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Abstract

Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The
aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods imple-
mented by different participants over the world. The track is based on a new sketch-based 3D shape benchmark,
which contains two types of sketch queries and two versions of target 3D models. In this track, 7 runs have been
submitted by 5 groups and their retrieval accuracies were evaluated using 7 commonly used retrieval performance
metrics. We hope that the benchmark, its corresponding evaluation code, and the comparative evaluation results
of the state-of-the-art sketch-based 3D model retrieval algorithms will contribute to the progress of this research
direction for the 3D model retrieval community.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

Sketch-based 3D model retrieval is to retrieve 3D models us-
ing a 2D sketch as input. This scheme is intuitive and conve-
nient for users to search for relevant 3D models and also im-
portant for several applications including sketch-based mod-
eling and sketch-based shape recognition. However, most
existing 3D model retrieval algorithms target the Query-
by-Model framework, that is, using existing 3D models as
queries. In the areas of content-based 2D image retrieval and
image synthesis, sketch-based methods have been addressed
for some time now. In 3D model retrieval, on the other hand,
less work has to date considered the query-by-sketch frame-
work. In addition, until now there is no comprehensive eval-
uation or comparison for available sketch-based retrieval al-
gorithms. Considering this, we organized this track to fos-
ter this challenging research area by providing a common
sketch-based retrieval benchmark and soliciting retrieval re-
sults from current state-of-the-art retrieval methods for com-
parison. We also provided corresponding evaluation code for

computing a set of performance metrics similar to those typ-
ically used to evaluate Query-by-Model techniques.

The objective of this track was to evaluate the perfor-
mance of different sketch-based 3D model retrieval algo-
rithms using both hand-drawn and standard line drawings
sketch queries on a watertight 3D model dataset. Every par-
ticipant performed the queries and sent us their retrieval re-
sults. We then did the performance assessment.

In this paper, we report the results of five 3D retrieval
algorithms tested in the Sketch-Based 3D Shape Retrieval
track of SHREC 2012, held in conjunction with the fifth Eu-
rographics Workshop on 3D Object Retrieval.

2. Data Collection

2.1. 3D Target Dataset

Our 3D benchmark dataset is built based on the Watertight
Model Benchmark (WMB) dataset [VtH07] which has 400
watertight models, divided into 20 classes, with 20 models
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(a) 13 relevant 3D watertight models classes

(b) 7 irrelevant 3D watertight models classes

(c) Hand-drawn sketches

(d) Standard line drawings

Figure 1: Typical 3D model and 2D sketch for each class of
the sketch-based retrieval benchmark.

each. The 3D target dataset contains two versions: Basic and
Extended. The Basic version comprises 13 selected classes
from the WMB dataset with each 20 models (in summary,
260 models). In the basic version, all 13 classes are consid-
ered relevant for the retrieval challenge. Figure 1 (a) shows
one typical example for each class of the basic benchmark.
The Extended version adds to the basic version all remain-
ing 7 classes of the WMB dataset (each 20 models). These
additional classes, however, are not considered relevant for
the retrieval challenge but added to increase the retrieval dif-
ficulty of the basic version. Figure 1 (b) illustrates typical
examples for these remaining 7 irrelevant classes. The Ex-
tended version is utilized to test the robustness performance
of a sketch-based retrieval algorithm.

2.2. 2D Query Set

The 2D query set comprises two subsets, falling into two
different types.

• Hand-drawn sketches We utilize the hand-drawn
sketch data compiled by TU Darmstadt and Fraunhofer
IGD [YSSK10]. It contains 250 hand-drawn sketches,
divided into 13 classes. The query sketches were pro-
duced by a number of students asked to draw objects from
the given categories without any further instructions. The
sketches represent a spectrum of different sketching styles
and qualities and are used to simulate retrieval by non-

expert users. One typical example for each class is shown
in Figure 1 (c).

• Standard line drawings We also select 12 relevant
sketches from the Snograss and Vanderwart’s standard
line drawings dataset [SV80]. These sketches were orig-
inally designed for experiments in cognitive psychology.
They were carefully designed to be comparable regard-
ing variables fundamental to memory and cognitive pro-
cessing, including image agreement and visual complex-
ity [SV80]. Note that just one sketch per query class is
available in these drawings. Note that these queries are
meant as a preliminary first step in eventually building
a benchmark which controls for sketch standardization.
Some examples are shown in Figure 1 (d).
In this track, the two subsets will be tested separately.
However, users can also form a query set by combining
these two to form a query set which contains diverse types
of sketches.

