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ABSTRACT   

As the usage of 3D models increases, so does the importance of developing accurate 3D shape retrieval algorithms. A 
common approach is to calculate a shape descriptor for each object, which can then be compared to determine two 
objects’ similarity. However, these descriptors are often evaluated independently and on different datasets, making them 
difficult to compare. Using the SHREC 2011 Shape Retrieval Contest of Non-rigid 3D Watertight Meshes dataset, we 
systematically evaluate a collection of local shape descriptors. We apply each descriptor to the bag-of-words paradigm 
and assess the effects of varying the dictionary’s size and the number of sample points. In addition, several salient point 
detection methods are used to choose sample points; these methods are compared to each other and to random selection. 
Finally, information from two local descriptors is combined in two ways and changes in performance are investigated. 
This paper presents results of these experiments. 
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1. INTRODUCTION  
Collections of 3D models are becoming prominent in many fields. As the number and sizes of such databases grow, so 
does the need to accurately search for and retrieve 3D models. Thus, a standard 3D shape retrieval problem becomes 
returning all other objects in the database ordered in decreasing similarity to a given query.  
 
To approach this problem, a number of shape descriptors have been proposed. Global descriptors, such as area and 
volume [1], “shape distributions” [2], ratios derived from the object’s convex-hull [3], or the “LightField Descriptor” [4], 
return a feature vector, a single vector of values to represent an object. The distance between two feature vectors then 
quantitatively represents the dissimilarity between their corresponding objects; the more similar the objects are, the lower 
their dissimilarity value, and a value of 0 indicates the objects are identical. However, global descriptors are often not 
invariant to scaling, rotation, or translation, and can only discriminate between broad categories. Thus, local descriptors, 
which use a single vector to describe the local surface region around a number of sample points on an object, are 
sometimes used instead. 
 
The bag-of-words paradigm offers a framework with which to compare two objects using local descriptors. Briefly, for 
each object, a selected set of sample points is each associated with a local descriptor value from a pre-constructed 
dictionary, or a visual word. A feature vector for that object then has dimensionality equal to the size of the dictionary; 
its values are the histogram counts for the number of occurrences of each visual word. Objects can be compared with a 
dissimilarity value, just as in the case of global descriptors.  
 
This method has been successful in both text and image retrieval, and has shown promising results in 3D. However, 
while many local descriptors have been proposed, only a few have been incorporated into the bag-of-words framework. 
Many times, descriptors will be incorporated into different algorithms and tested on different datasets. This paper 
systematically surveys a set of local descriptors and compares their performances. It first analyzes their individual 
performances. In addition, parameters for the bag-of-words algorithm, four different salient point detection methods, and 
ways to combine information from two local descriptors are investigated.  
 
This paper will proceed as follows: Section 2 briefly discusses related work. Section 3 gives an overview of the bag-of-
words approach, Section 4 describes our experiments, and Section 5 outlines the evaluation methods. Section 6 presents 
our results, while Section 7 concludes the paper. 



 
 

 
 

2. RELATED WORK 
Some works have already described methods using the bag-of-words approach. Ohbuchi et al. [5] devise a bag-of-
features based on Scale-Invariant Feature Transform (SIFT) algorithm, where SIFT is used to extract salient local 
features from uniformly distributed depth-buffer views of a normalized object. The SIFT features from all views are used 
to construct a dictionary and create a histogram; dissimilarity is the Kullback-Leibler divergence between two 
histograms. Lian et al. [6] use a similar method, but instead of constructing one global histogram for each object, a 
separate histogram is built for each view of the object. They then compare objects with a method called “Clock 
Matching”. Shan et al. [7] and Liu et al. [8] both use spin images, 2D histograms proposed by Johnson and Herbert [9] 
that count the number of surface points at various locations, as local descriptors. Toldo et al. [10] segment a model into 
regions, calculate different sets of “region descriptors”, and apply a “multi-clustering approach”. Lavoué [11] propose 
choosing a random set of vertices as seeds and applying Lloyd relaxation iterations to create a uniform sampling. They 
then define a local descriptor to describe each sample point’s local surface patch.  
 
Additionally, a number of local descriptors have been proposed independent of the bag-of-words framework. Curvature 
based local descriptors include mean and Gaussian curvature, shape index [12], and curvedness [12]. Sun et al. [13] 
introduce the popular Heat Kernel Signature (HKS). Gal et al. [14] create a global 2D histogram that combines two local 
descriptors – the local-diameter function, which describes local shape well, and the centricity function, which gives 
spatial information.  
 
