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Abstract

In this paper, we propose a quantification of the vulnerability of a communication network when links

are subject to failures due to the actions of a strategic adversary. We model the adversarial nature of the

problem as a 2-player game between a network manager who chooses a spanning tree of the network as

communication infrastructure and an attacker who is trying to disrupt the communication by attacking

a link. We use previously proposed models for the value of a network to derive payoffs of the players and

propose the network’s expected loss-in-value as a metric for vulnerability. In the process, we generalize

the notion of betweenness centrality: a metric largely used in Graph Theory to measure the relative

importance of a link within a network. Furthermore, by computing and analyzing the Nash equilibria

of the game, we determine the actions of both the attacker and the defender. The analysis reveals the

existence of subsets of links that are more critical than the others. We characterize these critical subsets

of links and compare them for the different network value models. The comparison shows that critical

subsets depend both on the value model and on the connectivity of the network. Knowing the critical

parts of a network is crucial for network design and improvement. We describe an efficient algorithm

that can be used to compute critical subsets of a graph.

∗This writeup is still an ongoing effort. Finished version is to be coming soon. We apologize for any

inconvenience.
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email: {assane.gueye|vladimir.marbukh}@nist.gov.
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this work.
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1 Introduction

“....one cannot manage a problem if one cannot measure it...”

This study is an effort to derive a metric that quantifies the vulnerability of a communication network when

the links are subject to failures due to the actions of a strategic attacker. Such metric can serve as guidance

when designing new networks in adversarial environments. Also, knowing such value helps identify the most

critical/vulnerable links and/or nodes of the network, which is an important step towards improving an

existing network. We quantify the vulnerability as the expected loss-in-value of a network when links are

attacked by an adversary. Naturally, the first question towards such quantification is: “what is the value of

a communication network?”

The value of a network depends on several parameters including the number of agents who can communicate

over it. Indeed, the utility of a network increases as it adds more members. The Internet did have the

big impact we know today only after it was made public, allowing more users to access it. Social networks

platforms as well as email providers are investing a lot of efforts to attract more users, and the popularity

of a radio/TV broadcast show is measured by the number of listeners/viewers who are following it. Hence,

it seems that everyone agrees that the more members a network has, the more valuable it is. But, there

ends the consensus. There is certainly no unanimity on how much this value increases when new members

are added, and there is very little (if not zero) agreement on how important a given node or link is for a

network, neither do people concur on how much value a given network has.

Attempts to assess the utility of a communication network as a function of the number of its members

include the proposition by David Sarnoff [1] who viewed the value of a network as a linear function of its

number of nodes n. Robert Metcalfe [10] has suggested that the value of a network grows as a function of the

total number of possible connections (roughly n2). David Reed ([6], [21], [22]) has proposed an exponential

(2n) model for the utility of a network. For Odlyzko et. al. ([17], [2]) a more reasonable approximation of

the value of a network as a function of the number of nodes is nlog(n). Finally, the authors of the present

paper have considered a power law model where the value of a network is estimated as n1+a, a ≤ 1∗. The

parameter a is a design parameter and needs to be specified. Details of these value models are discussed

later in section 2.1.

∗The authors thank Prof. Jean C. Walrand for suggesting this law.
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Each of these very generic models is suitable for a particular network setting, as we will see later. However,

they all have a number of limitations; two of which are particularly of interest to us: They do not take

into account the topology of the network neither do they consider the way in which traffic is being carried

over the network. In this paper, we build upon these models and use them in the process to quantifying the

vulnerability of a network. More precisely, we use the models as proof of concept to defining the importance

of network links relative to spanning trees. With this definition, we are implicitly considering networks where

information flows over spanning trees. The topology is also taken into account because the set of spanning

trees of the network has a one-to-one correspondence with its topology. We are particularly interested in an

adversarial situation where links are the target of an attacker. We use a game theoretic approach to model

the strategic interaction between the attacker and the defender†.

Our focus on spanning trees in not a limitation as the techniques of the paper can be used to study other

scenarios where the network manager chooses some subset of links (shortest path, Hamiltonian cycle, etc...)

and the attacker is targeting more than one link as can be seen in [11, Chap. 4]. However, spanning trees have

a number of desirable properties that have made them one central concept in communication networking. A

spanning tree of a connected graph G is a minimal set of edges that connect all vertices. It can also be defined

as a maximal set of edges of G that contains no cycle. Also, in a spanning tree there is a unique path between

any two nodes in the network. As a consequence, communicating through a spanning guarantees connectivity

using minimum amount of resources while preventing undesirable loops in the network. The Spanning-Tree

Protocol (STP-802.1D 1998) is the standard link management protocol used in Ethernet networks. [19] and

[20] review the details of the protocol.

When communication is carried over a spanning tree, any node can reach any other node. In that sense,

a spanning tree can be said to deliver the maximum value of the network (indeed this ignores the cost of

communication). This value can be determined by using one of the models cited above. Now, assuming that

information flow through over a given spanning tree, two scenarios are possible when a link of the network

fails. If the link does not belong to the spanning, then its failure does not affect the communication. If, on

the other hand, the link belongs to the spanning tree, then some exchanges that originally could be carried

become impossible. In fact, the spanning tree is separated into two subtrees, each of them being a connected

subnetwork. The nodes belonging to each subtree can reach each other, hence each subnetwork delivers some

value. However, the sum of the values delivered by the two subnetworks is expected to be less than the value

†Throughout this paper the call the defender a “network manager”. This should be thought of as an automata that
implements the game.
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of the original network (where all nodes could communicate). We define the importance of the link, relative

to the spanning tree, to be this loss-in-value (LIV): the difference between the value of the original connected

network and the sum of the values of the two connected subnetworks obtained as a consequence of the link

being down. The details of this process is discussed in section 2.2.

Link failures occur because of random events (faults) such as human errors, power outage, and machine

crashes. These types of failures are dealt with under the subject of reliability and fault tolerance [16]. Link

downtime also can be the result of the action of a malicious attacker. Such failures are the main focus in this

study: a strategic attacker is targeting links in the network in order to disrupt the communication. A network

manager would like to avoid this disruption by choosing an appropriate communication infrastructure. We

model this scenario as a 2-player game where the network manager is choosing a spanning tree to carry

the communication in anticipation of the action of an intelligent attacker who is trying to inflict the most

damage. The attacker also plans in anticipation of the defense. We use the links’ LIV discussed above to

derive payoffs for both players.

Applying game theoretic models to the security problem is a natural process and it has recently attracted a

lot of interest (see surveys [23], [15]). In this paper, we setup a game on the graph of a network and consider

Nash equilibrium concept. We propose the expected “loss-in-value” of the game for the network manager

as a metric for the vulnerability. As we will see later, this value captures how much loss an adversary can

inflict to the network manager by attacking links. Furthermore, by analyzing the Nash equilibria of the

game, we determine the actions of both the attacker and the defender and identify the set of links that are

most critical for the network. We repeat the analysis for each of the network value models cited above and

discuss how the set of critical links depends on the network value model. Knowing the critical parts of a

network is crucial for network design and for improvement. We discuss an efficient algorithm that can be

used to compute critical subsets of a graph.

The quantification of the importance of a communication link as discussed above is done with respect to

spanning trees. For a given link, we compute a different value for each spanning tree. This does not tell how

important the link is for the whole communication process. To compute the relative significance of a link

(or node) within a network, graph theorists have been using centrality measures. There are a few different

notions of centrality ([3], [8], [18]). Freeman [8] has classified them into degree, closeness and betweenness

centrality. The betweenness centrality ([26], [18]) of a link (node) is the fraction of time that it is needed in

the shortest paths from all possible sources to all possible destinations.
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In this definition of betweenness centrality, source and destination pairs are indifferent with respect to which

of the available paths is carrying their communications. Also, the importance of a link to a given path is

quantified in a binary manner with a value of 1 if the link belongs to the path a 0 otherwise. In general,

certain paths might be more preferred than others and the importance of a link to a path does not necessarily

have a binary weight.