3. Evaluation

All the sketches and models are already categorized accord-
ing to the classification of the WMB dataset, which contains
20 classes, as shown in Figure 1 (a) and (b). They are ant,
teddy, bird, chair, cup, fish, glasses, hand, human, octopus,
airplane, table, plier, spring, armadillo, bust, mechanic, bear-
ing, vase and four legs, respectively.

To have a comprehensive evaluation of the retrieval algo-
rithms, we employ seven commonly adopted performance
metrics in 3D model retrieval technique. They are Precision-
Recall plot (PR), Nearest Neighbor (NN), First Tier (FT ),
Second Tier (ST ), E-Measures (E), Discounted Cumulated
Gain (DCG) [SMKF04] and Average Precision (AP). We
also have developed the code [SBR12] to compute them.

4. Participants

Five groups have participated in SHREC’12 track on Sketch-
Based 3D Shape Retrieval. Totally, seven rank list results
(runs) for different methods have been submitted. The par-
ticipants and their runs are listed as follows:

• BOF-SBR submitted by Mathias Eitz, Ronald Richter,
Tamy Boubekeur, Kristian Hildebrand and Marc Alexa
from TU Berlin, Germany and Telecom ParisTech/CNRS,
France

• SBR-2D-3D submitted by Bo Li and Henry Johan from
Nanyang Technological University, Singapore

• HKO-KASD submitted by Jose M. Saavedra, Benjamin
Bustos, Tobias Schreck and Sang Min Yoon from Uni-
versity of Chile, Chile; University of Konstanz, Germany;
and Yonsei University, Korea

• Orig_DG1SIFT and Dilated_DG1SIFT submitted by To-
mohiro Yanagimachi, Jipeng Chen, Songhua Huang,
Takahiko Furuya and Ryutarou Ohbuchi from University
of Yamanashi and Nisca Corp., Japan
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• HOG-DTF and HOG-SC submitted by Sang Min Yoon,
Maximilian Scherer, Gang Joon Yoon, Tobias Schreck
and Arjan Kuijper from Yonsei University, Korea; Na-
tional Institute for Mathematical Science, Korea; GRIS,
TU Darmstadt, Germany; University of Konstanz, Ger-
many; and Fraunhofer IGD, Germany

5. Methods

5.1. Bag-of-Features Sketch-Based 3D Shape Retrieval,
by Mathias Eitz, Ronald Richter, Tamy Boubekeur,
Kristian Hildebrand and Marc Alexa [EHBA10]

Figure 2: System overview of BoF-SBR approach.

The approach employs a bag-of-features model for
sketch-based shape retrieval [EHBA10] and uses non-
photorealistic rendering (NPR) algorithms to extract impor-
tant feature lines from a mesh. Recent research on such fea-
ture lines indicates that people agree on similar lines when
asked to depict a certain model [CGL∗08]. Additionally, the
set of feature lines generated by recent NPR methods is of-
ten sufficient to convey the shape of an object [CSD∗09].
Building on those insights, an image-based approach to 3D
shape retrieval is employed, exploiting the similarity of hu-
man sketches and the results of current line drawing algo-
rithms. The system takes a binary, user-drawn sketch of the
desired model as the input and compares this to the set of
line drawings automatically generated for each model in the
collection, see Figure 2.

5.1.1. Approach

The difficult 3D retrieval problem is mapped to a simpler
image retrieval problem by comparing a user sketch to NPR
rendered projections of the shapes in the collection. How-
ever, this is still a challenging problem due to two reasons:

• User sketches are typically extremely abstract with strong
local and global distortions with respect to the original
shape.

• Retrieval should be fast and scale to larger collections as
we can expect to see a growth in the size of future shape
collections, similar to the growth we have seen for public
image collections during the last decade.

To account for those challenges, a bag-of-features model
is used. With this model, robustness against deformations as
well as translation invariance are achieved by using quan-
tized local features. Additionally, retrieval is very fast, as in-
verted indices are employed to resolve a query.