With these local descriptors comes the challenge of selecting appropriate and repeatable sample points. Some successful 
2D salient point detection methods have been extended to 3D, such as with Sipiran and Bustos’s 3D-Harris [15]. Multi-
scale approaches are also common; for example, [16] and [17] calculate saliency measures for each vertex using 
Gaussian filters with different standard deviations and choose certain maximum values. [18] define an “integral volume 
descriptor”, which calculates the volume of the object’s interior contained by the intersection between its surface and a 
ball centered on one of its vertices. The Heat Kernel Signature proposed by Sun et al. [13] can also be used to find salient 
points. 
  
A number of surveys have been conducted to compare these methods under one framework.  Tangelder and Veltkamp 
[19] review content-based 3D shape retrieval methods. Heider et al. [20] assess local descriptors for stability and 
discrimination ability, while Dutagaci et al. [21] examine salient point detection methods based on human-established 
ground truth. Li and Godil [22] evaluate the bag-of-words method in context of different shape retrieval tasks, choosing 
spin images as the local descriptor. This evaluation contributes by exploring the performance of different local shape 
descriptors, specially applied to the bag-of-words method. 
 

3. BAG-OF-WORDS 
The bag-of-words approach involves two stages: building a visual dictionary and computing a corresponding histogram 
for each object. Figure 1 illustrates the algorithm. 
 
To construct a visual dictionary, we choose {n1, n2, n3…nM} sample points from a collection of M models. A local 
descriptor is evaluated at each point, resulting in a total of ∑ ݊௜

ெ
௜ିଵ  vectors. We then cluster these vectors into D clusters, 

where D is the desired size of the dictionary, and the cluster centers are designated as the visual words.  
 
For an object i, we choose ni sample points and evaluate the local descriptor at these points. Each resulting vector is 
associated with the nearest word in the visual dictionary, and a histogram counting the number of occurrences of each 
visual word is constructed.  
 
In our implementation, we choose to base the visual dictionary and the histograms off the same set of sample points. We 
use code by Vedaldi and Fulkerson [23] to implement k-means clustering. Since we do not always choose the same 
number of sample points for each object, we divide counts by the total number of sample points to normalize histograms 
to [0, 1]. We choose Euclidian distance as a distance measure. For a dataset containing M meshes, we create an MxM 
distance matrix, where the value at entry (i, j) is the distance between the histograms of objects i and j and consequently, 
their dissimilarity value. 
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Figure 1. The bag-of-words algorithm. 

4. EXPERIMENTS 
For our experiments, we assume that all objects are modeled as triangular meshes, where the surface of an object is 
approximated as a set of edge-connected triangles defined by a set of vertices and edges. 

4.1  Local descriptors 

We adopt the method of Heider et al. [20] to evaluate local descriptors for our dataset. The procedure is outlined as 
follows: 

Calculation method 

Descriptors are sampled across a small area surrounding each vertex P.  Sample points Q are taken in intervals of 2πr/20 
along each of R rings formed by the intersections of R spheres, with center P and varying radius r, with the object’s 
surface. Sampling is done with what [20] denote as histogram sampling – within each ring, the sampled values are sorted 
and the ones at 0%, 10%, 30%, 50%, 70%, 90%, and 100% are taken as sample points. Thus, each point P is associated 
with a vector of size RS, where R is the number of spheres and consequently, the number of rings and S is the number of 
samples kept per ring (in this case, S = 7).  
 
For all descriptors, R = 5 and r is determined with the equation 

r = B0.0375/R,      (1) 
where B is the diagonal of the surface’s bounding box. Descriptors are sampled at all vertices, associating an object 
containing V vertices with V vectors, each with dimensionality RS. 
 

Cluster all values into D clusters  

Assign each descriptor value to nearest visual word and construct histograms 

 

Choose sample points from each object

Calculate descriptor at each sample point

Cluster centers become words 
in visual dictionary  



 
 

 
 

PCA is applied across vectors from all vertices on all objects in the dataset to keep data comparable after reduction. After 
the eigenvalues drop below 10 % of the largest value, remaining coefficients are dropped. All vectors are re-projected 
onto this new coordinate system and values in each dimension are normalized to [0, 1]. 

Descriptors  

We test the six local descriptors that yielded the best performance in the evaluation by Heider et al. [20]. They are as 
follows:  
 

• Distance to plane [DTP]: the descriptor is the signed distance from each sample point on the ring, Q, to the best-
fit plane of that ring  

• Normal distribution [ND]: the descriptor contains two values – one is the angle between the vertex P’s normal 
and the projection of the sample point Q’s normal onto the best-fit plane to P, P’s normal, and Q, the other is 
the projection of Q’s norm nto the best-fit plane of Q, Q’s normal, and an adjacent sample point  al o

• Mean curvature [Mean]: ఑భା఑
ଶ

మ, where κ1 and κ2 are the principal curvatures at point P 

• Gaussian curvature [Gauss]: ߢଵߢଶ, where κ1 and κ2 are the principal curvatures at point P 
• Shape index [SI]: calculated with  

 ଶ
గ

tanିଵሺ఑మା఑భ
఑మି఑భ

ሻ,         (2) 
where κ1 and κ2 are the principal curvatures at point P and  κଵ ൒ κଶ  

• Curvature index [CI]: calculated with  

 ට఑భమା఑మమ

ଶ
,          (3) 

where κ1 and κ2 are the principal curvatures at point P 
 

Local descriptors are calculated with code provided by the authors [24].  

