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Abstract

This paper presents a novel convexity measurement for
3D meshes. The new convexity measure is calculated by
minimizing the ratio of the summed area of valid regions
in a mesh’s six views, which are projected on faces of the
bounding box whose edges are parallel to the coordinate
axes, to the sum of three orthogonal projected areas of the
mesh. The complete definition, theoretical analysis, and a
computing algorithm of our convexity measure are explicit-
ly described. This paper also proposes a new 3D shape de-
scriptor CD (i.e., Convexity Distribution) based on the dis-
tribution of above-mentioned ratios, which are computed by
randomly rotating the mesh around its center, to better de-
scribe the object’s convexity-related properties compared to
existing convexity measurements. Our experiments not only
show that the proposed convexity measure corresponds well
with human intuition, but also demonstrate the effectiveness
of the new convexity measure and the new shape descriptor
by significantly improving the performance of other meth-
ods in the application of 3D shape retrieval.

1. Introduction
Shape measurement is a fundamental problem in sever-

al research communities including computer vision, pattern
recognition, and computer graphics. It is often preferable
if shapes can be quantified by some global shape measures
with direct intuitive meanings, such as, chirality [17], com-
pactness [32], convexity [34], ellipticity [18], rectangulari-
ty [21], rectilinearity [33], symmetry [9], triangularity [22],
and so on. While a large amount of 2D shape measures have
been proposed in the last few years, there has been much
less work on the measurement of 3D shapes. This paper
investigates the convexity for 3D polygon meshes.

Convexity is a basic and popular shape descriptor with
many applications. As defined in [34] [19], an object is said
to be convex if it contains all points on the line segment be-
tween any two points that belong to the object. The concept
of convexity of 3D shapes is demonstrated by some simple

Figure 1. Sphere, cube and two concave 3D models. Underneath
are their convexity values calculated using our method.

examples shown in Figure 1. Intuitively, the sphere and the
cube are considered to be convex, while the other two are
concave and the rightmost one should have a smaller val-
ue of convexity than its nearest neighbor. We would like
to define a shape measure describing the extent to which
a 3D object is convex. Trivially, the following two defini-
tions can be obtained by directly generalizing 2D convexity
measures [34] [19] into 3D domain.

Definition 1. For a given 3D closed mesh M , where the
region bounded by the surface M is M+, we define its con-
vexity measure C1(M) as

C1(M) = P (αX1 + (1− α)X2 ∈M+),∀α ∈ [0, 1], (1)

where P (E) denotes the probability of event E, {αX1 +
(1 − α)X2; 0 ≤ α ≤ 1} is the line segment between any
two points X1 and X2 randomly chosen on the surface M .

Definition 2. For a given 3D closed mesh M , where the
convex hull of M is CH(M), we define its convexity mea-
sure C2(M) as

C2(M) =
V olume(M)

V olume(CH(M))
. (2)

Although the above two definitions both satisfy neces-
sary requirements (see [34]) for the convexity measurement,
they also have their own limitations. In general, the com-
putational cost of the statistics-based measure C1(M) is
quite expensive. While the volume-based measure C2(M)
is easy to calculate but it cannot always detect small defects
of volume, even if the defects have a huge impact on the sur-
face area of 3D models. That is indicated by two examples
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Figure 2. Examples of some particular models (first row) and their
convex hulls (second row).Underneath of the original models are
their convexity values obtained using our method.

shown in Figure 2(a)(b). As we can see, these two models
(first row) have similar values of surface area and volume
but quite different convex hulls (second row). When the
volume of the deep indentation in Figure 2(a) tends to 0, the
object’s convexity calculated byC2(M) is arbitrary close to
1 although its depth remains unchanged. In other words, the
measurement C2(M) is not able to detect deep but small-
volume indentations into shapes. However, in some appli-
cations, we would like to have a 3D convexity measurement
that is sensitive to all kinds of defects of surface. To the best
of our knowledge, up to now, no boundary-based (i.e., area-
based) convexity measure has been proposed for 3D shapes,
and the boundary-based 2D convexity measure cannot be
directly generalized into 3D. Recall that, for a given 2D
polygon, its boundary-based convexity measure is defined
as the ratio of the Euclidean perimeter of the boundary of
its convex hull to that of the original 2D shape [34]. How-
ever, the surface area of a 3D mesh can be either smaller
or larger than the surface area of its convex hull (see Figure
2(c)(d)), thereby neither Area(M)

Area(CH(M)) nor Area(CH(M))
Area(M) is

suitable to measure convexity for 3D shapes.

