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Improving photon-number resolution of single-photon sensitive detectors is important for many applications, as is
extending the range of such detectors. Here we seek improved resolution for a particular superconducting
transition-edge sensor (TES) through better processing of the TES output waveforms. With that aim, two algo-
rithms to extract number resolution from TES output waveforms are compared. The comparison is done by pro-
cessing waveform data sets from a TES illuminated at nine illumination levels by a pulsed laser at 1550 nm. The
algorithms are used to sort the individual output waveforms and then create clusters associated with individual
photon numbers. The first uses a dot product with the waveform mean (for each illumination level), while the
second uses K-means clustering modified to include knowledge of the Poisson distribution. The first algorithm is
shown to distinguish adjacent peaks associated with photon numbers up to 19, whereas the second algorithm
distinguishes photon numbers up to 23, using the same data.

OCIS codes: 040.5570, 120.5630.

1. INTRODUCTION
National metrology institutes have shown recent interest in
using single photons as the basis of radiometric standards
[1–5] to complement existing thermal and synchrotron
sources. Such metrology efforts require the linking of single-
photon measurements to radiometric standards at higher
power levels, and extending photon counting and photon-
number resolution to higher numbers is a step toward that
goal. Such an extension of photon-number resolution to high-
er numbers for one type of photon-number-resolving detector
is the motivation of the work presented here. A further and
important step, but not one discussed here, is characterizing
the uncertainties from the photon-number determination of
the detector output for larger incident photon numbers.

Photon-number determination for number-resolving super-
conducting transition-edge sensors (TES) is generally accom-
plished through the use of an amplitude threshold that
distinguishes between output waveforms of adjacent photon
numbers. This method allows real-time knowledge of the ob-
served photon number, which is of particular importance for
applications such as quantum information processing, quan-
tum repeaters, and quantum (and even classical) communica-
tions, where delays in determining the photon number add
significantly to the already formidable implementation chal-
lenges [6–10]. However, it requires careful setting of the
output amplitude threshold, as misidentification of photon
numbers can occur due to improperly chosen levels [11]. Even
with an optimal threshold, noise on the detector output wave-
forms also contributes to misidentification of individual
photon numbers. Such noise is always present to some degree
with TES detection and is often quantified in terms of energy

resolution of the TES. When measuring an ensemble of a
monochromatic input light state, a histogram of the ensemble
allows for the identification of individual peaks that are
largely due to the absorption of a specific photon number
[12]. Although these peaks may overlap, under the assumption
of white noise and hence a Gaussian distribution of individual
photon-number output, one can still determine the photon
probability distribution of the input state by fitting the indivi-
dual peaks of the ensemble histogram. Hence, a characteriza-
tion of the input state is possible. It is important, though, to
note the limitations of this Gaussian assumption. With well-
resolved histogram peaks and clearly defined Gaussian
shapes, this assumption is likely to be valid for some range
from the center of the peaks, but in the regions where the
peaks significantly overlap, the Gaussian assumption cannot
be used with much confidence, as there are a number of phy-
sical phenomena, such as changes in where the optical energy
is absorbed, that can lead to nonlinear and non-Gaussian
behavior. As a result, the uncertainty of a particular photon-
number determination can be hard to correctly quantify and
easy to underestimate.

To avoid the pitfalls associated with assuming an overall
Gaussian noise when it cannot be verified, except near the
center of the peak, we use of the term “visibility” to gauge
how well a detector and an analysis of its output waveforms
can distinguish adjacent photon-number peaks. This photon-
number visibility, as we shall see, is defined similarly to fringe
visibility in terms of the maximums and minimums of an os-
cillatory shape. We feel that such a term is less likely to be
misinterpreted with respect to photon-number uncertainty.
While the TES is often used in conjunction with classical
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states, the detection and characterization of squeezed light
[13] is just one example of an application where better
photon-number determination and better understanding of
what is and is not known about the uncertainties associated
with that determination is particularly important.

To motivate our focus on the TES and to put its perfor-
mance in context, we compare it to some other photon-
number-resolving detector technologies. TESs have been used
to distinguish photon peaks ranging from 0 to 15 photons at a
wavelength of 1550 nm [14]. Using an alternate technology,
the charge integration photon detector, individual photon
peaks up to 10 have been demonstrated at wavelengths of
both 1530 and 1310 nm [15]. Another technology, the Multi-
Pixel Photon Counter, resolved individual photon-number
peaks for optical pulses with an average of 96 photons using
a 2500 pixel detector [16]. Recent reviews of the field of single-
photon detectors [17,18] show that of all optical single-photon
detector technologies, the TES is unique in its capability of
energy-resolving the absorbed light and, for monochromatic
light, in its photon-number resolution. In addition, the TES’s
near unity detection efficiencies put the detector in a class by
itself [19,20]. It is only the slow thermal response that detracts
from the otherwise extraordinary performance of this device.