4.2 Choice of sample points 

We compare different sampling methods – choosing a uniform random sampling of vertices and four different salient 
point detection methods. We wonder if by sampling local descriptors only at important points, we can either improve or 
maintain performance while choosing fewer sample points. The point detection methods tested are: 

Mesh saliency 

Proposed by Lee et al. [16], points are chosen according to their “total saliency” values. “Saliency maps”, denoted γi, are 
created by calculating a saliency value for each vertex. For a chosen scale i, the Gaussian-weighted averages of the mean 
curvature using two Gaussian filters, with standard deviations σi and 2σi, are calculated. The absolute difference between 
the two averages is the saliency. “Saliency maps” are calculated at five scales, with σi = {2ε, 3ε, 4ε, 5ε, 6ε}, where ε is 
0.3 % of the diagonal of the model’s bounding box. Eac ie  ap” is normalized, and the five are combined with a 
non-linear suppression operator S(x) to find the “total sa ng the equation  

h “sal ncy m
liency” γ usi
ߛ ൌ ∑ ܵሺߛ௜ሻ௜ .       (4) 

    
Vertices whose “total saliency” values are local maxima, higher than all its neighboring vertices’ values, are identified as 
candidate points. All candidate points whose “total saliency” is higher than the average “total saliency” of all local 
maxima values become salient points. Code implemented by Dutagaci et al. [21] is used for our experiment.  

Salient points 

Proposed by Castellani et al. [17], salient points are determined using a “joint multi-scale” paradigm. The algorithm is 
split into an intra-octave and an inter-octave phase. To find intra-octave salient points for the object re-meshed at 
decimation d, denoted Md and chosen scale i, the Difference-of-Gaussians operator, ܨ௜

ௗሺܲሻ calculated for a vertex P by 
finding the difference between Gaussian operators with standard deviations σi and 2σi. ܨ௜

ௗሺܲሻ is projected onto the 
normal of P to obtain a “scale map”, ܯ௜

ௗሺܲሻ. “Scale maps” are normalized, and an “inhibited scale map”, ܯ෡௜
ௗሺܲሻ  – 



 
 

 
 

where for each vertex, ܯ෡௜
ௗሺܲሻ ൌ ௜ܯ

ௗሺܲሻ only if its value is higher than 85 % of values in its neighborhood, otherwise, 
෡௜ܯ

ௗሺܲሻ ൌ 0 – is formed and added to ܯ௜
ௗሺܸሻ to get an “inhibited saliency map.” This is done at six scales, with σi = {ε, 

2ε, 3ε, 4ε, 5ε, 6ε}, where ε of 0.1 % the main diagonal of the model’s bounding box. A “non-maximum suppression” 
scheme detects salient points for the mesh at decimation Md. 
 
This intra-octave phase is carried out on meshes Md with d = {0, h, 2h, 3h, 4h}, where h = 0.20. Points common to three 
of these meshes become final salient points. The “Mesh Tool” program is used for point detection [25].  

3D-Harris adaptive 

Sipiran and Bustos detect salient points by extending 2D corner detection to 3D models [15]. The neighborhood Nk(P) of 
vertex P is defined as the k rings around P. The centroid of Nr(P) becomes the origin of the 3D coordinate system. PCA 
is applied to P and its neighborhood to compute a best-fit plane, and points are re-oriented such that P becomes the 
origin and the best-fit plane becomes the xy-plane of a transformed coordinate system. A quadratic surface is fit to the 
transformed points and eri m w h:   its d vatives, fx and fy, are calculated. A atrix E is computer it  
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The Harris operator H(V) is calculated with  

ሺܸሻܪ ൌ detሺܧሻ െ ݇. ሺݎݐሺܧሻሻଶ,      (6) 
where E is the matrix defined in (5), and k is a chosen constant referred to as the Harris parameter. Points are considered 
salient if they are local maxima for its neighborhood of r rings. In addition, a specified fraction of points with the overall 
highest Harris response values are also chosen.  
 
C++ code provided by the authors is used for evaluation [26]. In the default implementation, an adaptive sampling 
scheme finds an appropriate neighborhood n for each vertex P depending on P’s surrounding tessellation, selecting a 
different neighborhood for different points. 1 % of the diagonal of the object’s bounding box is used as a parameter to 
find this neighborhood. The Harris parameter k is 0.04, the neighborhood size for determining saliency r is 1, and 1 % of 
vertices are selected as salient points. We refer to this method as “3D-Harris adaptive”.  