In this paper, we propose a generalization of the notion of betweenness centrality‡ assuming networks where

information flow over spanning trees; we hence use spanning trees in lieu of paths . Our generalization allows

both the consideration of none-binary weights of the links as well as preference for spanning tree utilization.

The weights of the links, with respect to spanning trees, are taken to be the links’ LIV mentioned above,

and the preference among the spanning trees is given by the mixed strategy Nash equilibria of the game

between the network manager and the attacker. Indeed, the mixed strategy equilibrium for the manager is

a natural metric to quantify how much one spanning tree is preferred to another: it is the best response to

the actions of an intelligent adversary who is trying to cause the most damage.

The remainder of this paper is organized as follow. The next section 2.1 discusses the different network

value models that we briefly introduced above. We use these models to compute the relative importance of

the links with respect to spanning trees. This is shown in section 2.2, followed by our generalization of the

notion of betweenness centrality in section 2.3. The strategic interaction between the network manager and

the attacker is modeled as a 2-player game which is presented in section 3.1. The Nash equilibrium theorem

of the game is stated in section 3.2 followed by a discussion and analysis of its implications in section 4.

Section 4.1 discusses our choice of metric for the vulnerability of a network. In section 4.2 we compare the

critical subsets of a network for the different value models cited above. The algorithm to compute a critical

subset is briefly presented in section 4.3. Concluding remarks and future directions are presented in section

5. All our proofs as well as the details of the algorithm to compute a critical subset are presented in the

appendix.

2 On the Value of a Communication Networks

The value of a network depends on several parameters including the number of nodes, the number of links,

the topology, and the type of communication/information that is carried over the network. Assessing such

‡Notice that in this paper, we are only interested in the value of links. Node value is an equally important topic that we
will consider in subsequent studies.
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value is a subjective topic and, to the knowledge of the authors, there is no systematic quantification of the

value of a communication network. In the next section, we discuss some attempts that have been made to

measure the utility of a network as a function of its number of nodes.

2.1 Network value models

Sarnoff’s Law:

Sarnoff’s law [1] states that the value of a broadcast network is proportional to the number of users. This law

has long been used as a measure of the popularity of television and radio programs. The high advertising

cost during prime time shows and other popular events like super bowl game night can be explained by

Sarnoff’s law. Indeed as more viewers are expected to watch a program, a higher price is charged per second

of advertising. Although Sarnoff’s law has been widely accepted as a good model for broadcast network,

many critics say that it underestimates the value of general communication networks such as the Internet.

Metcalfe’s Law:

Metcalfe’s law [7] was first formulated by George Gilder (1993) and attributed to Robert Metcalfe who

used it mostly in the context of the Internet. The law states that the value of a communication network is

proportional to the square of the number of node. Its foundation is the observation that in a general network

with n nodes, each node can establish n− 1 connections. As a consequence, the total number of undirected

connections is equal to n(n−1)/2 ∼ O(n2). This observation is particularly true in Ethernet networks where

everything is “logically” connected to everything else. Metcalfe’s law, has long been held up along side with

Moore’s law as the foundation of Internet growth. Reed Hunt (former FCC chairman 1996) once claimed

that Metcalfe’s law “gives us the best foundation for understanding the Internet”.

Walrand’s Law:

Walrand’s law generalizes the previous laws by introducing a parameter a. The intuition behind this law is

as follows. Imagine a large tree of degree d that is rooted at you. Your direct children in the tree are your

friends. The children of these children are the friends of your friends, and so on. Imagine that there are

L ≥ 2 levels. The total number of nodes without the root is n = d + d2 + ... + dL = d(dL − 1)/(d − 1). If d

is large, this number can be roughly approximated by n ≈ dL. However, you don’t care about the friends

of friends of friends... Assume you care only about your friends, i.e., about d people. Then the value of

the network to you is d = na where a = 1/L. If you care about your friends and their friends, then you

care about approximately d2 people, i.e., nb where b = 2/L. If you care about friends at all levels, then
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you care about approximately dL ≈ n. Repeating the same reasoning for each user (node), the total value

of the network is approximately equal to n ∗ na = n1+a with a ≤ 1. The parameter a is a characteristic of

the network and needs to be determined. Notice that if all nodes value children at all levels, the total value

of the network becomes n2 which corresponds to the Metcalfe’s law (a = 2), and if a = 0, we get Sarnoff’s

model.

Reed’s Law:

Reed’s law also called Group-Forming law was introduced by David Reed ([21],[6], [22]) to quantify the value

of networks that support the construction of communicating group. A group forming network resembles a

network with smart nodes that, on-demand, form into such configurations. Indeed, the number of possible

groups that can be formed over a network of n nodes is ∼ 2n. Reed’s law has been used to explain many new

social network phenomenons. Important messages posted on social networking platforms such as Twitter

and Facebook have been witnessed to spread exponentially fast.

Odlyzky, Briscoe, and Tilly (OBT)’s Law:

Odlyzky, Briscoe, and Tilly ([2], [17]), have proposed an nlog(n) rule for the valuation of a network of size n.

Their law is mostly inspired by Zipf’s law that states that if we order a large collection of items by size or

popularity, the second element in the collection will be about half the measure of the first, the third element

will be about 1/3 of the first, and the k-th element will measure about 1/k of the first. Setting the measure

of the first element (arbitrarily) to 1, the sequence looks like (1, 1/2, 1/3, . . . , 1/k, . . . , 1/n). Now, assuming

that each node in the network assigns value to the other nodes according to Zipf law, then the total value

of the network to any given node will be proportional to the harmonic sum 1 + 1/2 + 1/3 + · · ·+ 1/(n− 1),

which approaches log(n). Summing over the nodes, we get the nlog(n) rule. This growth rate is faster than

the linear growth of Sarnoff’s law and does not have the overestimating downside that is inherent to Reed

and Metcalfe. It also has a diminishing return property which is missing in Walrand’s model.

2.2 Assessing importance of links via spanning trees

Assuming that a model has been determined for the value of a network, we quantify the importance of a net-

work link with respect to a spanning tree as the loss-in-value (LIV) when the link fails while communication

is carried over the tree. We will use this to derive players’ payoff in the game model we present in section 3.1.

As we have stated earlier our choice of spanning tree is not a limitation as our techniques can be utilized to

define relative importance of a link with respect other notions (paths, cycles, etc...). However, spanning trees
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a) b) c)

n=8n=8 n1=4 n2=4

Figure 1: Tree-Link model for the value of a network link. a) Complete network with link ’e’ of interest
shown in bold. b) A particular spanning tree ’T ’ of the graph. c) Disconnected network when link ’e’ is
removed.

have a number of desirable properties that have made them a central concept in communication networking

and the focus of this paper.

The loss-in-value of a link, relative to a given spanning tree, is determined as follow. Since a spanning tree is

a connected subgraph of the network (see figure (1).b)), communicating over such subgraph can be seen as

delivering the total “value” of the network. We let f(n) denote such value, where n is the number of nodes

in the network. If η(T ) is the cost of maintaining spanning tree T , the net delivered value is f(n) − η(T ).

The function f(·) can be chosen to be one of the models discussed earlier. In general it depends on other

aspects of the network. However, in this paper, f(n) is assumed to be only a function of the number of

nodes. We let f(0) = 0, if the network contains 0 node (i.e is empty).

Now, assume that communication is carried over spanning tree T and a particular link e is removed from

the network. If e ∈ T (assuming a spanning tree to be a set of links), then T is partitioned into 2 subtrees;

each subtree Ti, i ∈ {1, 2} represents a connected components with ni nodes, where n1 + n2 = n (see figure

(1).c)). The net value of the resulting disconnected network is f(n1)+f(n2)−η(T ), where f(ni) is the value

of the connected component i.

When link e is removed, some exchanges that could be carried on the original network become impossible.

As of such, it is reasonable to assume that f(·) is such that f(n) ≥ f(n1) + f(n2). Notice that this is the

case for all the network value models cited above. Hence, removing link e ∈ T has reduced the value of the

network from f(n)− η(T ) to f(n1) + f(n2)− η(T ). We define the LIV of link e, relative to spanning tree T ,

to be equal to f(n) − (f(n1) + f(n2)).

