OF LITERATURE SURVEY, CITE IT HERE. SPELL OUT ACRONYMS ON FI	RST REFERENCE.) (CONTINUE ON SEP	ARATE PAGE, IF NECESSARY.)			
A workshop on solid propellant gas generators was h	neld on June 28-29, 1995 at the	National Institute of Standards and Technology			
under the sponsorship of the Building and Fire Resear halon 1301 (CF ₃ Br) for in-flight fire protection. Beca	ch Laboratory. Gas generator	developing stage as a fire suppression method.			
there is no standard test apparatus for evaluating the	performance of gas generators	and there remain many unanswered technical			
users for the potential users. The specific objections	ctives of the workshop were	(1) to identify certification procedures, (2) to			
questions for the potential users. The specific objectives of the workshop were (1) to identify certification procedures, (2) to determine which critical parameters were required to characterize the performance of a gas generator, (3) to develop a standard test					
method for gas generator evaluation, (4) to identify other potential applications, and (5) to search for next generation of propellants.					
The participants at the workshop included representatives from aircraft and airframe manufacturing industries, airbag and propellant					
manufacturers fire fighting equipment companies, military services, government agencies, and universities. The agenda of the					
workshop encompassed eleven presentations on various topics relevant to the applications of gas generators as a fire fighting tool,					
followed by several discussion sessions. Various important issues related to the achievement of the objectives set forth were					
addressed, and recommendations regarding what role NIST should play in this new technology were suggested.					
KEY WORDS (MAXIMUM OF 9; 28 CHARACTERS AND SPACES EACH; SEPARATE WITH SEMICOLONS; ALPHABETIC ORDER; CAPITALIZE ONLY PROPER NAMES)					
Fire Research; Fire Suppression; Halons; Propellants; Propellant Combustion; Test Methods					
AVAILABILITY		NOTE TO AUTHOR(S): IF YOU DO NOT WISH THIS			
	JTION - DO NOT RELEASE TO NTIS	MANUSCRIPT ANNOUNCED BEFORE PUBLICATION,			
ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S.	PLEASE CHECK HERE.				
X ORDER FROM NTIS, SPRINGFIELD, VA 22161					
WORDPERFECT					