Furthermore, existing methods all calculate a single val-
ue to measure the convexity property of a given shape, and
thus there exist lots of shapes that are quite different but
still have the same convexity value obtained using those
traditional methods. To address the problems mentioned
above, this paper propose an area-based convexity measure
and a new convexity-related shape descriptor for 3D mesh-
es. Given a 3D model, the new convexity measure (see
Figures 1and 2 for some computed results) is calculated by
minimizing the ratio of the summed area of valid regions
in six orthogonal views to the sum of three orthogonal pro-
jected areas, and the new shape descriptor CD (i.e., Convex-
ity Distribution) is constructed based on the distribution of
above-mentioned ratios computed by randomly rotating the
mesh around its center. Since our convexity measure and
shape descriptor both represent 3D models in quite differ-
ent manners compared to other existing shape descriptors,

and thus provide new and independent information, they are
well suited to be incorporated with other shape descriptors
to generate discriminative composite signatures. Our exper-
iments validate the effectiveness of the proposed convexity
measure and convexity distribution in the application of 3D
shape retrieval.

2. Related Work
Convexity is one of the best-known global shape descrip-

tors that have direct intuitive meanings. Up to now, a num-
ber of definitions of the convexity measure have been re-
ported for 2D shapes. Among them, the mostly used method
that appears in textbooks [26] defines the convexity of a 2D
polygon as the ratio of the shape’s area to the area of its con-
vex hull. Similarly, the ratio between the Euclidean perime-
ter of a polygon’s convex hull and the Euclidean perimeter
of the polygon is also a natural solution to measure the con-
vexity of 2D shapes [34]. Alternatively, according to the
definition of convex shapes [34] [19], a convexity measure
can directly be defined as the probability that, for random-
ly chosen points A and B in a 2D shape, all points on the
line segment [AB] belong to the shape [34]. There are also
other 2D convexity measures whose definitions are not so
intuitive. For example, Stern [27] developed an area-based
convexity measure to incorporate the entire topology of the
polygon. Boxer [1] estimated the convexity of a given 2D
polygon based on the distances between the vertices of the
polygon and its convex hull. Recently, Žunić and Rosin [34]
presented a boundary-based method to measure convexity
by using the minimum ratio of the Euclidean perimeter of
the bounding rectangle of a polygon to the polygon’s L1

perimeter. Rahtu et al. [19] proposed a convexity measure
based on the idea of randomly choosing pairs of points from
a 2D object and then computing the probability that a point
located on the specified position of corresponding line seg-
ments belongs to the shape. One merit of this method is
that it can be implemented efficiently using the Fast Fouri-
er Transform. Rosin and Mumford [23] introduced a sym-
metric convexity measure that is based on the maximally
overlapping convex polygon of a 2D shape.

However, there has been considerably less work for the
shape measurement of 3D shapes. Regarding convexity, be-
sides the two intuitive definitions presented in Section 1,
Rahtu et al. [19] generalized their probability-based method
to measure the convexity of N-dimensional data, while Fink
and Wood [5] developed a restricted-orientation convexity
which was defined in terms of the intersection of a geomet-
ric object with lines parallel to the elements of a fixed orien-
tation set. In recent years, more and more researchers have
become interested in 3D shape measurements. For instance,
Bribiesca [2] proposed a compactness measure which cor-
responds to the sum of the contact surface areas of the face-
connected voxels for 3D shapes. Kazhdan et al. [8] pre-
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sented a 3D object’s reflective symmetry descriptor as a 2D
function associating a measurement of reflective symmetry
to every plane through the model’s centroid. Lian et al. [12]
proposed a rectilinearity measure for 3D polygon meshes,
which is defined as the maximum ratio of the surface area
to the sum of three orthogonal projected areas of the mesh.
Motivated by the work presented in [34] and [12], this paper
develops a new convexity measure for 3D meshes.