3D-Harris rings 

In addition to the default implementation of 3D-Harris, sample points chosen with different parameter values are tested 
with our bag-of-words approach. The parameters altered are, as outlined at the author’s website [26]: 
 

• Neighborhood type: the method used – adaptive or rings – to find each vertex’s neighborhood. 3D-Harris 
adaptive uses the adaptive scheme. With the rings option, the neighborhood is simply a constant number of 
rings around a vertex.  

• Parameter-neighborhood: the fraction of the diagonal of the object’s bounding box if neighborhood type is 
adaptive; the number of rings used if neighborhood type is rings 

•  k: constant in (6)  
• Ring-maxima-detection: number of rings considered as the neighborhood when finding local maxima 
• Parameter-selection: the fraction of the total number of vertices selected as salient points  

 
The salient point selection method can alternatively be a clustering technique, where points are sorted in order of 
descending Harris operator values and clustered before salient points are selected. Because this technique intends to get 
an even distribution of interest points, it yields sample points visually similar to a random distribution. Thus, we choose 
to always select a fraction of points. When varying a parameter does not affect performance, the lowest value is chosen. 
The parameters returning points giving the best performance is used for the “3D-Harris rings” method. 



 
 

 
 

4.3 Multiple local descriptors 

Finally, we determine whether using two local descriptors would cause improved performance. Two methods are tested: 

Concatenating vectors 

Given two local descriptors that return vectors of sizes RS1 and RS2, at each point P, the second descriptor’s vector is 
concatenated to the end of the first to create a vector of size R(S1+S2). With this new set of vectors, clustering and 
histogram construction is performed as before.  

Concatenating histograms 

Two local descriptors are calculated at each point P. Clustering is performed independently on both sets of vectors, 
creating two dictionaries, each of size D, and corresponding histograms are independently constructed and normalized. 
Thus, each point P is associated with two histograms; these histograms are then concatenated to yield a histogram of 2D 
elements, and dissimilarity is the distance between the concatenated histograms. 
 

5. EVALUATION 
5.1 Database 

We test our algorithms on the SHREC 2011 Shape Retrieval Contest of Non-rigid 3D Watertight Meshes dataset [27].  
The collection contains 600 non-rigid 3D triangle meshes, classified into 30 different categories each containing 20 
objects. Given these models, our algorithm computes a 600x600 distance matrix, where the value at entry (i, j) is the 
computed dissimilarity between objects i and j. From this, the ranked list of similar objects can be derived for any query.   

5.2 Performance measures 

For each distance matrix output, six statistics, as described in [28], are calculated to evaluate the method. For any query 
object M, let C be the number of objects in M’s class (including itself) and K the number of closest matches examined. 
The statistics calculated are: 
 

• Precision-recall plot: Precision represents the portion of the K closest matches returned that are in the correct 
class. Recall represents the portion of objects in M’s class that are in the top K matches. Recall is plotted on the 
horizontal axis, while precision is plotted on the vertical axis; results closer to the horizontal line y = 1 are 
desirable.   

• Nearest neighbor (NN): the mean percentage of objects in the query object’s class that are also in t
results; results closer to 1.0 are desirable.  

he top K = 1 

• First tier (1-tier): the mean percentage of objects in the query object’s class that are also in the top ܭ ൌ
l ts closer to 1.0 are desirable. 

|ܥ| െ 1  
resu ts; resul

• Second tier (2-tier): the mean percentage of objects in the query object’s class that are also in the top ܭ ൌ 2 כ
ሺ|ܥ| െ 1ሻ  results; results closer to 1.0 are desirable. 

• E-measure: E-measure is defined as  
ܧ ൌ 1 െ ଶ

భ
ುାభ

ೃ
,       (7) 

where P is the precision and R is the recall over the top K = 32 objects. Results closer to 1.0 are desirable.  
• Discounted Cumulative Gain (DCG): DCG reflects the performance of the algorithm when correct results that 

are retrieved earlier are weighted higher than t ter, and is calculated as: hose retrieved la
ܩܥܦ ൌ ஽஼ீೖ

ଵା∑ భ
೗೒మሺೕሻ

|಴|
ೕసమ

,      (8) 

where k is the total number of models in the database and DCGi is calculated as: 
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Gi has a value 1 if the object that is the ith closest match to the query object is in the query object’s class, and is 
0 otherwise. Results closer to 1.0 are desirable.  

 
Code provided by Shilane et. al [29] is used for evaluation.  
 

6. RESULTS AND DISCUSSION 
6.1 Shape descriptors 

To compare individual shape descriptors, we chose 500 uniform random points from each of the 600 meshes in the 
SHREC 2011 dataset. We clustered the 300,000 resulting vectors into a dictionary of 500 words. Each descriptor was 
evaluated at the same points on each mesh.   
 
