
NIST Technical Note 1754

Factory Equipment Network
Testing Framework:

Universal Client Application,
Application Programming

Interface

Jim Gilsinn
Kang Lee

John Michaloski
Fred Proctor

Eugene Song

http://dx.doi.org/10.6028/NIST.TN.1754

http://dx.doi.org/10.6028/NIST.TN.1754

NIST Technical Note 1754

Factory Equipment Network
Testing Framework:

Universal Client Application,
Application Programming

Interface

Jim Gilsinn
Kang Lee

Fred Proctor
John Michaloski

Yuyin Song
Engineering Laboratory (EL)

http://dx.doi.org/10.6028/NIST.TN.1754

September 2012

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.TN.1754

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1754
Natl. Inst. Stand. Technol. Tech. Note 1754, 13 Pages (September 2012)

CODEN: NTNOEF

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 5 -

Table of Contents
1 Introduction ... 6

2 UCA-API Overview ... 6

3 Message Structure ... 6

4 Message Attributes .. 7
4.1 MessageID .. 7
4.2 MessageType .. 8
4.3 CommandType .. 8
4.4 ConnectionID .. 9

5 Message Properties .. 9
5.1 ConectionMethod .. 9
5.2 SocketIP .. 9
5.3 SocketPort ... 10
5.4 CommunicationType ... 10
5.5 Duration .. 11
5.6 Period .. 11
5.7 CommandResponse ... 11
5.8 MessageData ... 12

6 Example Messages ... 12
6.1 OpenConnection Example 1 – Request Using Command Line .. 12
6.2 OpenConnection Example 2 – Request Using Socket .. 12
6.3 OpenConnection Example 3 – Response to OpenConnection Example 2 13
6.4 StartCommunication Example .. 13
6.5 Unsolicited Error Example.. 13

7 References .. 13

Acronyms
API Application programming interface
CIP Common industrial protocol
DUT Device under test
EL Engineering laboratory
FENT Factory equipment network equipment
ID Identifier
IP Internet protocol
NIST U.S. National Institute of Standards & Technology
PM Personality module
TCP Transmission control protocol
UCA Universal client application
UDP User datagram protocol
XML Extensible markup language
XSD XML schema definition

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 6 -

1 Introduction
This document describes the application programming interface (API) used by the Factory Equipment
Network Testing (FENT) Framework to communicate between the main Universal Client Application
(UCA) and the Personality Module (PM). This API abstracts a small set of messages that are common to
many different types of industrial devices, allowing application and code modularity. For more
information about how the UCA-API fits into the overall FENT Framework architecture, see [1].

2 UCA-API Overview
The UCA-API specifies a common set of simple messages that can be passed between the UCA and the
PM in the FENT Framework. This specification provides code modularity for the UCA and PMs by
allowing the internal connection parameters and maintenance functions to be handled by the driver
application inside the PM without the UCA needing to know the internal mechanisms or details. This
approach means that the UCA can be designed to more easily work with multiple protocols without the
need to build-in large portions of protocol stack code in the main framework testing application. Smaller,
more dedicated applications, services, or functions are used as PM driver applications that conduct the
actual protocol handling. Figure 1 shows a simplified version of the full FENT Framework architecture
(see [1]) that concentrates on the UCA-API and its interactions with the UCA, PM, and device under test
(DUT).

Figure 1 – Simplified Architecture Diagram Showing UCA-API

3 Message Structure
The UCA-API message structure is defined using an extensible markup language (XML) schema
definition (XSD) to provide a well-known structure with both attributes and properties for each message.
XML was chosen due to its wide adoption, text-based structure, ease-of-use, and human-readability.
Going along with the FENT Framework’s requirement for code modularity, PMs can be designed using a
variety of programming languages and run on a variety of platforms. Using XML and XSD files satisfied
this requirement since software libraries exist for many different programming languages and platforms.
XML and XSD files also provide a way to encode messages in a common text-based method that can be
passed between applications and devices using command-line arguments or sockets.

Figure 2 shows a graphical depiction of the XSD file defining a UCA-API message. A UCA-API message
consists of attributes that classify the message and properties to provide additional information related to
the message. Attributes apply to most or all messages while properties generally apply to a single type of
message, with the exception of the MessageData field. Detailed information about each of the
attributes and properties can be found in Sections 4 and 5 of this document respectively.

Some of the attributes and all of the properties for the message are shown as optional in the XSD file.
This classification is due to the lack of control available in the XSD language to specify relational
optionality for the attributes and properties. Be mindful of the Usage field shown for each of the attributes
and properties shown in Sections 4 and 5 when building and validating messages using this schema.

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 7 -

Figure 2 – Graphical Depiction of UCA-API Message XML Schema

4 Message Attributes

4.1 MessageID

Description A message identifier (ID) to help distinguish individual messages.