If the link does not belong to the spanning tree, then removing it will leave the network connected and the

value of network is still f(n)− η(T ). As a consequence, if link e /∈ T , its LIV, relative to spanning tree T , is
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equal to 0. In conclusion, the value of link e, relative to spanning tree T is defined as

λ̄(T, e) = f(n) − (f(n1) + f(n2)) , (1)

with the understanding that if e /∈ T , n1 = n and n2 = 0, giving λ̄(T, e) = 0.

Writing this expression for all spanning trees and all links of the network, we build the tree-link LIV matrix

Λ̄ defined by Λ̄[T, e] = λ̄(T, e).

Finally, since f(n) is assumed to be the same for all T , we can define the normalized LIV of a link e relative

to a spanning tree T as

λ(T, e) = 1 −
f(n1) + f(n2)

f(n)
. (2)

The normalized tree-link LIV matrix Λ is defined accordingly.

Remark 1 With the definition in (1), the LIV of a link relative to any spanning tree is always equal to zero

under Sarnoff’s law (i.e λ(T, e) = 0, ∀e and T ). This is the effect of the linear rule (indeed n = n1 + n2)

and the fact that the broadcast network has a tree structure (every edge belongs to the tree). If there were

links between receivers, then attacking such links would not disrupt the communication and the value of the

network would still be n. We generalize this idea to arbitrary network topology by using the model introduced

in [13]), which we denote GWA model. It is a simple model that gives the same normalized LIV of 1 if the

link e belongs to the spanning tree and 0 otherwise (i.e. λ(T, e) = 1e∈T ). The model basically assumes that

whenever a link on the spanning tree is removed (hence disconnecting it), the network loses its entire value.

This is the case in distributed applications where each single node has to receive the sent information in order

for an operation to be carried (e.g. consensus).

Table (1) shows the LIV of links for the different models presented above. It is assumed that removing link

e divide spanning tree T into two subtrees with respectively n1 and n2 nodes (n1 + n2 = n)

2.3 A generalization of the betweenness centrality measure

The quantification we have described above for the significance of a link is relative to spanning trees: there

is a different value for each different tree. In general, one would like to get a sense of the importance of a

link for the overall communication process. Betweenness centrality is a measure that have long been used for

that purpose. Next, we propose a quantification of the importance a link within a network that generalizes
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Table 1: Normalized LIV of link e relative to spanning tree T for the different laws. Removing link e from
spanning tree T divide the network into two subnetwork with respectively n1 and n2 nodes (n1 + n2 = n).

Model Normalized LIV
GWA 1e∈T

Metcalfe 1 − n2
1+n2

2

n2

Reed 1 − 2−n1 − 2n2

BOT 1 − n1 log(n1)+n2 log(n2)
n log(n)

Walrand 1 −
n1+a

1
+n1+a

2

n1+a

the notion of betweenness. We start by recalling the betweenness centrality measure as it was defined by

Freeman [8].

For link e, and nodes i and j, let gi,j be the number of shortest paths between i and j and let gij(e) the

numbers of those paths that contain e. The partial betweenness centrality of e with respect to i and j is

defined as ϑij(e) =
gij(e)

gij
and the betweenness centrality of e is defined as ϑ(e) =

∑
i<j ϑij(e).

Freeman has given a probabilistic interpretation of the partial betweenness. If we assume that the two points

i and j are indifferent with respect to which of several alternative geodesics carries their communications,

the probability of using any one is 1
gij

. The partial betweenness is hence equal to the expected number of

shortest paths between i and j that use e. Also, notice that in this definition, the importance of link e with

respect to a path pij is equal to 1 if e ∈ pij and 0 if not. gij(e) is the total value of e for a communication

between i and j.

Using this interpretation, we can easily generalize the betweenness centrality to quantify the importance of

a link as

ϑ(e, λ, α) =
∑

i<j

αpij
λ(pij , e), (3)

where the parameter λ is a vector which entries are the relative importance λ(pij , e) of link e to path pij , and

α is a vector having as entries the probabilities (preference) αpij
of using path pij . In the standard definition

of betweenness centrality, parameter λ(pij , e) = gij(e) and αpij
= 1

gij
. In general, these parameters can be

determined by considering relevant aspects of the communication network. For example, in this paper, the

parameters λ are chosen to be equal to the LIV of the links relative to spanning trees, as was defined in the

previous section. Again, here we focus on networks where information flows through spanning trees. With

this, the definition in (3) becomes

ϑ(e, λ, α) =
∑

T

αT λ(T, e), (4)
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where the summation is now over spanning trees.

The preference parameter α(T ) can be driven by many factors. The cost of utilizing the links, the overall

communication delay and the vulnerability of links are, among others, reasons why, in a communication

network, some spanning trees might be more preferred than others. In this paper, where the focus is on

adversarial environments, the choice of spanning tree is dictated by the vulnerability factor. More precisely,

the preference α(T ) are chosen to be the mixed strategy Nash equilibrium in a game between a network

manager who chooses a spanning tree as communication infrastructure and an adversary who tries to cut off

the communication by attacking one link. Details of the game are presented next.

3 Game Theoretic Approach

3.1 Game model

The game is over the links of the network with a topology given by a connected undirected graph G = (V , E)

with |E| = m links and |V| = n nodes. The set of spanning trees is denoted T ; we let N = |T |.

To get all nodes connected in a cycle-free way, the network manager chooses a spanning tree T ∈ T of the

graph. Running the communication on spanning tree T requires a maintenance cost of η(T ) to the network

manager. The attacker simultaneously selects an edge e ∈ E to attack. Each edge e ∈ E is associated with

some cost µ(e) that an attacker needs to spend to launch a successful attack on e. It also has a loss-in-value

For the network manager, the value λ(T, e) of link e relative to spanning tree T is given by (2). This is how

much the network manager loses when he chooses tree T and link e happens to be attacked. This loss goes

to the attacker. More precisely, for a choice pair (T, e) of tree and edge, the net loss is η(T ) + λ(T, e) for

the network, while the net attack reward is equal to λ(T, e) − µ(e) for the attacker. It is also assumed that

the attacker has the option of not attacking, which results in a zero net reward for the attacker and a zero

loss for the manager. We let e∅ denote that option.

The pure strategy sets are the set T of spanning trees for the manager and the set E of edges for the

attacker. We are mainly interested in analyzing mixed strategy Nash equilibria of the game. We let {α ∈

ℜN
+ |

∑
T∈T αT = 1} be the set of mixed strategies for the network manager, and {β ∈ ℜm

+ |
∑

e∈E βe = 1}

the set of mixed strategies for the attacker. The defender is choosing α to minimize the expected net
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communication cost L(α, β) while the attacker is choosing β to maximize the expected net reward R(α, β).

L(α, β) =
∑

T∈T

αT

(
η(T ) +

∑

e∈T

βeλ(T, e)

)
, (5)

R(α, β) =
∑

e∈E

βe

(
∑

T∋e

αT λ(T, e) − µ(e)

)
. (6)

In the sequel, we have focused on the case where η(T ) = η is constant; hence not relevant to the optimization

in (24), which now becomes the minimization of
∑

T∈T αT

∑
e∈T βeλ(T, e). As a consequence, we ignore

η(T ) for the rest of this paper. The general case of η(T ) will be considered in subsequent studies.

3.2 Nash equilibrium theorem

To state the NE theorem of the game, we need to make a certain number of definitions.

For each subset of edges E ⊆ E , we let ΛE be the matrix Λ where columns corresponding to links not in

E are set to zero. Matrix Λ is defined in section 2.2 and its entries are given in (2). Now, assume that the

attacker’s equilibrium strategy β has support E. If there is a spanning T such that E ∩ T = ∅, then the

defender’s best response is to choose T ; and the attack would give zero payoff to the attacker. Hence, if

an attacker were to focus her attack on a set E, she would like that each spanning tree contains at least

some link of E. In the context our game, E should be such that for all spanning tree T , there exists e ∈ E

such that λ(T, e) > 0. Thus, if a mixed strategy equilibrium of the attacker has the form β = y/(1′y) with

support E, one can “correctly” guess that y verifies ΛEy ≥ 1 (since each entry of the vector ΛEy > 0 we

can always divide by the smallest entry). Let BE be the collection of all such y, BE =
{
y ∈ Rm

+ | ΛEy ≥ 1
}
.