1) Generating Views: A set of 102 views per model are
generated by uniformly sampling from the bounding sphere
of a model. Each point on the bounding sphere defines a
camera position and is used as input for view-dependent line
drawing algorithms. Specifically, occluding and suggestive
contours [DFRS03] are extracted.

2) Local Descriptor: The method relies on histograms
of oriented gradients extracted from small local re-
gions, as previously employed for sketch-based image re-
trieval [EHBA11]. Each local histogram uses 4x4 spatial
bins and 4 orientational bins, resulting in a 64-dimensional
descriptor. From each view, 1,024 local descriptors are ex-
tracted. As each descriptor covers 15% of the image area,
this results in a large overlap between all features.

3) Histogram of Visual Words: In a pre-processing step, a
vocabulary of “visual words” is learned from a subset of all
local features using k-means clustering (k = 1,000). Each
view is finally represented by its specific distribution of “vi-
sual words”, using hard quantization against the visual vo-
cabulary.

4) Retrieval: To query a collection, the histogram of vi-
sual words of the query sketch is computed and the sys-
tem returns the models with most similar views to the query
(measured using cosine similarity and tf-idf weighting func-
tions). This process is accelerated by using inverted indices.
As a result, only views that have at least one visual word in
common with the query need to be considered and retrieval
is extremely quick.

5.2. Sketch-Based 3D Model Retrieval by Incorporating
2D-3D Alignment, by B. Li and H. Johan [LJ12]

The algorithm [LJ12] consists of two stages which are pre-
computation and retrieval. The retrieval stage is divided into
2D-3D alignment utilizing a 3D model feature named View
Context [LJ10] and 2D-3D matching based on relative shape
context matching [BMP02]. The 2D-3D alignment step re-
duces the search space from many densely sampled views to
only a set of candidate views, thus avoiding a directly brute-
force matching between the sketch and many sample views.
Its main idea is as follows: a sample view is replaced with
the sketch and if its new View Context is very similar to the
original one, then it is regarded as a candidate view.

1) Feature Extraction: Silhouette and outline feature
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views are generated for both 2D sketches and 3D models
to effectively and efficiently measure the differences among
them. Two examples are shown in Figure 3.

Figure 3: The feature views of a 3D teddy model and a 2D
ant standard line drawing sketch. For each row, from left to
right: model/sketch, silhouette view; outline view.

2) Feature Distance: A computationally efficient inte-
grated image descriptor named ZFEC is adopted for View
Context computation. It contains a region-based Zernike
moments feature Z for the silhouette view and a contour-
based Fourier descriptor feature F for the outline view. Ad-
ditionally, eccentricity feature E and circularity feature C are
also utilized to extract the geometric feature of the outline
view. To more accurately measure the difference between
the sketch and each candidate view, the relative shape con-
text matching method [BMP02] is adopted.

3) Sketch’s View Context Feature Extraction: The inte-
grated image descriptor distances between the sketch and
all the base views of the target model are computed and
the resulting distance vector Dk=<d1,d2,. . . ,dm> is named
sketch’s View Context.

4) 2D-3D Alignment: To align the 2D sketch and a 3D
model, some candidate views are shortlisted by keeping a
certain percentage (e.g. 20% or 16 sample views for the
track) of the sample views with top View Context similar-
ities as the sketch, in terms of correlation similarity Si,

Si =
Ds

i ·Dk∥∥Ds
i

∥∥∥∥Dk
∥∥ . (1)

where, Ds
i and Dk are the View Contexts of the ith sample

view V s
i of the 3D model and the 2D sketch, respectively.

5) Sketch-Model Distance Computation: Comparing the
sketch with every candidate outline view using the relative
shape context matching and regarding the minimum rela-
tive shape context distance obtained as the sketch-model dis-
tance.

6) Ranking and Output: Sorting all the sketch-model dis-
tances between the sketch and the models in an ascending
order and listing the retrieved models accordingly.