In a parallel study, the output of a TES was studied while
illuminating it with coherent state laser pulses at a 1 kHz re-
petition rate. TES output waveforms were collected for a large
number of pulses (20 480), and such data sets were taken at 45
different illumination levels ranging from a mean of 2.00
photons per pulse to a mean of 6.3 million photons per pulse.
The waveforms were digitized using 8192 time steps of 100 ns
each. In the study here, we use the data of the lowest nine
mean photon numbers (from the highest nine attenuator set-
tings), which range from 2.00 to 31.6.

The principal goal of this paper is the development of an
algorithm that is capable of classifying the detector output wa-
veforms into groups with single-photon-number resolution to
as high a photon number and the best photon peak visibility as
possible. We also discuss how the shapes of the waveforms
vary with photon number and how that impacts the classifica-
tion processes.

2. ALGORITHMS TO OBTAIN PHOTON-
RESOLVED RESPONSE CURVES
Our intent is to classify the TES’s output waveforms in terms
of the actual number of photons n absorbed by the TES from a
given pulse of an ensemble defined by an average number of
detected photons hni. Note that the experimenter has control
over only the mean value hni, but not over n, and the response
of the TES depends on n, not on hni. Thus, to classify an in-
dividual waveform, we first generate a family of output wave-
forms for each input photon number. We do this by sorting our
large sample of waveforms generated from a source with a
particular statistical distribution of n with known mean hni.
Then we break those sorted waveforms into groups asso-
ciated with a particular photon number and create a family
of waveforms V̄n�t� from averages of the waveforms in each
group. (Here, V is a voltage, and t is time from the start of the
pulse.)

To begin classifying the waveforms, we make several as-
sumptions. First, the optical source generates photons accord-
ing to a Poisson distribution and any subsequent losses reduce

themean, but retain thePoisson form. Thiswill be truewhether
the losses are in delivering the light to the detector or
within the detector itself. Thus, the numbers of detected
photonsn follow aPoisson distributionwith detectedmean hni

Pn�hni� � e−hni
hnin
n!

: (1)

We define an average waveform for n to be V̄n�t�. Second, we
assume V̄0�t� � 0; i.e., if no photons enter the detector, the
mean response is some baseline voltage that is defined to be
0. Third, the mean response for all n obeys V̄n�0� � 0, is single
peaked, and returns asymptotically to 0 at large time. Finally,
the mean response for a given nmay be described as an excita-
tion above some baseline, and if n > n0, V̄n�t� ≥ V̄n0 �t� for all t.

The assumptions encompass the notion that more photons
lead to a bigger response. But individual waveforms are sub-
ject to noise, so there is not necessarily a unique way to say a
specific output waveform is larger than another. Hence, we
explored several options for ordering the waveforms, includ-
ing using their integrals, root-mean-squared (RMS) values, and
projection onto a fixed function.

A. Dot-Product Algorithm for Ordering the Waveforms
One effective method we found was the following: we first
averaged all the waveforms taken at a given average photon
number hni to find

V̂ hni�t� �
1
M

XM
i�1

Vi�t�; (2)

where M is the total number of waveforms taken at that aver-
age photon number. Then, the dot product of each waveform
is found with that average waveform via

n�eff�
i � hni

P
tV i�t�V̂ hni�t�P
t �V̂ hni�t��2

: (3)

By dotting each waveform with a function that depends on
hni, we avoided the loss of sensitivity that occurred when
we chose a single hni-independent function. The normaliza-
tion yields a rough approximation to the photon number n.

The waveforms were ordered by their values of n�eff�. Then
the ordered list of waveforms was divided into clusters of wa-
veforms. The number of waveforms in each cluster was
chosen to be equal to MPn�hni� rounded to integers that
sum toM , where Pn�hni� is the probability of having n photons
according to the Poisson distribution with mean hni, given
in Eq. (1). Thus, if the n � 0 cluster is to have, say, three
members, the three waveforms with the lowest values of
n�eff� are assigned to it. The n � 1 might get the next, say, se-
ven waveforms, and so on. We refer to this algorithm as the
“dot-product method.”