One potential application of shape measurements is 3D
shape retrieval. Until recently, a large number of methods
have been developed for the retrieval of 3D shapes, such as,
D2 [16], SHD [8], LFD [3], and so on. Probably because
of the complexity of non-rigid 3D shape analysis, previous
efforts have mainly been devoted to rigid 3D shape retrieval
(see [30] for more details). Thereby, how to effective-
ly and efficiently calculate the dissimilarity between non-
rigid models is still considered to be a challenging problem
in content-based 3D object retrieval. Here, we briefly re-
view some representative work published recently for the
retrieval of non-rigid 3D shapes. Wang et al. [31] proposed
to compare non-rigid 3D models based on a local feature
named Intrinsic Spin Images (ISIs), which is designed by
generalizing the traditional spin images [7] from 3D space
to N-dimensional intrinsic shape space. Tam and Lau [29]
used topological and geometric features simultaneously to
search deformable 3D models. Mahmoudi and Sapiro [13]
designed six isometric-invariant signatures by using the dis-
tributions of intrinsic distances. Mémoli and Sapiro [14]
presented a theoretical framework to directly compare non-
rigid 3D shapes based on the Gromov-Hausdorff (GH) dis-
tance. The above-mentioned algorithms are not well suited
for practical use mainly due to the fact that they are either
computationally expensive or poor in discrimination. Per-
haps, the utilization of Canonical Forms is potentially the
best way to address the problem of non-rigid shape match-
ing. With the help of canonical forms, we can apply any
shape searching method in the retrieval of non-rigid model-
s. The idea of generating canonical forms in the 3D domain
was initially proposed in [4], where the authors presented an
invariant representation for isometric surfaces using Mul-
tidimensional Scaling (MDS) embedding of the surface in
a low dimensional Euclidean space in which geodesic dis-
tances can be approximated by Euclidean ones. Excellent
performance of non-rigid 3D shape retrieval was reported
in [11], where Lian et al. described a visual similarity based
framework by using the MDS canonical form and the Bag-
of-features approach.

3. A New Convexity Measure for 3D Meshes
In this section, we first give some notations used in this

paper and then present the definition of our new convexi-
ty measure with complete proofs. Throughout this paper,
we assume that all considered shapes are 3D closed trian-

Figure 3. Projecting a triangle on three orthogonal planes. Ro-
tation of the coordinate frame (b) results in different projected
shapes compared to the original one (a).

gle meshes, which for convenience are directly called 3D
meshes unless otherwise specified.

Given a 3D mesh M , its three projected areas on
the Y OZ, ZOX , and XOY planes are denoted as
Pfacex(M), Pfacey(M), and Pfacez(M), respectively,
while areas of valid regions in the views projected on those
three orthogonal planes are Pviewx(M), Pviewy(M), and
Pviewz(M), respectively. More specifically, the projected
area on a plane is equal to the sum of area of the projected
region of every triangle face on the surface, and the area of
the valid region in a view stands for the area of the polygon
formed by projecting the whole mesh on a plane. Figure 3
displays the projections of single triangle faces, while Fig-
ure 4 shows some examples of silhouette views for whole
objects.