5.3. HKO-KASD: Histogram of Keyshape Orientations
- Keyshape Angular Spatial Descriptor, by J. M.
Saavedra, B. Bustos, T. Schreck and S.
Yoon [SBSY12]

To compare a hand-drawn image with a set of 3D models, the
method transforms each 3D model into a set of projections
that are computed using 14 suggestive contour (SC) images
as specified by Yoon et al. [YSSK10].

The approach [SBSY12] comprises two stages. First, a
global descriptor is used to determine the most appropriate
SC for each 3D model having a query sketch as input. Next,
it uses a local descriptor exploiting both structural and local-
ity information provided by sketches or suggestive contour
images.

5.3.1. Getting Keyshapes

First, let I be an edge map representation of a sketch
or SC image. I is represented by a set of strokes I =
{S1,S2, . . . ,SNs}. Second, for getting keyshapes, the method
takes each stroke S to be approximated by a set of straight
lines leading to define I = l1, l2, . . . , ln, where n is the to-
tal number of detected lines or keyshapes. Finally, keyshapes
are classified as horizontal line (H), vertical line (V ), diag-
onal line with slope 1 (D1), or diagonal line with slope -1
(D2).

5.3.2. Global Approach: Histogram of Keyshape
Orientations (HKO)

Unlike gradient-based global methods [DT05, SB10], the
approach takes into account the information given by
keyshapes. In this way, it computes a histogram of keyshape
orientations (HKO) made up with the orientation of lines de-
tected previously. It quantizes θ(Li) ∈ [0,π] (i = 1 . . .n) into
8 bins. In this way, each HKO bin b represents the number of
lines with orientation quantized as b, b = 1, . . . ,8. The final
descriptor is the corresponding unitary version of the HKO
descriptor.

For each 3D model, the method chooses the suggestive
contour image with the smallest distance to the input in
terms of the HKO descriptor. It uses L1 metric (Manhattan
distance) as distance function.

5.3.3. Local Approach: Keyshape Angular Spatial
Descriptor (KASD)

Let LR be a referent keyshape, the approach defines a circu-
lar local region around LR. In addition, the local region is
divided in angular partitions (slices). An example of a local
region and its partitions is depicted in Figure 4 (a).

It proceeds to compute a 4-bin histogram for each par-
tition (see Figure 4 (b)). This histogram represents the
distribution of keyshape types around LR computed for
each edge pixel. Each bin corresponds to a keyshape type
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(a) (b)

Figure 4: (a) Local region around a referent keyshape. (b)
Local descriptor and its 4-bin histogram for each slice.

(H,V,D1,D2). The local descriptor is the unitary version of
the juxtaposition of the eight histograms.

For matching a sketch S and a suggestive contour image C,
the method solves an instance of the bipartite graph problem
using the well known Hungarian Method [Kuh10] between
sets of descriptors of the same class belonging to S and C.
The final cost is the average match cost normalized by the
number of matches. It uses as cost function the well known
Manhattan distance.

5.4. Visual Features on Silhouettes for Sketch-Based 3D
Model Retrieval, by T. Yanagimachi, J. Chen, S.
Huang, T. Furuya and R. Ohbuchi [OF09]

Figure 5: Overview of the sketch-based 3D model query al-
gorithm.

The algorithm turns both query sketch and 3D model into
silhouette images for image-based comparison. Its process-
ing pipeline (Figure 5) is quite similar to the one employed
for the partial view 3D model retrieval track in SHREC
2009 [OF09]. Most of the code are the same between the

two. However, scale weighting described in [OF09] was not
employed for this track.

To make a filled, silhouette-like image from a sketch im-
age with possible gaps in circumference, the algorithm first
applies dilation. Then, after most of the gaps are closed, area
filling is done to turn majority of sketches into silhouette-
like images. Inevitably, some of the sketches are left as
non-silhouette drawings, possibly impacting retrieval perfor-
mance. Each 3D model in the database is rendered from mul-
tiple (i.e., 42) viewpoints into silhouette images.