B. The Poisson-Influenced K-Means Algorithm (PIKA)
While the dot-product method was reasonably effective, we
wanted to see if a better algorithm could be found. First, we
considered K -means clustering [21], a popular and efficient
method of classifying high-dimensional data into a few
clusters. A typical application for K -means clustering is to
classify a spectral image obtained from an airplane or satellite
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into terrain types (e.g., water, forest, road, etc.) In our TES
application, the clusters are the waveforms for a given inci-
dent photon number n, and the cluster means are the average
waveform within a cluster. A high-dimensional space arises
from the many discrete time points in each waveform.

In the standard K -means algorithm [22], the data are
grouped intoK distinct clusterswhereK is an integer. The clus-
ters minimize the sum of the squared deviation of each wave-
form from the mean of the waveforms in the cluster. Although
it is not always recognized, the K -means algorithm may be
viewed as the minimization of an objective function [21].
The form of the objective function we used is negative of the
logarithm of the likelihood of an isotropic, multivariate
Gaussian with no correlations between variables. This is a
convenient form, as it converts a Gaussian to a paraboloid
[23]. The K -means objective function, adapted to the present
variables, is

OK �
Xn0�K−1

n�n0

X
i∈Cn

1
Nt

X
t

�Vi�t� − V̄n�t��2: (4)

As before, n is the photon number characterizing the cluster.
Also, i is an index over the waveforms, t is a discrete time vari-
able, Nt is the number of time points in each waveform, Cn is
the set of indices of waveforms in cluster n, and V̄n�t� is the
mean of all the waveforms in cluster Cn. The range of n is
bounded by n0 and n0 � K − 1, the smallest and largest num-
bers of photons expected to have been observed at least once;
this consideration sets the number of clusters K . The cluster
means are defined by

V̄n�t� �
1
mn

X
i∈Cn

Vi�t�; (5)

where mn is the number of waveforms in cluster n.
The K -means objective function failed to find reasonable

clusters for our data. From a random starting point, certain
known clusters (e.g., n � 0 response) did not emerge if the
data sets were large. The results were better using an initial
ordering from the dot-product method; however, under itera-
tion, there was a tendency for large clusters to split into two,
leading to large deviations from the Poisson distribution and
uneven spacings of the cluster-mean waveforms.

To address the situation, we decided to combine the K -
means objective function with our prior knowledge of the
cluster sizes, namely the Poisson distribution of photon num-
bers with a knownmean. The mean of the Poisson distribution
is known to�1% (expanded uncertainties calculated from the
standard deviation of the mean with coverage factor k � 2 are
used here and throughout), because it was found for the data
set with the lowest optical input to be hni � 2.00� 0.02 and
scaled for the other values based on the known attenuation of
the optical filters used in the experiment [24]).

We create a new objective function by adding a regulariza-
tion term leading to

OKPC � 1

2σ2
OK � OPC; (6)

where σ is a constant and

OPC � − ln L�mn0
;…;mn0�K−1; hni�: (7)

Here, L is the likelihood of having M �Pn0�K−1
n�n0

mn wave-
forms apportioned among the K clusters with mn waveforms
assigned to each n-photon cluster. The objective function
OKPC has been used in the context of gene expression as im-
plemented in the PoissonL algorithm [25]. However, our meth-
od for minimizing the objective function, which is described in
Appendix A, differs. In practice, we have M � 20 480, if all
available data with a given mean photon number hni are used.
We choose to write the constant relating OK and − ln L in the
form 1 ∕ �2σ2� to emphasize the connection of the K -means ob-
jective function to the negative-log-likelihood of the normal
distribution [23]. This makes it possible to estimate σ, rather
than simply tuning a regularization parameter with otherwise
unknown properties. Of course, as σ → 0, OKPC reduces to the
OK times a constant, whereas for σ → ∞, the term ln L dom-
inates, so the number of waveforms assigned to each cluster
approaches the Poisson mean values (up to discretization). In
practice, we chose a single σ � 14.6 mV for all hni based on
the standard deviation of waveforms assigned to clusters at
small n. Later, when higher n clusters became available to
us, we found that σ may decrease as n increases, but the effect
is modest, and only the original parameter is reported.