If we rotate the coordinate frame, we will get new
projected areas (see Figure 3) and new silhouette views
(see Figure 4(b)(c)) of the mesh M . Therefore, we
should use Pfacex(M,α, β, γ), Pfacey(M,α, β, γ),
Pfacez(M,α, β, γ) for these three projected ar-
eas and Pviewx(M,α, β, γ), Pviewy(M,α, β, γ),
Pviewz(M,α, β, γ) for areas of the valid regions in
three views, after successively rotating the coordinate
frame around its x,y, and z axes by angles α,β, and γ,
respectively. We denote the sum of three projected areas as

Pface(M,α, β, γ) = Pfacex(M,α, β, γ) +

Pfacey(M,α, β, γ) + Pfacez(M,α, β, γ), (3)

while the sum of areas of the valid regions in six views pro-
jected on faces of the bounding box whose edges are paral-
lel to the coordinate axes is defined as

Pview(M,α, β, γ) = 2 · (Pviewx(M,α, β, γ) +

Pviewy(M,α, β, γ) + Pviewz(M,α, β, γ)). (4)

Theorem 1. 1) The inequality

Pface(M,α, β, γ) ≥ Pview(M,α, β, γ) (5)

holds for any 3D closed mesh M .
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Figure 4. Projecting 3D models on three orthogonal planes. Models shown in (b) and (c) are the same, while the coordinate frame in (c)
has been rotated to make its z axis be parallel to line segment [AB].

2) A given 3D mesh M is convex if and only if for any
choice of the coordinate frame the sum of three projected
areas of M equals the sum of areas of the valid regions in
six views projected on faces of the bounding box whose
edges are parallel to the coordinate axes, i.e.,

Pface(M,α, β, γ) = Pview(M,α, β, γ), (6)
∀α, β, γ ∈ [0, 2π].

Proof. On the one hand, if a given 3D mesh M is con-
vex, then the projections of the faces of M onto the
Y OZ, ZOX , and XOY planes exactly cover the valid
regions of six views projected on faces of the bound-
ing box whose edges are parallel to the coordinate ax-
es (see Figure 4(a)). Furthermore, such projections are
independent of the choice of the coordinate system, i.e.,
Pface(M,α, β, γ) = Pview(M,α, β, γ), for all α, β, γ ∈
[0, 2π], when M is convex.

On the other hand, if M is not convex, then there ex-
ist points A and B on the mesh M such that the line
segment [AB] does not completely belong to M and it-
s interior (see Figure 4(b)). Let a coordinate axis, say z,
be parallel to the line through points A and B, then the
projections of the faces of M onto the plane XOY must
overlap (see Figure 4(c)). That is, Pface(M,α, β, γ) >
Pview(M,α, β, γ) for some or all α, β, γ. Moreover,
the fact that M is a closed mesh means any point on
the valid region of projected views has at least two
corresponding points on the surface of M . In other
words, Pface(M,α, β, γ) could never be smaller than
Pview(M,α, β, γ). This complete the proof for both state-
ment 1) and 2).

Theorem 1 suggests that the ratio Pview(M,α,β,γ)
Pface(M,α,β,γ) can be

used as a convexity measure for the 3D mesh M . But this
ratio depends strongly on the choice of the coordinate sys-
tem and, in some cases, it can be equal to 1 for concave
meshes (see Figure 4(b)), which is not acceptable for a con-
vexity measure. We address the problem by calculating
minα,β,γ∈[0,2π]

Pview(M,α,β,γ)
Pface(M,α,β,γ) instead of Pview(M,α,β,γ)

Pface(M,α,β,γ)

and define the new convexity measure of 3D meshes as

Figure 5. 3D polygon mesh Mn whose convexity measure C(Mn)
is arbitrarily close to 0, when n tends to infinity.