BE is a polyhedron and can be characterized by its set of vertex points.

For such strategy β(= y/(1′y)) of the attacker, the defender’s best response is to choose an α that put

positive weight only on rows of ΛE (i.e. spanning trees T ) that achieve the minimum

min
T

(
∑

e∈T∩E

βeλ(T, e)

)
= min

T

(
∑

e∈T∩E

ye

1′y
λ(T, e)

)
=

minT

(∑
e∈T∩E yeλ(T, e)

)

1′y
. (7)

Now, if y is a vertex of the polyhedron BE , one can show that there exists a spanning tree To such that

the minimum in the numerator is
∑

e∈To∩E yeλ(To, e) = 1. We discuss the details of this assertion in the

appendix. This is the minimum value possible because of the constraints ΛEy ≥ 1. With these choices of
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strategies by both players, the attacker’s expected payoff can be written as:

R̄ =
1

1′y
−
∑

e∈E

ye

1′y
µ(e), (8)

where again E is the support of y. The attacker would like this payoff to be maximized. As a consequence,

she wants to minimize the quantity 1′y among all y in BE (this is obvious –at least when the attack cost

µ = 0–). This leads us to the following definition.

Definition 1 For any subset of links E ⊆ E, the function κ(E) is defined as

κ : 2E −→ R+

E 7−→ κ(E) = min{1′y, y ∈ B}. (9)

κ(E) is the value of a linear program (LP) that might be infeasible (e.g. when a row of ΛE is all zeros).

However, its dual is always feasible (see Appendix E), and when the dual LP is bounded, the primal is

necessarily feasible [4]. Let yE be a solution of the primal program whenever the dual LP is bounded. If this

dual is unbounded for some subset E, we let yE = K1m, for an arbitrary large constant K, where m = |E|,

and 1m is the all-ones vector of length m. With such “fix”, κ(E) = m ∗K when the dual LP is unbounded.

Hence, we can define the following two quantities that are induced by E.

Definition 2 The induced probability distribution is defined as βE = yE/κ(E).

And the induced expected net reward for the attacker is denoted by θ(E), with

θ(E) :=
1

κ(E)
−
∑

e∈E

βE(e)µ(e). (10)

Finally, we call a subset of vertices E critical if its induced expected rewards is maximum, i.e. if

θ∗ := θ(E) = max
Ẽ

(
θ(Ẽ)

)
, (11)

and we let C be the set of all critical subsets. We call θ∗ the vulnerability of the network.

Remark 2 When proving the Nash equilibrium theorem below (see Appendix E), we will argue that a critical

subset of edges E must be a minimal disconnecting set. For such subsets of links the dual of the LP defining
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κ(E) is always bounded (hence the primal is always feasible). As a consequence, for a critical subset E, we

always have that 0 < κ(E) < ∞ and the corresponding yE (hence βE ) is always well-defined.

We are now ready to state the Nash equilibrium theorem of the game. We claim that:

Theorem 1 For the game defined above, the following always hold.

1. If θ∗ ≤ 0, then “No Attack” (i.e. β(e∅) = 1) is always an optimal strategy for the attacker. In this

case, the equilibrium strategy (αT , T ∈ T ) for the defender is such that

ϑ(e, λ, α) =
∑

T∈T

αT λ(T, e) ≤ µ(e), ∀e ∈ E . (12)

The corresponding payoff is 0 for both players.

2. If θ∗ ≥ 0, then for every probability distribution (γE , E ∈ C) on the set of critical subsets, the attacker’s

strategy (β(e), e ∈ E) defined by

β(e) =
∑

E∈E

γEβE(e) (13)

is in Nash equilibrium with any strategy (αT , T ∈ T ) of the defender that satisfies the following prop-

erties: 




ϑ(e, λ, α) − µ(e) = θ∗ for all e ∈ E such that β(e) > 0.

ϑ(e, λ, α) − µ(e) ≤ θ∗ for all e ∈ E .
(14)

Furthermore, there exists at least one such strategy α.

The corresponding payoffs are θ∗ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

E∈C

γE

κ(E)
. (15)

3. If µ = 0, then every Nash equilibrium pair of strategies for the game is of this type.

The proof of the theorem is presented the Appendix. Its implications are discussed next.

4 Discussion and Analysis

The NE theorem has three parts. If the quantity θ∗ is negative then the attacker has no incentive to attack.

For such choice to hold in an equilibrium, the defender has to choose his strategy α as given in (12). Such
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α always exists. When θ∗ ≥ 0 there exists an equilibrium under which the attacker launches an attack

that focuses only on edges of critical subsets. The attack strategies (probability of attack of the links) are

given by convex combinations of the induced distributions of critical subsets. The corresponding defender’s

strategies are given by (14). When there is no attack cost, the attacker always launches an attack (θ∗ > 0)

and the theorem states that all Nash equilibria of the game have the structure in 14.

4.1 Vulnerability metric and importance of links

For simplicity, let’s first assume that there is no attack cost i.e µ = 0. In this case, θ(E) = 1
κ(E) and θ∗ > 0.

Also, a subset of link E is critical if and only if κ(E) is minimal. Since in this case the game is zero-sum,

the defender’s expected loss is also θ∗ = (minEκ(E)). θ∗ depends only on the graph and the network value

model (f(n)). It measures the worst case loss/risk that the network manager is expecting in the presence of

any (strategic) attacker. Notice that in our setting, a powerful attacker is one who does not have a cost of

attack µ = 0. When θ∗ is high, the potential loss in connectivity is high. When it is low, an attacker a very

little to gain in attacking, hence the risk low. As of such, we propose θ∗ as a measure of the vulnerability of

the graph.

This vulnerability metric also corresponds to a quantification of the importance of the most critical links.

This is captured by the inequalities in (14), which, when µ = 0, become

ϑ(e, λ, α) ≤ θ∗ for all e ∈ E , (16)

with equality whenever link e is targeted with positive probability (β(e) > 0) at equilibrium. From (13) we

see that β(e) > 0 only if edge e belongs to a critical subset, and hence is critical. Thus, the attacker focuses

it attack only on critical links, which inflict the maximum loss to the defender.

For the defender, since the game is zero-sum, the Nash equilibrium strategy corresponds to the min-max

strategy. In other words, his choice of α minimizes the maximum expected loss. Hence, the defender’s

equilibrium strategy α can be interpreted as the best way (in the min-max sense) to choose a spanning tree

in the presence of a strategic adversary. Using this interpretation with our generalization of betweenness

centrality in (4), we get a way to quantify the importance of the links to the overall communication process.

The inequalities in (16) above say that the links that are the most important to the defender (i.e. with

maximum ϑ(e, λ, α)) are the ones that are targeted by the attacker (the most critical). This unifies the
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positive view of importance of links when it comes to participation to the communication process to the

negative view of criticality when it comes to being the target of a strategic adversary. This is not surprising

because since the attacker’s goal is to cause the maximum damage to the network, it makes sense that she

targets the most important links.

When the cost of attack is not zero (µ 6= 0), our vulnerability metric θ∗ takes it into account. For instance,

if the attacker has spent too much effort to successfully launch an attack, to the point where (the expected

net reward) θ∗ is negative, the theorem tells that, unsurprisingly, the attacker will choose to not launch an

attack. To “force” the attacker to hold to such choice (i.e to maintain the equilibrium), the defender has to

randomly pick a spanning tree according to (12). With this choice, the relative value of any link is less than

the amount of effort needed to attack it. When µ is known, such strategy can be seen as a deterrence tactic

for the defender.