The likelihood of observing cluster frequencies mn0
;…;

mn0�K−1 depends on two factors: LP , the likelihood from
the Poisson distribution, and LC , a combinatorial factor to ac-
count for the number of ways M waveforms could have been
grouped into K groups of with frequencies mn0

;…;mn0�K−1.
Of course,

L � LPLC: �8�

To write LP , the Poisson distribution of Eq. (1) is used. The
likelihood that the laser would yield a particular photon-
number sequence is

LP �
Yn0�K−1

n�n0

�
e−hnihnin

n!

�mn

: (9)

The combinatorial factor is

LC � M!

 Yn0�K−1

n�n0

mn!

!
−1

; (10)

the number of permutations of the arrival sequences leading to
the same cluster frequencies. (As an example, the three arrival
sequences 011, 101, and 110 all yield frequencies of (1,2) for
n � �0; 1� photons, respectively, but the only way to achieve
frequencies of (0,3) is to have the arrival sequence 111.)

With the objective function chosen and the initial clusters
assigned, it remains to minimize the objective function. Here,
we implemented two strategies for optimizing OKPC, known as
the greedy algorithm [26] and simulated annealing [27]. We
found the simulated annealing offered only a very modest im-
provement over the results of the greedy algorithm, suggest-
ing that the objective function does not have important local
minima, which is a pitfall of the greedy algorithm. Results are
given for the greedy algorithm.
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The relationship between the dot-product algorithm and the
Poisson-influenced K -means algorithm is shown in Fig. 1. In
plain language, the dot-product method generates a set of
mean waveform curves that simply scale with n. In an alter-
native representation, the dot-product method orders wave-
forms on a line through the hyperspace consisting of a
voltage for each of a finite set of time points. The Poisson-
assisted K -means method finds a piecewise linear representa-
tion of an ideal detector response curve in the same hyper-
space. The closest approach between the curve and the
line will occur near n � hni, where one would expect the best
determination of the mean cluster waveform to be. Two wave-
forms are shown schematically as points on the graph, where
for the case shown, the ordering of the waveforms is seen to
reverse, depending upon which algorithm result is chosen.

3. NOISE AND BACKGROUND REDUCTION
The data used in this work consisted of sets of 20 480 voltage
waveforms recorded in 8192 times steps of 100 ns for each of
nine illumination levels. The voltages were discretized in steps
of 2−14 V ≈ 61 μV with about 0.2 V of the available 4 V range
being used in practice. For this study, except for determining
the background rate, it was sufficient to retain the first 20 μs,
as the pulses were quiescent thereafter.

In dealing with experimental data, it is common to apply a
Wiener filter before further analysis [23]. In the case of a TES,
the Wiener filter has been shown not to be optimal by a factor
of about 2 [28]. However, the Wiener filter is simpler to
implement and was chosen for this work. The power spectrum
had a noise floor similar to the example in [23]. Following
that as a guide, the signal to noise ratio was fit to
jS�ν�j2 ∕ jN�ν�j2 � 104 exp�−ν ∕ ν0�, with ν0 � 137 kHz. These
relations were used in the Wiener filter formula [23]

Φ�ν� � jS�ν�j2
jS�ν�j2 � jN�ν�j2 : (11)

A spike in all the waveforms at 2.268 MHz was attributed to
electrical pickup. While no special attempt was made to re-
move the spike, it was, however, strongly attenuated by the
filter.

Each waveform was Fourier transformed from the time do-
main to the frequency domain. The transform was filtered, i.e.,
multiplied byΦ�ν�. After applying the Wiener filter, rapid fluc-
tuations in the data were largely removed. The upper half of
the frequencies yielded negligible amounts of power, so these
were discarded before the back transform. As a result of halv-
ing the number of frequencies, the time step increased from
100 to 200 ns, leaving 100 time points. The summations over t
in this paper refer to this domain.

For background studies, the final 4000 time steps (equal to
800 μs) were considered. A total of 10 240 observations were
considered for a total of 8.192 s. The background portion of
the waveforms fluctuated in a band around some constant va-
lue. However, certain pulses brought the background out of
the band. These were attributed to blackbody photons. In
the total observation time, 37 049 such events were identified
yielding a rate of 4520 s−1. The ratio of double height peaks to
single height peaks is 0.020, indicating a photon arrival rate of
4570 s−1, consistent with statistically independent arrival
times.