Definition 3. For a given 3D closed mesh M its convexity
measure C(M) is defined as

C(M) = min
α,β,γ∈[0,2π]

Pview(M,α, β, γ)

Pface(M,α, β, γ)
. (7)

The following theorem summarizes properties of the
proposed convexity measure:

Theorem 2. For any 3D mesh M , we have:

1. C(M) is well defined and C(M) ∈ (0, 1];

2. C(M) = 1 if and only if M is convex;

3. inf
M∈Π

(C(M)) = 0, where Π denotes the set of all

meshes;

4. C(M) is invariant under similarity transformations.

Proof. Items 1, 2, 4 can be directly derived from Theorem
1 and Definition 3. In order to prove Item 3, we introduce
a 3D mesh Mn (see Figure 5). Since the length of diagonal
of the bounding box of Mn is

√
3n, which is the maximum

length of line segments between any two points on Mn, we
have

Pview(M,α, β, γ) < 6 · (
√

3n ·
√

3n) = 18n2, (8)
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for any α,β,γ ∈ [0, 2π]. On the other hand

Pface(M,α, β, γ)

≥ 6n2 − 2 · n · 1

2
· (n− 1) + 2 · (n− 1) · (n− 1) · n

= 2n3 + n2 + 3n, (9)

and

lim
n→∞

18n2

2n3 + n2 + 3n
= 0, (10)

which means, for any ε > 0, there exists a n such that

0 < C(Mn) = min
α,β,γ∈[0,2π]

Pview(Mn, α, β, γ)

Pface(Mn, α, β, γ)

<
18n2

2n3 + n2 + 3n
< ε, (11)

or equivalently, for some Mn, their convexity C(Mn) can
be arbitrary close to 0. That completes the proof.

4. Computation of Convexity
In this section, we describe how to calculate the pro-

posed convexity measure C(M) for 3D meshes. We
first present the computations of Pface(M,α, β, γ) and
Pview(M,α, β, γ), and then we solve the nonlinear min-
imization problem to obtain an approximate value of the
convexity measure. Note that, before the calculation of con-
vexity, all models should be normalized with respect to the
coordinate frame so that their mass centers coincide with
the origin and they are bounded by the unit sphere.

4.1. Computation of Pface(M,α, β, γ)

Assume that the 3D mesh M consists of N trian-
gles {T1, T2, . . . , TN}. The coordinates of these trian-
gles’ vertices are denoted by (xi0, yi0, zi0), (xi1, yi1, zi1),
(xi2, yi2, zi2), i = 1, . . . , N . After successively rotating
the coordinate system around its x, y, z axes with angles
α, β, γ, we obtain their new coordinates, which are de-
noted as (x′i0, y

′
i0, z

′
i0), (x′i1, y

′
i1, z

′
i1), (x′i2, y

′
i2, z

′
i2), i =

1, . . . , N , by using the following formulae

(x′ij , y
′
ij , z

′
ij)

T = Rz(γ) ·Ry(β) ·Rx(α) · (xij , yij , zij)T

i = 1, . . . , N ; j = 0, 1, 2. (12)

where Rx(α), Ry(β), and Rz(γ) stand for the matrixes
which result in the rotations of the coordinate frame around
its x, y, and z axes, respectively. Then, the sum of the three
projected areas is computed by

Pface(M,α, β, γ) =
N∑
i=1

(
S′
ix + S′

iy + S′
iz

)
, (13)

where S′
ix, S′

iy , and S′
iz are the projected areas of the trian-

gle Ti on the planes Y OZ, ZOX , and XOY , respectively
(see Figure 3).

Figure 6. A 2D projection of a 3D mesh. (a) is the exact shape
of the projection while (b) is the silhouette view. Based on the
number of black pixels in (c), area of the projected shape can be
estimated.

4.2. Computation of Pview(M,α, β, γ)

As mentioned in Section 3, Pview(M,α, β, γ) denotes
the sum of areas of the valid regions in six views projected
on faces of the bounding box whose edges are parallel to
the coordinate axes. Theoretically, it is possible to calculate
the exact area of the valid region shown in a 2D projection
of a 3D polygon mesh. However, as shown in Figure 6(a),
the boundary of a projected 2D polygon could be very com-
plicated for some 3D meshes due to large amounts of over-
lapping and intersections. As a matter of fact, the complex-
ity of the exact area calculation for this kind of 2D shapes
is often unacceptable in practice. To solve the problem, we
apply an image-based method to efficiently calculate the ap-
proximate value of Pview(M,α, β, γ). First, three silhou-
ette views are captured in the directions of the coordinate
axes (see Figure 6(b) for an example whose valid region
is comprised of a set of black pixels). Then, we calculate
the number of black pixels in three views (see Figure 6(c)),
which are denoted as Npx, Npy , and Npz , respectively.
Note that the exact value of area of the projected image for
each view is 4, since after normalization the mesh M is
bounded by the unit sphere. Finally, let the total number of
pixels in the view be denoted as Np, we have