When a device sends a command to another device, the response from the
subordinate device should use the same MessageID in its response as the one
sent by the commanding device in its request.

Format unsignedLong (32-bit unsigned integer)

Usage REQUIRED – All messages

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 8 -

4.2 MessageType

Table 1 – String Enumeration for UCAAPIMessageType

4.3 CommandType

Table 2 – String Enumeration for UCAAPICommandType

Description Type of message being sent.

Format UCAAPIMessageType (see Table 1)

Usage REQUIRED – All messages

Enumerated Value Description
OpenConnection Open a connection to a device.
CloseConnection Close a particular active connection to a device.
StartCommunication Start the desired communication with a device. Used for

communication streams that have to be initiated separately from
opening a connection.

StopCommunication Stop a particular communication stream with a device. Used for cases
where communication streams can be closed separately from the
connection to the device.

Status A status message from a device not associated with a particular request
message.

Error An error message from a device not associated with a particular
request message.

Description Type of command. Indicates whether a particular message is a command
request or a response to a request.

Format UCAAPICommandType (see Table 2)

Usage REQUIRED – All messages except MessageType=”Status” or
MessageType=”Error”

Enumerated Value Description
Request A request by one device to another device to perform some action.
Response A response by one device to a request by another device.

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 9 -

4.4 ConnectionID

5 Message Properties

5.1 ConectionMethod

Table 3 – String Enumeration for UCAAPIConnectionMethodType

5.2 PMSocketIP

Description A connection identifier. Used to distinguish multiple connections between the
PM and the DUT. Allows individual connections to the DUT to be opened,
closed, started, stopped, and monitored.

CAUTION – Some protocols use connection IDs embedded inside for a
similar reason, to distinguish between multiple connections with a particular
device. The FENT ConnectionID may or may not use the same value as
the one used by the PM and the DUT. PMs should be designed to be capable
of internally mapping the two connection ID values or changing their FENT
ConnectionID to match, should the user wish to do so for tracking
purposes.

Format unsignedLong (32-bit unsigned integer)

Usage OPTIONAL – All messages

Only valid for PMs and protocols that support multiple connections to the
DUT.

Description Method used by the FENT UCA application to communicate with the PM.

Format UCAAPIConnectionMethodType (see Table 3)

Usage REQUIRED – Only for MessageType="OpenConnection"

Enumerated Value Description
CommandLine The connection is established using an application executable (*.exe)

that accepts command line arguments.
Socket The connection is established using a communication socket between

the main FENT UCA application and the PM.
Service The connection is established using a service running on the local

computer. (NOT CURRENTLY IMPLEMENTED)
FunctionCall The connection and messaging between the FENT UCA application

and the PM happens through function calls. (NOT CURRENTLY
IMPLEMENTED)

Description String representing the Internet Protocol (IP) address used to connect to the
PM socket.

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 10 -

5.3 PMSocketPort

5.4 CommunicationType

Table 4 – String Enumeration for UCAAPICommunicationType

Format string

IP version 4 addresses should be in dotted decimal format, similar to
192.168.0.2. IP version 6 addresses should be in colon separated 16-bit
hexadecimal format, similar to FE80::202:B3FF:FE1E:8329. Double
colon notation is acceptable. IP version 4 addresses in IP version 6 notation
(::192.168.0.2) will be interpreted and used as an IP version 6 address.

Usage REQUIRED – Only for MessageType="OpenConnection" and
ConnectionMethod="Socket"

Description The Transmission Control Protocol (TCP) / User Datagram Protocol (UDP)
port number used to connect to the PM socket.

Format unsignedShort (16-bit unsigned integer)

Usage REQUIRED – Only for MessageType="OpenConnection" and
ConnectionMethod="Socket"

Description Communication type used for the connection

Format UCAAPICommunicationType (see Table 4)

Usage REQUIRED – Only for MessageType=”OpenConnection”

Enumerated Value Description
Polled Polled or master/slave type communication consisting of one device

sending a request to another device that responds to that request.
Published Publish/subscribe type communications where a device publishes

information at a particular rate and another device subscribes to that
information.

Triggered Triggered type of communications where a device only sends
messages after a certain set of conditions are met.

This may be the change of state of some measured value (for example
a 24 digital signal going from low to high) or some internal condition
(for example a watchdog timer being triggered).

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 11 -

5.5 Duration

5.6 Period

5.7 CommandResponse

Table 5 – String Enumeration for UCAAPIConnectionMethodType

Description The time duration (in seconds) that one device should communicate with
another.

Used for tests where a device should communicate for a particular amount of
time and then stop. This duration may occur before the end of the test to
measure the system response after the communication stops.

Format double (seconds)

Usage OPTIONAL – Only for MessageType="OpenConnection" or
MessageType="StartCommunication"

Description Cyclic period (in seconds) for the PM to communicate with the DUT.