Table 1 shows statistics for all shape descriptors, and Fig. 2 presents their precision-recall graphs.  
 

Table 1. Retrieval statistics for local shape descriptors. 500 random points were sampled on each object and the visual 
dictionary had 500 words. 

 NN 1-tier 2-tier E-measure DCG 
Mean curvature 0.9833   0.7448       0.8450      0.6178         0.9288 
Curvature index 0.9733   0.7405       0.8475      0.6173         0.9231 
Shape index 0.9700   0.7441       0.8733      0.6335         0.9336 
Normal distribution 0.9650   0.7360       0.8461      0.6155         0.9176 
Gaussian curvature 0.9367   0.6474       0.7732      0.5580         0.8840 
Distance to plane 0.9000   0.6073       0.7616      0.5422         0.8629 

 

It is clear that distance to plane performed the worst, with Gaussian curvature as the second worst. However, no 
descriptor consistently performed better than the others. Mean curvature had the highest statistics, however, never had 
the highest precision. On the other hand, while shape index had the highest precision for most recall values, it had the 
lowest precision at high recall and only the third highest statistics. Overall, the best descriptors were mean curvature, 
shape index, and curvature index.  
 
Heider et al. [20] tested sampling methods in addition to local descriptors. Looking only at their overall sensitivity 
results for histogram sampling, their local descriptor ranking is similar to Table 1 – mean curvature, curvature index, 
shape index, Gaussian curvature, normal distribution, and distance to plane. However, the overall conclusions of [20] are 
slightly different. For example, [20] reported mean curvature and normal distribution, followed by distance to plane and 
Gaussian curvature, as the most discriminative descriptors. While mean curvature performed well within the bag-of-
words method as well, the other three actually performed the worst. Overall, [20] found normal distribution, being one of 
the most discriminative and stable, to be the best overall descriptor,  yet in the bag-of-words paradigm, it did not perform 
as well as mean curvature, shape index, or curvature index. This suggests that the performance of a descriptor under 
other evaluations is not necessarily indicative of its performance within the bag-of-words framework. 



 
 

 
 

 
Figure 2. Precision vs. recall curves for local shape descriptors. 500 random points were sampled on each object 
and the visual dictionary had 500 words. 

6.2 Algorithm parameters 

We tested two important parameters of the bag-of-words method. First, we evaluated the effect of dictionary size. 
Choosing mean curvature as the local descriptor, we sampled 500 random points from each object. Using this same set of 
sample points for all tests, we created dictionaries of various sizes.  
 
Clustering was the most time consuming step in our algorithm. It took longer for larger dictionaries, taking about 30 
minutes for 1000 words.   
 

Table 2. Time consumed for k-means clustering for various sized dictionaries. Timing studies done on an 2.66GHz desktop 
computer with 4GB of RAM running Windows XP. 

Vocabulary Time for k-means clustering (seconds) 
 10  8.52  
 50  42.09  
 100  68.85  
 200  172.24  
 300  317.23  
 400  439.61  
 500  625.92  
 1000  1864.45  

 
However, as displayed in Fig. 3, while performance improved dramatically when the sizes of smaller dictionaries were 
increased, the effect eventually reached a plateau. The optimum dictionary size seems to be around 200 words.  
 
We also tested the effect of the number of random samples, again using mean curvature and a dictionary size of 500. 
Sample points were uniformly re-sampled when the number of desired samples changed. Like with dictionary size, 
again, we saw performance improvement reach a plateau as the number of sample points increased; a choice of around 
600 sample points seems to be the best. 
 



 
 

 
 

Figure 3. Effect of dictionary size on 
retrieval. Mean curvature was used as a local 
descriptor and 500 random points were found 
on each object. 

Figure 4. Effect of number of sample points 
on retrieval. Mean curvature was used as the 
local descriptor and the visual dictionary had 
500 words. 

6.3 Salient point detectors 

Determination of parameters for 3D-Harris rings 

Only two parameters improved the performance of points detected by 3D-Harris when returned – changing the 
neighborhood sampling to rings and increasing the fraction of points selected. We used mean curvature as the local 
descriptor, with a dictionary of 500 words. Figure 5 and Figure 6 display the effect of the relevant parameters.   

 

Figure 5. Precision vs. recall curves using 
sample points returned by the 3D-Harris 
algorithm using different methods to find 
vertex neighborhoods. Mean curvature was 
the local descriptor and the visual dictionary 
had 500 words. 

Figure 6. Effect of selecting different 
fractions of points to be returned by 3D-
Harris as sample points on retrieval. 
Neighborhoods were selected using the rings 
method, mean curvature was the local 
descriptor, and the visual dictionary had 500 
words.  