Pview(M,α, β, γ)

= 2 ·
(

4 · Npx
Np

+ 4 · Npy
Np

+ 4 · Npz
Np

)
. (14)

Here, OpenGL is utilized to capture depth-buffer views
from 3D objects and the resolution of images is experimen-
tally chosen as 400× 400, which implies Np = 160000.

4.3. Computation of C(M)

Owing to the complexity of Pview(M,α, β, γ) and
Pface(M,α, β, γ), we find that it is very difficult and com-
putationally expensive to compute the exact value of our
convexity measure C(M) for 3D meshes. On the other
hand, according to the definition of C(M), we observe that
the computation of convexity is basically a nonlinear opti-
mization problem which has been well studied and can be
efficiently resolved by intelligent computing approaches.

123



In this paper, we choose the Genetic Algorithm (GA),
which is an optimization technique based on natural evo-
lution [6], to calculate the new convexity measure in the
following two steps.

1. Initialization: Define and create a group with Ng in-
dividuals. Each individual contains a value of fitness
Pface(M,α,β,γ)
Pview(M,α,β,γ) and three chromosomes α,β, and γ,
which are represented by binary codes.

2. Implementation: Iterate the genetic algorithm pro-
cedure, which consists of encoding, evaluation,
crossover, mutation and decoding, for Ngen genera-
tions. The greatest value of fitness of all individuals
in the group is obtained to calculate the approximate
value of C(M).

Coefficients of the Genetic Algorithm adopted here are
selected as follows: the number of individualsNg = 50; the
number of evolution generations Ngen = 200; the length of
each chromosome’s binary codes Lc = 20; the probability
of crossover pc = 0.800 and mutation pm = 0.005.

5. Convexity Distribution
According to the definition and theorems mentioned in

Section 3, we know that the ratio

R(M,α, β, γ) =
Pview(M,α, β, γ)

Pface(M,α, β, γ)
(15)

relates closely to the convexity of a 3D mesh M . Since
R(M,α, β, γ) changes when the rotation angles α, β, γ
vary, a set of such ratios can be obtained by randomly (or
uniformly) rotating the mesh around its center. We then
construct a new shape descriptor CD (i.e., Convexity Dis-
tribution) based on the distribution of the above-mentioned
ratios, which employs a histogram instead of a single val-
ue to better describe the convexity-related properties of 3D
shapes compared to other existing convexity measurements.
In this paper, rotation angles are chosen as random float-
ing numbers between 0 to 2π, the number of rotations we
make for a mesh is selected as Nrot = 10000, and the
shape descriptor is built by quantizing these Nrot ratios
R(M,α, β, γ) whose values range from 0 to 1 into a his-
togram with Nhis = 1024 bins.

6. Results
To demonstrate the effectiveness of our convexity mea-

surement, it is first applied to several specifically-designed
3D models which are obtained from a cube by cutting dif-
ferent numbers of thin cuboids. Figure 7 shows these mod-
els in order of their convexity values. As we can see, the
more gaps an object has the smaller its convexity will be,

Figure 9. Non-rigid models (a) and their feature-preserved 3D
canonical forms (b).

Table 1. Retrieval performance of our methods (CD and C(M))
and other convexity measures evaluated on the McGill database.