If the vulnerability θ∗ is greater than zero, than there exists an attack strategy that only targets critical

links. To counter such attack, the defender has to draw a spanning tree according to the distribution α in

(14). For such choice of a tree, the relative importance of any critical link, offset by the cost of attacking

the link is equal to the θ∗. For any other link, this difference is less that θ∗. In this case, the criticality of

a link is determined not only by how much importance it has for the network, but also how much it would

take to the adversary to successfully attack it. Hence, when µ ≥ 0, θ∗ is a measure of the willingness of an

attacker to launch an attack. It includes the loss-in-value for the defender as well as the cost of attack for

the attacker.

Observe that when µ ≥ 0 the theorem does not say anything about the existence of other Nash equilibria. It

is our conjecture (verified in all experiments) that even if there were other equilibria, θ∗ is still the maximum

payoff that the attacker could ever receive. Hence, it measures the worst case scenario for the defender.

4.2 Critical subsets and network value models

In this section we discuss how the critical subsets depend on the model used for the value of the network.

Figure 2 shows an example of network with the critical subsets for the different value models discussed

earlier. The example shows a core network with a set of bridges connecting it to peripheral nodes. A bridge

is a single link the removal of which disconnects the network. In all figures, the critical subset of links is

shown in dashed. In this discussion we mainly assume that the attack cost µ is equal to zero.
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Figure 2: Example of critical subsets for different value models. a) GWA model b) OBT, Walrand, and
Metcalfe’s models. c) Reed’s model.

Figure 2.a) shows the critical subset corresponding to the GWA link cost model introduced in [12] for which

λ(T, e) = 1e∈T . With this model, the defender loses everything (i.e. 1) whenever the attacked link belongs

to the chosen spanning tree. Since a bridge is contained in any spanning tree, attacking a bridge gives the

maximum outcome to the attacker. As a consequence, the critical subsets correspond to the set of bridges as

can be observed in the figure. In fact, for the GWA value model, we have shown in [12] that κ(E) = |E|
M(E) ,

where M(E) = minT (|T ∩ E|). Notice that if E is a disconnecting set (i.e. removing the edges in E divides

the graph into 2 or more connected components), M(E) ≥ 1. Now, if e is a bridge, |T ∩ {e}| = 1 for all

spanning trees T , implying that M({e}) = 1 and θ({e}) = κ({e}) = 1, which is the maximum possible value

of θ∗. As a consequence, each bridge is a critical subset and any convex combination over the bridges yields

an optimal attack.

Figure 2.b) depicts the critical subsets with the Metcalfe, OBT, and Walrand (a = 0.6) models. For

all these models (as well as for Reed’s model), the function f(x) − (f(x1) + f(x2)), where x1 + x2 =

x, is maximized when x1 = x2 = x/2. This suggests that attacks that target links that evenly divide

(most) spanning trees are optimal. This conjecture “seems” to be confirmed by the examples shown in the

figure. The most critical links are the innermost or core links of the network for all three models. The

attack distributions are slightly different for the 3 models. The distribution on links (1, 2, 3, 4, 5) is equal

to (0.1875, 0.2500, 0.1875, 0.1875, 0.1875) for Metcalfe, (0.1911, 0.2356, 0.1911, 0.1911, 0.1911) for OBT, and

(0.1884, 0.2465, 0.1884, 0.1884, 0.1884) for Walrand (a = 0.6). Notice that for all models, the middle link (2)

is attacked with a higher probability.

Although Reed’s (exponential) model also has the same property discussed in the previous paragraph, the

critical subset with Reed is different, as can be seen in figure 2.c). While Metcalfe, OBT, and Walrand

models lead to the core network being critical, with Reed’s model, the critical links are the access to the
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Figure 3: Comparison of the loss functions 1 − f(n1)+f(n−n1)
f(n) when a link belonging to the chosen spanning

tree is cut, dividing it into 2 subtrees of n1 and n−n1 nodes. For GWA, since λTe = 1e∈T , the loss is always
1. The models GWA, Reed, and Walrand (for large values of a), overlap in a wide region of values of n1.

core. Each of the links is attacked with the same probability. This might be a little surprising because it

contradicts the conjecture that innermost links tend to be more critical. However, observing the attack’s

reward function
(
1 − f(n1)+f(n−n1)

f(n)

)
shown in figure 3, Reed’s model coincides with the GWA model in a

wide range of n1. This means that any link that separates (most of the spanning) into subtrees of n1 and

n − n1 nodes gives the maximum reward to the attacker, for most values of n1. Also, notice that since

the core network is “well connected”, the defender has a many options for choosing a spanning tree. This

means that in the core, the attacker has less chances of disrupting the communication. Links accessing the

core, on the other hand, deliver high gain and better chances of disrupting the communication. Hence, the

best strategy for the attacker is, in this case, to target access to the core. Notice that Metcalfe, OBT, and

Walrand (a ≤ 1) models do not have this optimal tradeoff choice.

By choosing the parameter a to be sufficiently large in the Walrand model, we have (experimentally) observed

that the critical subset moves from being the core, to corresponding to the one in GWA model (the bridges)

for very large values of a. In fact, with all network topologies we have considered (more than 50), we could

always choose the parameter of the Walrand so that the critical subset matches the one in GWA model.

This implies that as the model loss function
(
1 − f(n1)+f(n−n1)

f(n)

)
gets closer to the GWA function 1e∈T , the

critical subset moves away from the inner links to the outer links.

These observations indicate that the critical subsets of a graph depend on the value model used to setup the

game. The value model is however not the only factor that characterizes the critical subset(s) of a graph.
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Figure 4: Example of critical subsets for different value models. a) GWA model b) OBT, Walrand, and
Metcalfe’s models. c) Reed’s model

Figure 4 shows the same network as in the previous example with one additional (core) link. With this

additional link, the the connectivity of the core network is enhanced. The critical subset does not change

for the GWA models. However, for all other 4 models, the critical subset is now the access to the core. This

suggests that connectivity is another factor that characterizes the critical subset(s).

As was (experimentally) observed on the previous example, in this case also, when the parameter a of

Walrand’s model is chosen sufficiently large, the critical subsets become the same as the GWA critical

subsets.

4.3 Computing a critical subset: an algorithm

Computing a critical subset requires two things: a oracle that returns κ(·) and an algorithm that computes

the maximal value of θ(E) over the set of subsets of links.

The oracle can be implemented by any efficient algorithm that solves a linear program [4]. The simplex

method [25] can be used for that purpose. The worst case complexity of the simplex is exponential [14],

however, for most practical cases, it runs very efficiently.

To compute θ∗ and the corresponding maximizer E (critical subset), we use the fact that the function κ(E)

is a submodular function [24]. When the cost of attack is equal to zero, maximizing θ(E) is the same as

minimizing κ(E). The minimization of a submodular function has been largely studied [24] and polynomial

algorithms have been proposed for that purpose. Using one of these algorithms with efficient methods to

solve linear program, one can build an efficient algorithm to compute critical subsets of a network. We

discuss the details of this in the appendix.
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5 Conclusion and Future Work

In this study, we quantify the vulnerability of a communication network where links are subject to failures due

to the actions of a strategic attacker. Such a metric can serve as guidance when designing new communication

networks and determining it is an important step towards improving existing networks.

We build upon previously proposed models for the value of a network, to quantify the importance of a link,

relative to a spanning tree, as the loss-in-value when communication is carried over the tree and the link is

failed by a strategic attacker. We use these values to setup a 2-player game where the defender (network

manager) chooses a spanning tree of the network as communication infrastructure and the attacker tries

to disrupt the communication by attacking one link. We propose the equilibrium’s expected loss-in-value

as a metric for the vulnerability of the network. We analyze the set of Nash equilibria of the game and

discuss its implications. The analysis shows the existence of subsets of links that are more critical than the

others. We characterize these sets of critical subsets and, using examples, we show that such critical subsets

depend on the network value model as well as the connectivity of the graph. The nature of this dependency

is an interesting question that we are planning to investigate in future studies. We also discuss an efficient

algorithm that can be used to compute critical subsets. Finally, we propose a generalization of the notion

of betweenness centrality that allows different weights for the links as well as preference among the graph

structures that carry the communication (e.g. spanning trees for this paper).