For the four data sets with the lowest illumination
(hni � 2.00 to hni � 5.68), it was possible to identify and re-
move most of the blackbody photons [29]. For the two lowest
illumination data sets, such removal was necessary to form
plausible cluster-mean waveforms. However, for the larger
data sets, it became increasingly difficult to identify the black-
body photons. Fortunately, for the hni � 5.68 set and beyond,
the parameters of interest were not affected by the inclusion
of blackbody photons, so no attempt at background removal
was made for the next five data sets, hni � 7.99 to hni � 31.6.

4. RESULTS
For data sets hni � 2.00 and hni � 2.83, the clusters for differ-
ent n are well separated, and the dot-product method as well
as the minimization of the objective function OPC led to the
same result. Cluster means are presented for these cases in
Fig. 2(a). The figure shows the cluster means for various n
are nearly independent of hni. While we expect this on phy-
sical grounds (as the TES responds to the actual photon num-
ber absorbed in a single light pulse not the average of many
pulses), it is a useful cross-validation that both algorithms ob-
tain common results from two different sets of observations.

We are interested in resolving the photon number. To this
end, each waveform was assigned an interpolated photon
number that takes advantage of our knowledge of V̄n�t�,
which is more detailed knowledge than n�eff� derived from
V̂ hni�t� in Eq. (3). To assign the photon numbers, the photon
number n of the cluster of which the waveform is a member is
noted. Then, the cluster second closest (in the sense of finding
the n0 that minimizes

R
dt�Vi�t� − V̄n0 �t��2) for a given wave-

form Vi�t� is found. In practice, this is always cluster n − 1
or n� 1. We call the value of the second closest cluster n0.
The waveform is fit as a linear combination of the cluster
means

PIKA

Dot Product
n 3

n 4

n 5

n 3

n 4

n 5

V 1

V
2

Fig. 1. Schematic representation of the ordering of waveforms in the
two algorithms. A waveform may be viewed as a point in a high-
dimensional space. Specifically, a waveform discretized at times
t1;…; tNt

may be considered to be the point �V�t1�;…; V�tNt
�� �

�V1;…; VNt
�. Just two dimensions of this high-dimensional space

are shown here. The evolution of the waveform with photon number
is seen for the dot-product algorithm in the straight line resulting from
Eq. (2) and for the Poisson-influenced K -means algorithm (PIKA) in
the curved line representing Eq. (13). The values of n � 3, 4, or 5 are
shown for both cases (small dots). Each large dot represents a parti-
cular waveform Vi�t� to be ordered. These waveforms are projected
onto the line and the curve to show how they would be ordered by the
two algorithms. One feature of the actual curves represented here is
the uniform spacing of n for the dot-product method and the decreas-
ing spacing for PIKA.
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Vi�t� ≈ αiV̄ n�t� � �1 − αi�V̄n0 �t�; (12)

where αi is a constant. The value of αi that minimizes the RMS
deviations is found. The interpolated photon number is
given by

n�eff�
i � αin� �1 − αi�n0: (13)

The strong clustering can be seen by plotting a histogram of
the cluster means such as Fig. 3 for the hni � 2.00 data set.

The largest illumination level for which some single-
photon-number resolution could be found corresponded to
hni � 31.6. The waveforms for these clusters are presented
in Fig. 2(b); cluster means from hni � 22.6 are also shown
to indicate that the method produces very similar curves as
a function of individual photon number n-independent of
the average photon number hni, as was the case in Fig. 2(a).

To illustrate the photon-number-resolving power, we clas-
sify the waveforms according to the dot-product method and
the Poisson-influenced K -means algorithm (Figs. 3 and 4) and
then quantify the visibility of the photon-number peaks (Fig. 5)
using the Michelson definition of �max−min� ∕ �max�min�,
where the minima are taken at half-integer photon numbers
and the maxima the average of the two surrounding values.
Whereas some photon-number peak visibility persists (de-
fined as a nonzero value that exceeds its uncertainty) up
through n � 19 using the dot-product method, peak visibility
persists through n � 23 for PIKA, showing its improvement in
photon-number-resolving power. This is the key result of
this paper.

Description of the cluster means. The waveforms grow in
magnitude and width through n � 15 or so, and then grow
principally in width for larger n. The full widths at half max-
imum (FWHM) as a function of the photon number n are pre-
sented in Fig. 6(a). A roughly linear behavior for the FWHM is
seen for the photon numbers studied, although sublinear be-
havior occurs as the average photon number increases [24].