After both query and database models are turned into a set
of silhouette images, their similarities are compared by using
visual features. The method employs the same three features
as the Generic 3D track, that are, set of local features Dense
SIFT (DSIFT) and Grid SIFT (GSIFT), plus a global feature
One SIFT (1SIFT). (Please refer to [FO09] and [LGA∗12]
for details on these features and their distance computation
algorithms.) In sketch-based retrieval, a view of 3D model
is compared against a sketch. Thus, for GSIFT and DSIFT,
Bag-of-Features integration is performed per view, to pro-
duce feature vector per view. (For 3D-model-to-3D-model
comparison of Generic 3D track, all the SIFT features from
42 views of a 3D model are integrated into a feature vector
for the 3D model.) To have a reasonably well-populated his-
togram per view for DSIFT and GSIFT, the number of SIFT
samples per view is increased from about 300 in [LGA∗12]
to about 1,200 for this track.

For each of the three features, 42 distances from a sketch
to 42 views of a 3D model are computed. Minimum of the 42
distance values becomes the distance from the sketch to the
3D model. Three distances derived from three features are
combined, after normalization, by using linear combination
to become an overall distance from a sketch to a 3D model.
Note that, unlike the Generic 3D track, the method does not
use distance metric learning based on Manifold Ranking for
this track.

5.5. Sketch-Based 3D Model Retrieval Using Histogram
of Oriented Gradient in Diffusion Tensor Fields, by
S.M. Yoon, M. Scherer, T. Schreck and A.
Kuijper [YSSK10]

A new approach is proposed for content based 3D model
retrieval by hand-drawn sketch images. This approach to re-
trieve visually similar mesh models from a large database
consists of three major steps: (1) suggestive contour ren-
derings from different viewpoints to compare against the
user drawn sketches; (2) descriptor computation by analyz-
ing diffusion tensor fields of suggestive contour images, or
the query sketch respectively; (3) similarity measurement to
retrieve the models and the most probable view-point from
which a model was sketched.

This approach for 3D model retrieval using hand-drawn
sketch images evaluates the similarity by comparing the
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query image to 14 projected views of the model by following
the approach of Yoon et al. [YSSK10]. For each such image,
it extracts a histogram of orientation from the corresponding
diffusion tensor field.

1) Suggestive Contour Extraction from Different View-
points: To find the most similar features of the user-drawn
sketches, it extracts the Suggestive Contours [DFRS03] to
construct descriptors from different viewpoints. It closely re-
sembles the way most people sketch three dimensional ob-
jects. To be able to compare 3D models and user sketches,
it renders the suggestive contour of each model from 14 dif-
ferent, equally spaced viewpoints.

2) Feature Analysis in Diffusion Tensor Fields: To ex-
tract a feature vector from each suggestive contour image
and the query image itself, the method analyzes its proper-
ties in the space of diffusion tensor fields [YG09].

3) Similarity Measure: The similarity between the query
image Ic and one projected view image of a 3D model Is,
S(Ic,Is) is then given by the following equation:

S(Ic, Is) =
Hc ·Hs

∥Hc∥∥Hs∥
(2)

For user-drawn sketch based 3D model retrieval, the
method projected the 3D model into 14 different viewpoints.
The similarity measure between a query image and a 3D
model is determined by extracting the max |S(Ic,Is)| from the
14 similarity values. In the track, this algorithm is denoted
as HOG-DTF.

5.6. Sketch-Based 3D Model Retrieval Using Sparse
Coding, by S.M. Yoon, G. J. Yoon and T.
Schreck [YK11]

The performance of any content-based 3D object retrieval
system crucially depends on the availability of effective de-
scriptors and similarity measures for this kind of data. An
improved approach of Section 5.5 is presented for support-
ing 3D object retrieval by optimizing the appropriate gra-
dient descriptor using a sparse coding approach, which is
denoted as HOG-SC.

1) HOG-DTF Feature Descriptor: The same approach as
1) and 2) of Section 5.5.

2) Feature Optimization Using Sparse Coding: Used for
feature optimization, sparse coding, which is well known to
be powerful for retrieving similar 3D objects using a smaller
trained dictionary, is regarded as a suitable technique for op-
timally representing an input HOG-DTF in terms of a lin-
ear combination of items in an overcomplete trained dictio-
nary of basis vectors, with sparse coefficients that are suf-
ficient for preserving specific features. Sparse coding is the
method of finding the optimal representation of input data

using a linear combination of an overcomplete trained dic-
tionary basis with sparse coefficients for extracting or pre-
serving specific features [CDS99, DE03]. Sparse coding has
become considerably popular to save or retrieve observed
data using a small quantity of the preassigned dictionary of
basis vectors (which consists of feature descriptors in some
contexts). It uses the sparse coding algorithm proposed by
Lee et al. [LBRN07].