Several future directions are being considered as followup to this paper. First, in here, we have discussed the

critical subsets using illustrative examples. To get a better intuition about the relationship between the value

function and the critical subset of the network, a more rigorous analysis of the game value function (κ(E))

is needed. With such analysis we will be able to integrate and understand more realistic (and potentially

more complicated) network value models. Also, in this paper, we use spanning trees to define the relative

importance of links. This implicitly considers only networks in which things flow through spanning trees.

However, our result is general and can be used to study games on other type of networks. One interesting

extension is the situation where the network manager chooses p ≥ 1 spanning trees (example p = 2 is

the situation where the manager chooses a communication tree and a backup one), and the attacker has a

budget to attack k ≥ 1 links. Also, we have assumed, in this paper, that the cost of communicating over

any spanning tree is the same. In the future, we will study versions of the problem where some spanning

trees might be more costly then others. Finally, this study has focused on the failure of links in a network.
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Nodes also are subject failures: whether random or strategic. A more thorough study should consider both

links and nodes.
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A Game Model and NE Theorem

In this appendix section, we discuss a generalized model of the game described in section 3.1 and provide a
proof of the Nash equilibrium theorem. The proof require the notion of blocking pairs of polyhedra that we
revise next.

A.1 Blocking Pair of Matrices

The discussion in this section is mostly based on [27, pp. 99-101] and [9].
Let Λ be a N ×m nonnegative matrix with non-zero rows. The polyhedron PΛ associated with Λ is defined
as the vector sum of the convex hull of its rows (λ1, . . . , λN ) and the nonnegative orthant:

PΛ = conv.hull (λ1, . . . , λN ) + R
m
+ . (17)

A row λi of Λ is said to be inessential if it dominates a convex combination of other rows of Λ, otherwise
we say that λi is essential. If all the rows of Λ are essential, we say that Λ is proper. The set of essential
rows corresponds to the set of extreme points of the polyhedron PΛ. Since inessential rows are not relevant
for the definition of PΛ we will drop them and assume that Λ is proper.

22

http://www.cisco.com/en/US/tech/tk389/tk621/tsd_technology_support_protocol_home.html
http://www.cisco.com/en/US/tech/tk389/tk621/tsd_technology_support_protocol_home.html
http://www.cisco.com/en/US/tech/tk389/tk621/technologies_configuration_example09186a008009467c.shtml
http://www.cisco.com/en/US/tech/tk389/tk621/technologies_configuration_example09186a008009467c.shtml
http://www.reed.com/dpr/locus/gfn/reedslaw.html
http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/C030200D.pdf
http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/C030200D.pdf


Figure 5: Example of polyhedron PΛ defined by a nonnegative proper matrix Λ and its corresponding blocker
bl(PΛ). The extreme points of the blocker define the nonnegative proper matrix Ω.

The example in Figure (5) shows the associated polyhedron PΛ to the nonnegative matrix Λ given below:

Λ =





1/3 3
2/3 2
2 1
4 1/2



 , Ω =





0 2
1/6 2/3
3/10 2/5
2/3 10/36
4 0




(18)

Given Λ and its associated polyhedron, we define the blocker of the polyhedron PΛ as follow.

Definition 3 The blocker bl(PΛ) of PΛ is the polyhedron given as:

bl(PΛ) =
{
y ∈ R

m
+ : y′x ≥ 1, ∀ x ∈ PΛ

}
, (19)

where y′x is the inner product of y and x. Recall that in this thesis we use the prime sign (’) for vector and
matrix transpose.

We are interested in characterizing the polyhedron PΛ and its blocker bl(PΛ). For that, we use the following
theorem by Fulkerson [9]. It is based on the fact that there is a one-to-one correspondence between the
essential rows of Λ and the extreme points of PΛ.

Theorem 2 (Fulkerson, 1971) Let the N -by-m matrix Λ be proper with rows λ1, . . . , λN , and let the
polyhedron PΛ be defined as in ((17)). Let ω1, . . . , ωK be the extreme points of bl(PΛ), and let Ω be the
matrix having those points as rows. Then,

1. The blocker bl(PΛ) of PΛ is given by bl(PΛ) =
{
x ∈ Rm

+ : Λx ≥ 1T

}
.

2. Ω is proper, and the polyhedron PΛ can be described as PΛ =
{
x ∈ Rm

+ : Ωx ≥ 1K

}
.

3. The blocker of the blocker bl(PΛ) verifies bl(bl(PΛ)) = PΛ.

Λ and Ω are said to form a blocking pair of matrices.
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Equations ((18)) show a blocking pair of matrices Λ and Ω, and the corresponding polyhedra are shown in
Figure (5).

Blocking pairs of matrices play an important role in the combinatorial problem of maximum packing (see
Fulkerson[9]). In this thesis, we use the theory of blocking pairs to provide an easy argument for the existence
of a probability distribution that satisfies a certain number of constraints.
For instance, consider the following linear program:

Maximize 1′
T x

subject to Λ′x ≤ w, and x ≥ 0, (20)

where the constraints Λ form a nonnegative matrix, and w is a given nonnegative vector.
We are interested to knowing whether the value of the program is greater than 1 or not. If this is the case,
one can easily derive a probability distribution by normalizing a feasible solution of the program. Indeed,
since the normalizing factor is greater than 1, the constraints will still be satisfied. The following lemma
gives an answer to our question.

Lemma 1 The value of the LP in ((20)) is greater than 1 if and only if w belongs to the polyhedron PΛ

defined by Λ.

Proof: The proof of the lemma is as follow.
First, notice that strong duality holds for this LP. In fact, Slater’s condition [4] is satisfied for any nonnegative
and nonzero w. The dual of the LP is given as:

Minimize w′y

subject to Λy ≥ 1T , and y ≥ 0. (21)

The constraints of the dual program ((21)) define the blocker

bl(PΛ) =
{
y ∈ R

m
+ : Λy ≥ 1T

}

of the polyhedron PΛ. Now, if w belongs to PΛ, then for all y ∈ bl(PΛ), we have that w′y ≥ 1.

Conversely, if w′y ≥ 1 for all y ∈ bl(PΛ), then w must be in the blocker of bl(PΛ), which by Fulkerson’s
theorem (2), is PΛ. This implies that the value of the dual program is greater than 1. Combined with the
strong duality property, we get that the value of the primal program is at least 1.

A.2 Generalized Game Model

This section presents the blocking game model and introduces some notations that we will need to characterize
the Nash equilibria of the game.

We consider that there is a nonempty, finite set S and two nonempty collections T = {T1, . . . , TN} and
E = {e1, . . . , em} of nonempty subsets of S. We call E the collection of resources. The defender selects
a subset T ∈ T to perform a mission critical task. Each subset T ∈ T needs some set of resources
eT1

, eT2
, . . . , eTp

∈ E in order to fulfill the task. To disrupt the mission, an attacker targets one resource
e ∈ E to attack. Each resource e ∈ E has a cost of attack µ(e) that is the amount of effort that the attacker
needs to spend to successfully launch the attack. The attacker also has the option of not attacking (“No
Attack”); which we materialize by the choice of e∅. This choice results to zero loss for the defender and zero
reward for the attacker.

Whenever the defender chooses subset T and resource e is attacked, he loses some value λ(T, e). This loss
goes to the attacker. It is conceivable that λ(T, e) = 0 if subset T does not need resource e. Hence, when the
pair (T, e) is selected, the defender’s loss is λ(T, e) and the attacker’s net reward is equal to λ(T, e)− µ(e).
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This scenario can be modeled as a two-player matrix game where the players (the defender and the attacker)
choose their pure strategies in the nonempty and finite sets T and E ∪ {e∅}, respectively (with |E| = m and
|T | = N).
The defender and attacker’s respective payoff matrices are given by

Λ̃ = [Λ|0], and Π̃ = [Π|0], (22)

where Λ and Π are N -by-m matrices; (Λ, [Λ](T, e) = λ(T, e)) is a nonnegative matrix with no zero rows§,
and such that there is no column of Λ that dominates all other columns¶. Π is given by,

Π = Λ −





µ(1) µ(2) . . . µ(m)
µ(1) µ(2) . . . µ(m)

...
...