NN 1-Tier 2-Tier DCG
CD 57.3% 41.3% 67.1% 72.9%
C(M) 25.9% 26.3% 45.9% 60.4%
C1(M) 27.8% 29.6% 51.9% 62.4%
C2(M) 37.3% 26.0% 43.7% 59.8%

which coincides with our intuitive notion. Moreover, we al-
so compute convexity values for other kinds of 3D meshes.
Several examples are displayed in Figure 8, from which we
observe that the proposed convexity measure is sensitive to
the change of area and it generally corresponds well with
human perception for the convexity of 3D objects.

Next, we apply our convexity measure and shape de-
scriptor CD in the retrieval of non-rigid 3D shapes. Ex-
periments are carried out on the widely-used McGill Artic-
ulated 3D Shape Benchmark [25], which consists of 10 cat-
egories containing 255 watertight meshes, and retrieval per-
formance is evaluated by the Precision-recall plot as well as
four quantitative measures (NN, 1-Tier, 2-Tier, DCG) [24].
Table 1 shows results for methods that utilize our approach-
es (i.e., CD and C(M)) and other two convexity measures
(i.e., C1(M) and C2(M)) to represent a 3D object and em-
ploy the L1 norm to calculate the dissimilarity between two
signatures. Note that all these convexity-related shape de-
scriptors are computed on the canonical forms of the 3D
meshes. As we can see from Figure 9, models in the same
class may appear in quite different poses but can still have
very similar canonical forms. Thereby, after the calcula-
tion of canonical forms, all feature extraction methods, even
those specifically designed for rigid 3D shapes, can be em-
ployed to extract isometry-invariant shape descriptors from
non-rigid objects. Here, we use a method recently present-
ed in [10] to construct feature-preserved canonical forms
for 3D meshes. As we can see from Table 1, representing
a 3D object by a convexity measure that contains only a s-
ingle value results in poor discrimination. While, because
our shape descriptor CD provides more information to de-
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Figure 7. 3D meshes derived from a cube by cutting thin cuboids. Underneath are their convexity values obtained using our method.

Figure 8. 3D shapes ranked by our convexity measure. Underneath are their corresponding convexity values.

Figure 10. Precision-recall curves computed for 12 descriptors on the McGill benchmark. The precision-recall curves of a descriptor and
its composite descriptors with the convexity measure (+C) and convexity distribution (+CD) are shown together in each subfigure.

scribe 3D shapes, it obtains much better performance com-
pared to other convexity measures. Finally, we follow the
method presented in [12] to generate 8 composite shape de-
scriptors via the linear combination of our convexity-related
shape descriptors (i.e., CD and C(M)) with the follow-
ing isometry-invariant signatures: the shape distribution of
Geodesic distance (G2) [13], Heat Kernel Signatures (HK-
S) [28], Laplace-Beltrami Spectrum (LBS) [20], and Bag-
of-feature SIFT (BF-SIFT) [15]. Compared to the perfor-
mance of original signatures, reasonable improvements in
terms of retrieval accuracy have been achieved (see Fig-
ure 10), especially after combining with the new shape de-
scriptor CD. This is mainly due to the fact that our convex-
ity measure and our shape descriptor CD provide new and

effective information, which is complementary with other
existing signatures, to represent 3D shapes.

7. Conclusion

In this paper, a new convexity measure is developed for
3D meshes. The proposed convexity measure is defined
based on the area of faces on the surface. Thereby, com-
pared to the most commonly-utilized method (i.e., the ratio
of the volume of a 3D object to the volume of its convex
hull), it is more sensitive to deep indentations into objects,
especially when the volume of these indentations are neg-
ligible. This is validated by our computed results which
also demonstrate that the new convexity measure corre-
sponds well with human intuition. The paper also proposes
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a convexity-related 3D shape descriptor based on the dis-
tribution of ratios R(M,α, β, γ) (Equation 15), which are
computed by randomly rotating the mesh around its center,
to better describe the object’s convexity-related properties
compared to existing methods. Finally, experiments were
carried out on a widely-used benchmark to show the effec-
tiveness of our convexity measure and the new shape de-
scriptor in the application of non-rigid 3D shape retrieval.
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