The saturation of the peak cluster means is not absolute as
a cursory glance at Fig. 2(b) might suggest. The peaks
continue to grow, as shown in Fig. 6(b). The two regimes
in the plot represent the superconducting regime at low n
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Fig. 2. (Color online) (a) Cluster waveform means for 0 ≤ n ≤ 12 de-
rived from the two lowest illumination data sets hni � 2.00 (solid red)
and hni � 2.83 (dotted blue). The n � 0 response is approximately
zero and is not very visible in the plot. (b) Waveform cluster means
are given as derived from the hni � 22.6 (solid red) and hni � 31.6
(dashed blue) with n � 6; 9;…; 42 and n � 12; 15;…; 54, respectively.
The solid red curves nearly obscure the dashed blue curves for 0 ≤ n ≤

9 in (a) and for many n’s in (b), showing that the cluster means derived
from independent data sets are nearly identical except where the
number of waveforms in the data set is very few.
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Fig. 3. (Color online) Counts of waveforms per bin (of width 0.05
photon) for 19 091 pulses (derived from 20 480 pulses after rejection
of observations with blackbody photons) with an average of hni �
2.00 photons per pulse (blue points). The histogram was fit to a series
of Gaussians centered on the integers leaving only the amplitude and
width of each Gaussian as parameters (red line). Effective photon
numbers n�eff� are found for each waveform using the Poisson-
influenced K -means algorithm. Results for the dot-product algorithm
(not shown) are very similar for this case.
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Fig. 4. (Color online) Histogram of waveforms versus (a) effective
photon number found using the dot-product algorithm or (b) interpo-
lated photon number found using the Poisson-influenced K -means al-
gorithm, all for 20 480 pulses, an average of hni � 22.6 photons per
pulse, and a bin width of 0.05 of a photon. The histograms were fit
as in Fig. 3 (red line).
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and the transition to normal conduction near n � 15. The trail-
ing edges of each cluster mean are nearly identical, as illu-
strated in Fig. 7. The n � 25 cluster mean shifted in time
by 3.2 μs is seen to have a nearly identical falling edge with
the n � 37 cluster. (This behavior is typical of the cluster
means.) The near equality of the falling edges is consistent
with the idea that the detector’s return from being driven
normal from the heat of many photons should not depend
on how long it spent in the normal state.

5. CONCLUDING REMARKS
We have demonstrated, for one particular TES, the ability to
distinguish photon-number peaks with up to 23 (λ � 1550 nm)
photons—the highest value of which we are aware. In addi-
tion, we have quantified the degree of photon-number resolu-
tion in terms of visibility between adjacent peaks.

Individual TESs need to be calibrated. The method here
provides a way to assist with such calibration. For small aver-
age photon numbers hni (say, hni < 8), the agreement of the
advanced algorithm with the simpler one indicates that sort-
ing by a fixed dot product is sufficient. As seen in Fig. 5, both
methods lead to nearly identical peak visibility values of 0.8 or
more. However, the agreement of the two methods does in-
crease the confidence in the results of the simpler method.

For larger hni, the clusters are less pronounced. Here, the
Poisson-influenced K -means algorithm shows improved clus-
tering over the dot-product algorithm (which is its starting
guess) as evidenced by the additional peak visibility of about
0.1 for n ≥ 17. We showed that the advanced algorithm outper-
formed the simpler ordering algorithm. Specifically, the max-
imum photon peak number visible in the histograms increased
from 19 photons to 23 photons using the same data. This in-
creased knowledge of the responses to individual photon num-
bersmay also be helpful in thermal modeling of a detector [24].

The Poisson-influenced K -means algorithm itself may see
general application to clustering problems. We introduced a
variant of the K -means algorithm that is aware of the cluster
sizes through the Poisson distribution, although another dis-
tribution could be substituted. Within the K -means algorithm
or for its generalization, the development in the appendix
shows how to update the objective function in a time that is
independent of the cluster size, and that takes into account the
effect of the change of the cluster means when a particular
waveform is shifted to another cluster.