. . .
...

µ(1) µ(2) . . . µ(m)




, (23)

The “last” all-zero column in the definition of Λ̃ and Γ̃ captures the zero-loss for the defender (λT (e∅) = 0)
and zero-reward for the attacker (µ(e∅) = 0) when this latter chooses the “No Attack” strategy (e∅). For
notational simplicity, we will only mention Λ and Γ.

We consider mixed strategies of this game where the defender chooses a distribution (αT , T ∈ T ) on T and
the attacker chooses a distribution (β(e), e ∈ E ∪ {e∅}) on E ∪{e∅}. The goal of the defender is to minimize
the expected loss

L(α, β) = α′Λ̃[β; β(e∅)] =
∑

T∈T

αT

(
∑

e∈E

β(e)λ(T, e)

)
, (24)

while the attacker is trying to maximize the expected reward

R(α, β) = α′Π̃[β; β(e∅)] =
∑

e∈E

β(e)

(
∑

T∈T

αT λ(T, e) − µ(e)

)
. (25)

In our notation, [β; β(e∅)] is the column vector obtained by appending the additional row (entry) β(e∅) to
the column vector β.

Let PΛ be the polyhedron associated with Λ given in ((22)), and let bl(PΛ) denote its blocker. From the
discussion in the previous section and from Fulkerson’s theorem, the blocker bl(PΛ) ⊆ Rm

+ is the polyhedron
associated with the nonnegative matrix Ω whose rows are the vertices of bl(PΛ).
It is also known that bl(PΛ) is the vector sum of the convex hull of rows of Ω with the positive orthant Rm

+ ,
and that its blocking polyhedron is PΛ (see [9] and [27, pp. 99-101]). Also, Theorem (2) gives that

PΛ =
{
x ∈ R

m
+ , s.t. Ωx ≥ 1T

}
(26)

Now, for ω row of Ω‖, which we denote as ω ∈ Ω, we write ω = (ω(e), e ∈ E), and let ω(E) :=
∑

e∈E ω(e).

Note that ω(e) ≥ 0 for all e ∈ E and ω(E) > 0∗∗; so that ( ω(e)
ω(E) , e ∈ E) is a probability distribution on E .

We call it the probability distribution induced by ω.

§A row with all zeros would lead to a trivial game because it means that there exists a subset T ∈ T that will always result
to zero loss. The defender would then always select such strategy and the game ends.

¶This would also lead to a trivial game if the attack cost is not too high. In fact, it means that there is a resource that will
always give higher attack gain, independently of the subset chosen by the defender. The attacker would always target such a
resource.

‖Notice that this is an abuse of language because ω is a column vector.
∗∗This is because the blocker bl(PΛ) is not empty (Λ is not a one-rowed zero matrix), and does not contain the all-zero vector

(the origin) (this could not give an inner product with rows of Λ that is greater than 1).
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Also define, for each ω ∈ Ω, consider the quantity

minT∈T

(∑
e∈E ω(e)λT (e)

)

ω(E)
; (27)

This quantity is the minimum loss seen by the defender if the attacker were to choose a target according to

the distribution ( ω(e)
ω(E) , e ∈ E) induced by ω. A closer look at the expression above shows that the numerator

is equal to 1. In fact, we already know that if ω belongs to the blocker of PΛ,
∑

e∈E ω(e)λT (e) ≥ 1 for all
T ∈ T . Now, if ω is a vertex of the blocker of PΛ, one can easily show that

Lemma 2 There must exist a some To such that
∑

e∈E ω(e)λTo
(e) = 1.

Proof: Assume that the assertion is not true and
∑

e∈E ω(e)λT (e) > 1 for all T . Let τ = minT

(∑
e∈E ω(e)λT (e)

)

and let ωo = ω
τ

. Then, ωo ∈ Ω because
∑

e∈E ωo(e)λT (e) ≥ 1 for all T . But, ω strictly dominates ωo which
contradicts the fact that ω is a vertex of the blocker of PΛ. Thus, we can drop the minimization and
define the following function on the vertices ω of the blocker bl(PΛ)

κ : Ω −→ R (28)

ω 7−→ κ(ω) := ω(E) =
∑

e∈E

ω(e). (29)

Finally, let us define θ(ω) as

θ(ω) :=
1

κ(ω)

(
1 −

∑

e∈E

ω(e)µ(e)

)
. (30)

The expression of θ(ω) is composed with two terms. If the attacker were to choose a resource to attack

according to the distribution ω = ( ω(e)
ω(E) , e ∈ E), then the first term would have been the loss seen by the

defender, which, as we have assumed, goes to the attacker. The second term is the average cost of attack
corresponding to the distribution induced by ω. Hence, θ(ω) can be seen as the expected attack reward
associated ω.

We call the vertex ω of the blocking polyhedron a critical vertex if

θ(ω) = max
ω̃∈Ω

θ(ω̃) . (31)

A critical vertex is one whose induced probability distribution gives a maximum rewards to the attacker
(considering the defender’s response).
We define θ := maxω̃∈Ω θ(ω̃) to be the maximum achievable value in the preceding expression, and we let
Ωmax denote the matrix having as rows the critical vertices of bl(PΛ).
We use θ as the vulnerability for the defender’s task.

A.3 Nash Equilibrium Theorem

This section presents the main results of the two-player matrix game defined in section (A.2). We claim
that:

Theorem 3 For the game defined above, the following always hold.

1. If θ ≤ 0, then “No Attack” (i.e. β(e∅) = 1) is always an optimal strategy for the attacker. In this case,
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the equilibrium strategy (αT , T ∈ T ) for the defender is such that

λ̄α(e) :=
∑

T∈T

αT λT (e) ≤ µ(e), ∀e ∈ E . (32)

The corresponding payoff is 0 for both players.

2. If θ ≥ 0, then for every probability distribution (γω , ω ∈ Ωmax), the attacker’s strategy (β(e), e ∈ E)
defined by

β(e) =
∑

ω∈Ωmax

γω
ω(e)

ω(E)
(33)

is in Nash equilibrium with any strategy (αT , T ∈ T ) of the defender that satisfies the following prop-
erties: {

λ̄α(e) − µ(e) = θ for all e ∈ E such that β(e) > 0.
λ̄α(e) − µ(e) ≤ θ for all e ∈ E .

(34)

Further, there exists at least one such strategy α.

The corresponding payoffs are θ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

ω∈Ωmax

γω

κ(ω)
. (35)

3. If µ = 0, then every Nash equilibrium pair of strategies for the game is of this type.

Note: θ = 0 is a particular case where both cases (1) and (2) can occur. In all cases, the maximum
achievable attack reward is equal to 0. There exist equilibria where the attacker decides to not attack. In
those cases, the defender has to choose α according to ((32)). There might also exist equilibria where the
attack launches an attack but gets a expected reward of 0. In such equilibrium, α has to satisfy ((34)).
In our experiments we did not find any equilibrium where the attacker would mix between e∅ and some
resources in E .

Proof: The proof of the theorem is presented in Appendix D
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Not edge-cut Not minimal
minimal
edge-cut

minimal
edge-cut

Figure 6: Examples of disconnecting sets (DS) and minimal disconnecting sets (MDS). The chosen subset
is shown in dashed line. The leftmost example is not a DS. The next example is a DS but is not a MDS
because the red link connect two nodes belonging to the same connected component. The third example is a
MDS. It is also a minimum edge-cut of the graph (the one with the minimum size). The rightmost example
is a MDS but not a minimum edge-cut.

B Network Value Function κ(·)

B.1 Minimum Disconnecting Subset (MDS)

We start by the following definition.

Definition 4 Let E be the set of edges of the graph G, and let E ⊆ E be a subset of edges.

1. E is said to be a disconnecting set (DS) of G, if removing the edges on E disconnects the graph (and
results into 2 or more connected components).

2. E is said to be a minimal disconnecting subset (MDS) if E is a disconnecting set such that, for every
edge e ∈ E, adding e to G\E (the graph obtained by removing, from G, the edges in E) decreases its
number of connected components by 1.