 
It can be seen that using rings to find neighborhoods outperformed the adaptive scheme. In addition, selecting a larger 
fraction of points also improved performance. The final parameters used for 3D-Harris rings were ring neighborhoods 



 
 

 
 

with a size of one ring, k = 0.01, where k is the constant in (6), r = 1, where r is the number of rings considered a part of 
a vertex’s neighborhood when determining local maxima, and 5 % of points selected as salient points.  

Comparing salient point detectors 

The different points detected by each salient point detection method on the armadillo model – file T261.off in the 
SHREC 2011 Non-Rigid 3D Watertight Meshes Dataset – are shown in Fig. 7. 
 

 

Figure 7. Salient point detected. Top row (left to right): 500 random points, mesh saliency, salient points. Bottom row 
(left to right): 3D-Harris adaptive, 3D-Harris rings  

 
All methods detected salient points in similar areas of the model – toes, fingers, ears, and creases. Especially notable 
differences were seen in the number of points on smoother areas of the mesh; mesh saliency and 3D-Harris rings 
returned more points on the chest, arms, and legs than salient points and 3D-Harris adaptive. 3D-Harris rings returned a 
similar density of points to 500 random points; however, these points were clearly clustered more towards the creases of 
the mesh.  
 
To test performance with the bag-of-words algorithm, we sampled the mean curvature at the vertices returned by each 
salient point detector. We used a dictionary of 500 words. Table 3 and Fig. 8 show our results.  
 
For most recall values, using 500 random points still had the highest precision. 3D-Harris rings was a close second, 
followed by mesh saliency. However, at high recall values (greater than 0.8), mesh saliency performed the best. Salient 
points and 3D-Harris adaptive performed the worst.  
 
From Table 3, we see that methods returning more points generally performed better, suggesting that the effectiveness of 
a salient point detector was determined at least in part by the number of points it returned.  
 
When the number of sample points chosen was small, sampling salient points instead of random ones was able to 
improve performance. Both salient points and 3D-Harris adaptive clearly gave better results than sampling 100 random 
points, while both methods involved fewer sample points. It is also interesting to note that while 3D-Harris adaptive 
returned more points on average and in total, it still did not perform as well as salient points. Looking at Fig. 7, one 
explanation might be that 3D-Harris adaptive returned more points on the right of the armadillo than the left, while 
salient points returned a more symmetrical distribution of points. 3D-Harris adaptive also returned virtually no points on 
the armadillo’s body, arms, or legs, while salient points has sample points representing features like the chest and the 



 
 

 
 

knees. In this case, calculating a local descriptor at salient points was able to provide more information and improve 
performance. 

 
Figure 8. Precision vs. recall curves for sample point selection methods. Mean curvature was the local descriptor and the 
visual dictionary had 500 words. 

 
As the number of sample points increased however, a continued performance improvement did not occur. For example, 
mesh saliency gave approximately the same statistics as using 300 or 400 random points. 3D-Harris rings and 500 
random points, while they had different visual distributions of points, were also fairly equal in performance. This 
suggests that the benefit of detecting salient points also reaches a plateau, similar to what we saw with the dictionary’s 
size and number of random sample points. At a larger number of sample points, sampling a local descriptor at salient 
points can slightly decrease the number of sample points needed to achieve a similar level of performance (as with 500 
random points and 3D-Harris rings), but this advantage is not much. 
 

Table 3. Retrieval statistics for sample point selection methods. Mean curvature was the local descriptor and the visual 
dictionary had 500 words. 

 NN 1-tier 2-tier E-measure DCG Avg. points Total 
points 

500 random 0.9850 0.7432 0.8480 0.6190 0.9281 500 300000 
3D-Harris rings 0.9817 0.7389 0.8355 0.6104 0.9235 461 276891 
400 random 0.9583 0.7272 0.8427 0.6127 0.9194 400 240000 
300 random 0.9533 0.6922 0.8205 0.5938 0.9038 300 180000 
Mesh saliency 0.9500 0.7254 0.8444 0.6129 0.9128 354 212185 
200 random 0.9050 0.6404 0.7822 0.5601 0.8761 200 120000 
Salient points 0.8900 0.5861 0.7445 0.5302 0.8452 75 44884 
3D-Harris adaptive 0.8767 0.5595 0.7073 0.5016 0.8287 93 55585 
100 random 0.7967 0.5131 0.6584 0.4659 0.7920 100 60000 

 

6.4 Combining descriptors 

First, 500 sample points were chosen for each object. Each descriptor was evaluated at these sample points and tested 
using a dictionary of 500 words as reference. We combined descriptors in four different ways. First, two descriptors 
were combined by concatenating the vectors returned when they were sampled at the same points on each object. Data 
from two descriptors combined this way are labeled with format descriptor1+descriptor2 – VS. Alternatively, two 



 
 

 
 

descriptors’ histograms were concatenated, again using the same sample points; this data is labeled with the format 
descriptor1+descriptor2 – HistS.  
 