6. Results

In this section, we perform a comparative evaluation of the
results of the 7 runs submitted by all 5 groups. We measure
retrieval performance based on the 7 metrics mentioned in
Section 3: PR, NN, FT , ST , E, DCG and AP.

As described in Section 2, there are two versions of target
dataset (Basic and Extended) as well as two types of sketch
datasets (hand-drawn sketches and standard line drawings).
This results in four combinations: (1) Hand-drawn sketch
queries and Basic version of target dataset; (2) Standard
line drawing queries and Basic version of target dataset;
(3) Hand-drawn sketch queries and Extended version of tar-
get dataset; (4) Standard line drawing queries and Extended
version of target dataset. Comparisons of the participating
methods for the above four cases are shown in Figure 6
and Table 1∼4. For the first case all groups submitted re-
sults. This experiment can therefore be considered as the one
with most expressive power regarding the comparison of the
proposed sketch-based 3D shape retrieval methods. For the
other cases not all groups submitted results.

First, we start with the overall performance evaluation. As
shown in the aforementioned figures and tables, Li’s SBR-
2D-3D performs best, closely followed by Eitz’s BOF-SBR.
Performance of the remaining three methods is comparable
and the disparity among them is relatively small.

Second, we look into different types of queries. Compared
to hand-drawn sketch queries, standard line drawing queries
usually achieve superior performance. One possible expla-
nation for this is that this dataset only contains a single line
drawing per class, which has been carefully created to con-
vey shape as well as salient features of that class.

Third, we asked participants to also provide timing infor-
mation to compare runtime requirements of their methods,
based on the first case (hand drawn-sketch queries and ba-
sic target dataset). Additionally, we asked for pre-processing
times per model. We visualize all the available timing infor-
mation in Figure 7. The average retrieval time for a query
ranges from 0.02 seconds (Eitz) to 72.3 seconds (Li), a
difference of more than three orders of magnitude. Over-
all, Eitz’s approach is the most efficient while Saavedra
and Yangagimachi’s methods and Yoon’s HOG-DTF method
are comparable. Note that the retrieval time of Li’s method
varies from 19.5 sec (4 candidate views) to 72.3 sec (16 can-
didate views) with no apparent decrease in retrieval perfor-
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Figure 6: Precision-Recall plot performance comparisons of four cases: (a) Hand-drawn sketch queries and Basic version
of target dataset; (b) Standard line drawing queries and Basic version of target dataset; (c) Hand-drawn sketch queries and
Extended version of target dataset; (d) Standard line drawings queries and Extended version of target dataset.

mance. Pre-processing times per model range from 3.73 sec-
onds (Yanagimachi) to 97 seconds (Li).

In this distributed evaluation, it was not possible to con-
trol for the hardware platform (roughly comparable for all
groups, though) or implementation efficiency of the setups.
However, we believe that the timing information is useful for
an approximate comparison of the runtime requirements of
the algorithms.

Last but not least, we evaluate the robustness of the dif-
ferent methods to irrelevant models in the dataset. Table 5
lists the percentage of performance decrease when using the
extended target dataset instead of the basic one (using hand-
drawn sketch queries). Li’s SBR-2D-3D is the most robust,

closely followed by Eitz’s BOF-SBR. Compared to these
two approaches, the other three methods exhibit a stronger
decrease in retrieval performance when adding irrelevant
models to the target dataset.

In addition, we classify all participating methods with re-
spect to the techniques employed: three groups (Eitz, Saave-
dra and Yoon) utilize suggestive contours to extract 3D
model features. Two groups (Eitz and Yanagimachi) adopt
a bag-of-words framework. Three groups (Eitz, Saavedra
and Yanagimachi) employ local features while the other two
groups (Li and Yoon) perform global feature matching.
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Table 1: Other Performance metrics for the performance comparison on the Hand-drawn sketch queries and Basic version of
target dataset.