For periodic connections, this value is the cyclic period used by the DUT to
publish its information.

For polled connections, this value is the cyclic period used by the PM to poll
the DUT.

Format double (seconds)

Usage REQUIRED – Only for MessageType="OpenConnection" and
CommunicationType="Published"

OPTIONAL – Only for MessageType="OpenConnection" and
CommunicationType="Polled"

Description Response from a subordinate device indicating the outcome of a particular
command request.

Format UCAAPICommandResponseType (see Table 5)

Usage REQUIRED – Only for CommandType="Response"

Enumerated Value Description
Success Command was successfully processed. MessageData should

include any response from the device to successful completion.
Failure Command failed for some reason. MessageData should include any

relevant error response indicating the reason for failure.

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 12 -

5.8 MessageData

6 Example Messages

6.1 OpenConnection Example 1 – Request Using Command Line
Open a 10ms cyclic published connection to a device at IP address 192.168.210.20 using a command line
PM. The PM would have to accept the command line argument as written in the MessageData field.
This protocol does not support multiple connections.

<Message MessageID="145" MessageType="OpenConnection" CommandType="Request">

 <ConnectionMethod>CommandLine</ConnectionMethod>

 <CommunicationType>Published</CommunicationType>

 <Period>0.010</Period>

 <MessageData>dut_ipaddr=192.168.210.20</MessageData>

</Message>

6.2 OpenConnection Example 2 – Request Using Socket
Tell the PM at IP address 192.168.210.20 and port number 14510 to open a polled connection through a
socket to IP address 192.168.210.35 and port number 14515. The message should include the series of
hex bytes to configure the DUT properly. This protocol allows multiple connections, so it includes a
ConnectionID.

<Message MessageID="37509" MessageType="OpenConnection" CommandType="Request"
ConnectionID="1313428308">

 <ConnectionMethod>Socket</ConnectionMethod>

 <PMSocketIP>192.168.210.20</PMSocketIP>

 <PMSocketPort>14510</PMSocketPort>

 <CommunicationType>Polled</CommunicationType>

 <MessageData>dut_ipaddr=192.168.210.35 dut_socket=14515
dut_config_data=00235E7C48A1</MessageData>

</Message>

Description Any data or information that goes along with a particular message.

When sending a status or error message, MessageData contains the actual
status or error message text.

When opening a connection to a device, MessageData contains any relevant
connection or runtime parameters necessary to properly establish the
connection.

Format string

Usage REQUIRED – Only for MessageType="Status" and
MessageType="Error"

OPTIONAL – All other message types.

 Factory Equipment Network Testing Framework:
 Universal Client Application, Application Programming Interface

 - 13 -

6.3 OpenConnection Example 3 – Response to OpenConnection Example 2
Example 3 shows a response message to the open connection request in Example 2 indicating that the
connection was opened successfully. No additional information was sent by the DUT about the open
connection command.

<Message MessageID="37509" MessageType="OpenConnection" CommandType="Response"
ConnectionID="1313428308">

 <CommandResponse>Success</CommandResponse>

</Message>

6.4 StartCommunication Example
The OpenConnection message in Example 2 could represent a device that starts communicating
immediately after it receives a connection or for a device that needs to be put into RUN mode. This
example shows the StartCommunication message required to put the device in RUN mode for 30
seconds during a particular test.

<Message MessageID="37514" MessageType="StartCommunication" ConnectionID="1313428308">

 <Duration>30</Duration>

</Message>

6.5 Unsolicited Error Example
The DUT sends an error to the PM which gets reported to the UCA as an unsolicited error message. In
this case, this is an EtherNet/IP™ "General Status Code" 0x2B which refers to an “Unknown Modbus
Error”. The interpretation of that error is “A [Common Industrial Protocol (CIP)] to Modbus translator
received an unknown a Modbus Exception Code.”

<Message MessageID="67328" MessageType="Error">

 <MessageData>STATUS CODE 0x2B</MessageData>

</Message>

7 References
[1] Factory Equipment Network Testing Framework: Concept, Requirements, and Architecture,

NIST Technical Note 1755, September 2012.

	1 Introduction
	2 UCA-API Overview
	3 Message Structure
	4 Message Attributes
	4.1 MessageID
	4.2 MessageType
	4.3 CommandType
	4.4 ConnectionID

	5 Message Properties
	5.1 ConectionMethod
	5.2 PMSocketIP
	5.3 PMSocketPort
	5.4 CommunicationType
	5.5 Duration
	5.6 Period
	5.7 CommandResponse
	5.8 MessageData

	6 Example Messages
	6.1 OpenConnection Example 1 – Request Using Command Line
	6.2 OpenConnection Example 2 – Request Using Socket
	6.3 OpenConnection Example 3 – Response to OpenConnection Example 2
	6.4 StartCommunication Example
	6.5 Unsolicited Error Example

	7 References