We also tried to not only sample two different descriptors, but also different points as well. Thus, we calculated the 
performance of two descriptors separately, choosing different sample points for each descriptor. The histograms were 
directly concatenated, and performance data is labeled with the format descriptor1+descriptor2 – HistD. Then, the 
vectors from each descriptor were concatenated and these combined vectors were tested as well; results are labeled with 
the format descriptor1+descriptor2 – VD. In addition, to see how well each descriptor corresponded with itself, we also 
sampled each descriptor at two sets of 500 sample points each and concatenated the resulting vectors (labeling results 
with format descirptorVD) and histograms (labeling results with format descirptorHistD).  
 
As shown in Table 4, concatenating the vectors from calculating normal distribution and shape index at the same sample 
points performed the best. In general, some descriptors clearly corresponded better with each other, and only some of the 
combined descriptors performed better than mean curvature, the single local descriptor with the highest statistics. It is 
also interesting to note that neither normal distribution nor shape index performed the best as an individual descriptor, 
but together was the best combination. On the other hand, combining the mean curvature with some descriptors actually 
made performance worse than just mean curvature alone, including combining the descriptor with itself.  
 
Concatenating vectors from different sample points clearly gave the lowest results. The top four results used two 
descriptors at the same sample points rather than different ones. In terms of vectors concatenation, using the same points 
consistently gave much better results. However, though the best combination came from concatenating vectors, 
concatenating histograms gave better performance overall. It is unclear whether using the same or different sample 
points is better when concatenating histograms – for example,  using the same sample points performs better when 
combining mean curvature without another descriptor, yet using difference points is more preferable when combining 
normal distribution with others. 
 

Table 4. Retrieval statistics for combinations of local descriptors. 

 NN 1-Tier 2-Tier e-Measure DCG 
ND+SI – VS 0.9950   0.7978       0.8910      0.6513         0.9484 
Mean+SI – HistS 0.9933   0.8106       0.9053      0.6603         0.9579 
Mean+CI – VS 0.9917   0.7773       0.8724      0.6376         0.9419 
Mean+Gauss – HistS 0.9917   0.7605       0.8487      0.6187         0.9344 
ND+SI – HistD 0.9900   0.8240       0.9171      0.6701         0.9591 
Mean+SI – VS 0.9900   0.7791       0.8793      0.6424         0.9447 
CI+SI – HistS 0.9900   0.8253       0.9125      0.6680         0.9580 
ND+Gauss – HistD 0.9900   0.7649       0.8500      0.6224         0.9312 
SI+Gauss – Hist D 0.9900   0.7973       0.8922      0.6520         0.9512 
Mean+Gauss – HistD 0.9900   0.7655       0.8515      0.6220         0.9354 
SIHistD 0.9900   0.7884       0.8989      0.6550         0.9519 
CI+SI – VS 0.9883   0.8065       0.8963      0.6558         0.9526 
SI+DTP – HistD 0.9883   0.7861       0.8980      0.6537         0.9489 
Mean+CI – HistS 0.9867   0.7746       0.8637      0.6323         0.9385 
CI+SI – HistD 0.9867   0.8215       0.9120      0.6656         0.9574 
CI+Gauss – HistD 0.9867   0.7639       0.8502      0.6208         0.9330 
ND+SI – HistS 0.9850   0.8241       0.9146      0.6682         0.9581 
Mean+SI – HistD 0.9850   0.8161       0.9093      0.6637         0.9581 
Mean+CI – HistD 0.9850   0.7777       0.8629      0.6324         0.9386 
Mean+ND – HistS  0.9850   0.7816       0.8647      0.6344         0.9379 
ND+CI – HistD 0.9850   0.7748       0.8585      0.6292         0.9347 
ND+CI – HistS 0.9850   0.7704       0.8590      0.6291         0.9327 
CIHistD 0.9850   0.7587       0.8529      0.6240         0.9300 
ND+Gauss – VS 0.9833   0.7552       0.8487      0.6186         0.9295 
CI+Gauss – VS 0.9833   0.7544       0.8533      0.6208         0.9291 



 
 

 
 