Participant Method NN FT ST E DCG AP

Eitz BOF-SBR 0.532 0.339 0.497 0.338 0.662 0.450

Li SBR-2D-3D 0.688 0.415 0.581 0.411 0.731 0.556

Saavedra HKO-KASD 0.248 0.150 0.258 0.166 0.503 0.254

Yanagimachi Orig_DG1SIFT 0.172 0.152 0.253 0.167 0.490 0.290
Yanagimachi Dilated_DG1SIFT 0.212 0.168 0.276 0.183 0.503 0.302

Yoon HOG-DTF 0.220 0.167 0.286 0.182 0.513 0.292
Yoon HOG-SC 0.312 0.215 0.335 0.225 0.554 0.331

Table 2: Other Performance metrics for the performance comparison on the Standard line drawing queries and Basic version
of target dataset.

Participant Method NN FT ST E DCG AP

Li SBR-2D-3D 0.750 0.542 0.700 0.516 0.807 0.675

Saavedra HKO-KASD 0.083 0.146 0.263 0.164 0.463 0.243

Yanagimachi Orig_DG1SIFT 0.250 0.192 0.321 0.205 0.518 0.328
Yanagimachi Dilated_DG1SIFT 0.333 0.225 0.363 0.240 0.567 0.373

Yoon HOG-DTF 0.417 0.192 0.313 0.212 0.549 0.335
Yoon HOG-SC 0.583 0.183 0.242 0.170 0.551 0.307

Eitz Li Yanagimachi Saavedra Yoon (DTF) Yoon (SC)
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Figure 7: Available timing information on the Hand-drawn
sketch queries and Basic version of target dataset.

7. Conclusions and Future Work

We performed a comprehensive comparative evaluation of
five state-of-the-art sketch-based retrieval methods in terms
of accuracy, robustness and query types. Based on all the
above comparisons, Li’s SBR-2D-3D method performs best,
closely followed by Eitz’s BOF-SBR approach while the re-

maining three methods perform comparably in terms of ac-
curacy and robustness.

In terms of retrieval speed, we observe large differences
between all methods. Eitz’s method is extremely fast (0.02s
per query) and could thus potentially be directly employed
for interactive retrieval on much larger collections.

While it can be considered an offline problem, pre-
processing times of up to more than a minute per model can
make scaling to million-size collections difficult. More effi-
cient implementations or offloading the pre-processing tasks
to computer servers could help address this issue.

In conclusion, this sketch-based retrieval track is the first
attempt to include this topic in SHREC in order to fos-
ter this challenging and interesting research direction. Even
though it is the first time, we already have 5 groups who
have successfully participated. We provide a common plat-
form (the benchmark) to solicit current sketch-based 3D
model retrieval approaches. This helps us identify state-of-
the-art methods in terms of retrieval accuracy and speed.
We also hope that the sketch retrieval benchmark together
with the evaluation code will become a good reference for
researchers in this community.

As future work, this benchmark could be extended by
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Table 3: Other Performance metrics for the performance comparison on the Hand-drawn sketch queries and Extended version
of target dataset.

Participant Method NN FT ST E DCG AP

Eitz BOF-SBR 0.460 0.278 0.412 0.281 0.614 0.383

Li SBR-2D-3D 0.628 0.371 0.520 0.364 0.692 0.498

Yanagimachi Orig_DG1SIFT 0.100 0.092 0.158 0.100 0.426 0.224
Yanagimachi Dilated_DG1SIFT 0.168 0.120 0.212 0.137 0.462 0.254

Table 4: Other Performance metrics for the performance comparison on the Standard line drawing queries and Extended
version of target dataset.

Participant Method NN FT ST E DCG AP

Li SBR-2D-3D 0.750 0.454 0.625 0.442 0.750 0.574

Yanagimachi Orig_DG1SIFT 0.083 0.100 0.163 0.106 0.426 0.224
Yanagimachi Dilated_DG1SIFT 0.167 0.133 0.229 0.144 0.465 0.264

sketch data as currently being compiled by other researchers
[Eitz et al. (not yet published)], making it more representa-
tive. Also, controlling the level of standardization with re-
spect to sketch parameters such as sketching quality, style,
and level of detail is deemed interesting. The standard query
sketches [SV80] included in this benchmark are a starting
point to this direction.
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