APPENDIX A: OBJECTIVE FUNCTION
UPDATES
The most computation-time consuming part of the optimiza-
tion procedure is the update of the objective function in
Eq. (6), moving a single waveform from one cluster to another.
Here, we show how to do that in a time that is independent of
the size of the clusters. Our implementation takes into account
the effect of a waveform leaving a cluster on the cluster
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Fig. 5. (Color online) Peak visibility of the dot-product algorithm
(blue diamonds) and PIKA (red circles) fits of the counts in
Figs. 3 and 4 (along with others not shown), calculated using
�max−min� ∕ �max�min� with minima taken at half-integer photon
numbers and the maxima the average of the two surrounding values.
The visibility uncertainties were obtained by assuming Poisson statis-
tics for the counts using a Monte Carlo technique to sample variations
in the fitted curve. Uncertainties are two standard deviations, and are
purely statistical.
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Fig. 6. (Color online) Full width at half maximum (a) and the peak
voltage (b) of the waveform cluster means as a function of photon
number. Curves are derived from the data sets with hni � 2.00,
2.84, 4.02, 5.68, 7.99, 11.3, 16.0, 22.6, and 31.6 (shown as different color
points).

n
37

n 25

0 5 10 15 20
0

50

100

150

200

Time s

V
o

lt
ag

e
m

V

Fig. 7. (Color online) Waveform cluster mean corresponding to a
photon number of n � 37 (red, solid) is compared to the n � 25
cluster mean (green, dotted) with the latter curve shifted right by
3.2 μs (taken from the hni � 31.6 data set). This common falling edge
shape being independent of photon number is typical behavior for the
cluster means.
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means. Although the effect is usually small, keeping track of
it avoids certain cases in which a waveform is transferred be-
tween clusters in an infinite loop.

UPDATE OF K-MEANS OBJECTIVE
FUNCTION
Let us decompose the K -means objective functions as

OK �
Xn0�K−1

n�n0

Jn; (A1)

where

Jn �
X
i∈Cn

X
t

�Vi�t� − V̄n�t��2: (A2)

If we transfer a waveform j into the cluster n � a, the new
cluster members are in the set C�

a � Ca∪fjg. It may be shown
that

J�
a � Ja �

ma

ma � 1

X
t

�Vj�t� − V̄n�t��2: (A3)

If we transfer a waveform j out of the cluster with n � b, the
new cluster members C−

b � Cb − fjg obey

J−
b � Jb −

mb − 1
mb

X
t

�Vj�t� − V̄n�t��2: (A4)

In both Eq. (A3) and Eq. (A4), V̄n�t� refers to the original
cluster, i.e., before the transfer of j. After a waveform is trans-
ferred, the cluster means are updated with

V̄n�t� �
mnV̄n�t� � Vj�t�

mn � 1
(A5)

for n � a (� signs) or n � b (− signs). In the spirit of K -
means, we impose the rule that no cluster is allowed to be-
come empty, so the denominator in Eq. (A5) never vanishes.

In our implementation, whenever the calculation requires
the summed squared deviation of a waveform from a cluster
mean, it is stored with a time stamp. Whenever a waveform is
transferred, a time stamp of two cluster means is updated. Be-
fore a calculation of

P
t�Vj�t� − V̄n�t��2, the code checks to see

if it has evaluated the quantity since the last time the cluster
mean was changed. This rule is a particular time saver
toward the end of the optimization when few waveforms
are transferred.

We emphasize that none of the formulas presented in this
section require a summation over the waveforms in a cluster
to move a single element.

UPDATE OF POISSON LOG-LIKELIHOOD
From Eq. (9),

ln LP�mn0
;…;ma;…;mb;…;mn0�K−1; μ�

� −μM �
Xn0�K−1

n�n0

mn�n ln μ − ln�mn!��: (A6)

Suppose a waveform is transferred to the cluster with n � a
from the cluster with n � b. The change in the objective func-
tion will contain a term

ln LP�mn0
;…;ma � 1;…;mb − 1;…;mn0�K−1; μ�

− ln LP�mn0
;…;ma;…;mb;…;mn0�K−1; μ�

� �b − a� ln μ� �ma � 1� ln�ma � 1� � ln�ma!�
− �mb� ln�mb� − ln��mb − 1�!�: (A7)

Although the notation suggests b > a, the case b < a is given
by the same formula.

The treatment of the combinatorial factor, starting from
Eq. (10), is similar. The argument is elementary, so only the
result is stated here:

Δ ln LC � mb

ma � 1
; (A8)

where Δ ln LC stands for the change in the combinatorial
term analogous to the one given in Eq. (A7).

Our implementation in Mathematica [30] runs in about
4 min for the greedy algorithm for 20 480 waveforms with
100 time steps each. Simulated annealing runs a few times
longer, depending on the annealing schedule.
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