Mean+ND – HistD 0.9833   0.7839       0.8661      0.6345         0.9394 
CI+DTP – HistS   0.9833   0.7500       0.8588      0.6254         0.9302 
Mean 0.9833   0.7448       0.8450      0.6178         0.9288 
SI+Gauss – VS 0.9817   0.7740       0.8685      0.6351         0.9377 
Mean+Gauss – VS 0.9817   0.7833       0.8716      0.6367         0.9407 
ND+CI – VS 0.9817   0.7582       0.8538      0.6252         0.9296 
CI+DTP – HistD 0.9817   0.7476       0.8544      0.6224         0.9292 
Mean+DTP – HistD 0.9817   0.7573       0.8644      0.6307         0.9356 
NDHistD 0.9817   0.7632       0.8517      0.6247         0.9292 
SI+DTP – HistS 0.9800   0.7858       0.9016      0.6566         0.9477 
Mean+DTP – HistS 0.9800   0.7593       0.8632      0.6307         0.9346 
MeanHistD 0.9800   0.7395       0.8477      0.6173         0.9269 
SI+DTP – VS 0.9783   0.7468       0.8756      0.6342         0.9344 
CI+Gauss – HistS 0.9783   0.7640       0.8508      0.6204         0.9318 
Mean+DTP – VS 0.9783   0.7335       0.8531      0.6173         0.9269 
SI+Gauss – VD 0.9767   0.7818       0.8767      0.6398         0.9421 
Mean+ND – VS 0.9767   0.7734       0.8634      0.6321         0.9350 
ND+DTP – HistD 0.9733   0.7452       0.8543      0.6226         0.9278 
CI 0.9733   0.7405       0.8475      0.6173         0.9231 
Mean+ND – VD 0.9717   0.7091       0.8333      0.6057         0.9125 
Gauss+DTP – HistD 0.9717   0.7210       0.8320      0.6041         0.9192 
GaussHistD 0.9717   0.6922       0.8016      0.5805         0.9069 
SI 0.9700   0.7441       0.8733      0.6335         0.9336 
Mean+CI – VD 0.9667   0.7180       0.8415      0.6104         0.9148 
CI+DTP – VS 0.9667   0.7225      0.8382      0.6097         0.9184 
Gauss+DTP – HistS 0.9650   0.7182       0.8323      0.6032         0.9177 
ND+DTP – HistS 0.9633   0.7443       0.8541      0.6223         0.9255 
Gauss+DTP – VS 0.9633   0.7019       0.8273      0.5975         0.9123 
CI+SI – VD 0.9600   0.7349       0.8625      0.6237         0.9238 
ND 0.9600   0.7351       0.8451      0.6154         0.9171 
ND+Gauss – VD 0.9583   0.6958       0.8221      0.5956         0.9036 
ND+CI – VD 0.9583   0.6958       0.8221      0.5956         0.9036 
CIVD 0.9583   0.6910       0.8178      0.5942         0.9002 
NDVD 0.9567   0.6668       0.8000      0.5773         0.8913 
ND+SI – VD 0.9550   0.7182       0.8537      0.6186         0.9210 
Mean+SI – VD 0.9533   0.7089       0.8556      0.6159         0.9143 
ND+DTP – VS 0.9533   0.6740       0.8132      0.5873         0.8978 
CI+Gauss – VD 0.9417   0.6645       0.7900      0.5714         0.8877 
MeanVD 0.9400   0.6877       0.8238      0.5946         0.8984 
ND+Gauss – HistS 0.9367   0.6474       0.7732      0.5580         0.8840 
SI+Gauss – HistS 0.9367   0.6474       0.7732      0.5580         0.8840 
Gauss 0.9367   0.6474       0.7732      0.5580         0.8840 
DTPHistD 0.9333   0.6416       0.7897      0.5649        0.8846 
Mean+Gauss – VD 0.9300   0.6728       0.8096      0.5812         0.8939 
SI+DTP – VD 0.9283   0.6595       0.8282      0.5914         0.8869 
SIVD 0.9150   0.6263       0.7905      0.5645         0.8704 
Mean+DTP – VD 0.9133   0.6494       0.8068      0.5777         0.8815 
ND+DTP – VD 0.9017   0.6121       0.7673      0.5478         0.8604 
DTP 0.9000   0.6073       0.7616      0.5422         0.8629 
Gauss+DTP – VD 0.8900   0.6024       0.7496      0.5348         0.8541 
GaussVD 0.8183   0.5303       0.6810      0.4829         0.8066 
DTPVD 0.7983   0.5319       0.6983      0.4910         0.8040 



 
 

 
 

7. CONCLUSION 
We explored the capabilities of the bag-of-words algorithm through testing proposed local descriptors, algorithm 
parameters, sampling methods, and combining descriptors. We have found that mean curvature, shape index, and 
curvature index are the best descriptors. In addition, we have determined that there is a significant performance gain 
when increasing dictionary size and the number of random sample points from small values. Salient point detection 
methods are still limited by the number of sample points they return, and seem to also only significantly improve 
performance when the number of sample points is small. Overall, 3D-Harris rings and mesh saliency are the best 
methods. Finally, normal distribution and shape index, through concatenating the vectors returned from calculating each 
at the same sample points, gives the best performance. We believe these observations we present can be useful to future 
experiments. 
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