3. We denote by Ê the MDS of maximum cardinality that is included in E.

Figure (6) shows examples of DS’s and MDS’s. The fist example (leftmost) is not a DS. The second example
is a DS but is not a MDS. The third example is a MDS. It is also the minimum cut of the graph. However,
in general MDS’s are not minimum cuts. The last example shows a MDS that in not a minimum cut.

The notion of MDS is equivalent to the notion of feasible partition presented by Chopra [5]. Next, we recall
the definition of a feasible partition.

Definition 5 A feasible partition Π of the vertices of the graph G (V = V1∪V2∪· · ·∪V|Π|, i 6= j ⇒ Vi∩Vj =
∅) is such that every partition member Vi is a connected component (or equivalently that two vertices u and
v are in the same partition member Vi if and only if there exists a path puv from u to v that uses only edges
of the subgraph (Vi, Vi(E)).

In [11], we have shown the following lemma.

Lemma 3 1. For every feasible partition Π of the vertices of the graph G, the set E(Π) of edges that go
between vertices in distinct elements of Π is a MDS.
2. Every MDS E is the set of edges going across the elements of some feasible partition (that we will denote
ΠE).

In [5], Chopra has shown that the spanning tree polyhedron can be characterized by assigning weights to
edges going across members of feasible partitions (this characterization was previously given by Fulkerson,
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Chopra provided a proof in the cited paper). Here, we show that the blocker of the payoff matrix defined
above (via spanning trees and value functions) can be characterized by solving some linear program on the
MDS’s.

First, we give two important properties of MDS’s.

Property 1 If E ⊆ F ∈ DS(E), then Ê ⊆ F̂ .

Proof: If e ∈ Ê, then e must be a bridge in the graph {G\E} ∪ {e}. Hence, e has to be a bridge in

{G\F} ∪ {e}, which implies that e ∈ F̂ .

Better Proof: IF e ∈ Ê, then it must connect two different members of the partition ΠE . But since E ⊆ F ,
the partition ΠF further partitions the members of ΠE and hence e connects two different members of ΠF ,
implying that e ∈ F̂ .

Property 2 Let e be an edge in E\E. Then, if e is not a bridge on the subgraph G\E, we have that

Ê = Ê + e.

Recall that a bridge is an edge e ∈ E the removal of which increases the number of connected components
of the graph.
Proof: Let ΠE be the partition obtained by removing the edges of E from the graph and considering that
u and v belongs to the same class if there exists a path puv from u to v. If e = (u, v), the vertices u and v
belong to the same class of the partition ΠE . Call it Vuv. Furthermore, if e is not a bridge in G\E, then
there exists another path puv that does not contain the vertex e = (u, v) and that only uses edges that belong
to that same class Vuv. Thus, removing e from G\E does not disconnected the subgraph (Vuv , Vuv(E)) and
hence does not change the partition. Also, the same edges that go across the classes of partition ΠE are

those going across the classes of partition ΠE+e. Thus, Ê = Ê + e.

Next we define a function that is related to the polyhedron PΛ, where for any nonnegative matrix Λ, PΛ is
defined as follow

PΛ = conv.hull (λ1, . . . , λN ) + R
m
+ . (36)

In the definition above, λi, i = 1 . . .N are the rows of the matrix Λ.

Definition 6 Let E = {1, 2, . . . , n} be the set of indices of the column of the tree-link payoff matrix Λ defined
above, and let DS(E) ⊆ 2E be the set of all disconnecting sets of the graph. We define the function κ(·) on
DS(E) as follow:

κ : DS(E) −→ R (37)

E 7−→ κ(E) = max{1Tx, ΛT
bE
x ≤ 1}, (38)

where Ê is the MDS of maximum size that is contained in E and ΛF is the matrix that contains the columns
indexed by F ⊆ E and zeros in any other column.

This later definition (compared to the one using the dual LP) generalizes to all subsets of E and does not

require to focus on MDS’s (I have to show that the maximum is attained at a MDS (actually Ê)). With this
definition, if E is not a disconnecting set, then the maximum is equal to +∞. We set an upper bound K to
all numbers (can be set as large as possible but is fixed ones it is chosen) and define κ(∅) = K.

As an example, if Λ is the spanning tree-link incidence matrix of a connecting graph, for any minimal dis-

connecting set E, κ(E) = |E|
Q(G\E)−1 , where Q(G\E) is the number of connected components of the graph

G\E. This can be verified by Fulkerson’s theorem or the theorem stating that the solution of certain integer

29



program are integral (fractional) (give some references). Related to this (and in anticipation to the charac-
terization of the blocker), the vertices of the blocker of spanning tree polyhedron correspond to the essential
(i.e. that do not dominate a convex combination of the others) vectors of the family defined as follow:
for any MDS E, construct vector yE by assigning weight 1

Q(G\E)−1 to each link in E and zero to any other

link.

The function κ(·) has a certain number of properties that we list below. In the sequel we will apply, whenever
it is required, the appropriate extension on non-disconnecting sets.

Property 3 For any E ⊆ E, κ(E) ≥ 0.

This property trivially follows from the definition.

Property 4 κ(·) is none-increasing on the set of disconnecting sets DS(E); i.e. if E ⊆ F ∈ DS(E), then
κ(E) ≥ κ(F ).

Proof: The reason is that if a nonnegative vector y satisfies the constraints (44) for Ê ⊆ F̂ (by property (1)),

it must satisfy them for F̂ as well. Indeed, since both Λ and y are nonnegative, adding the columns indexed
by F̂\Ê to Λ bE

can only increase the values in the LHS’s of the constraints, hence making the constraints
even looser.

Property 5 κ(·) is submodular, i.e. it satisfies the following

κ(E) − κ(E + e1) ≤ κ(E + e2) − κ(E + e1 + e2), ∀ E ⊆ E , e1, e2 ∈ E\E, (39)

where in the above and throughout this paper, we use the notation E + e as a shortcut for E ∪ {e}.

In other words, κ(·) has increasing returns on the set of edges of the graph. Again, here we have assumed
the extended definition on 2E .

Proof: To show this, we use the correspondence between MDS’s and subset of edges going across members
of vertex partitions.
First assume that e1 is not a bridge of the graph G\{E + e2} or in other terms removing e1, does not
increase the number of connected components of the graph G\{E + e2}. Then, from Lemma (2), we have

that Ê + e2 = ̂E + e1 + e2. As a consequence, κ(E+e2) = κ(E+e1+e2). Thus, since κ(·) is none-increasing,
we only need to show that κ(E) = κ(E + e1). But, this is indeed the case because if e1 is not a bridge in
G\{E + e2}, it cannot be a bridge in G\E (we remove less edges in G\E than in G\{E + e2}). Thus,

Ê = Ê + e1 implying that κ(E) = κ(E + e1).

Now assume that e1 is a bridge in G\(E+e2) (notice that we always have that κ(E+e2) ≥ κ(E+e2+e1)). In
this case one needs to consider three cases: e2 connects two vertices inside the same connected component of
the graph G\{E+e1+e2} (figure 7.a)), e1 and e2 go across the same connected components of G\{E+e1+e2}
(figure 7.b)) (they must be the only edges across those two connected components), or e1 and e2 go across
different connected components of G\{E + e1 + e2} (figures 7.c) and 7.d)),

• If e2 connects two vertices inside the same connected component of the graph G\{E + e1 + e2}, then

e2 is neither a bridge of the graph G\E nor one of G\{E + e1}. These implies that Ê = Ê + e2 and

Ê + e1 = ̂E + e1 + e2. As a consequence, κ(E) = κ(E + e2) and κ(E + e1) = κ(E + e1 + e2). Thus the
RHS of (39) is equal to its LHS.
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Figure 7: Illustrative proof of the submodularity: possible scenarios when e1 is a bridge in G\(E + e2).
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Figure 8: Illustrative proof of the submodularity: possible scenarios when e1 is a bridge in G\(E + e2).

• If e1 and e2 go across the same connected components of G\{E + e1, e2} say V1 and V2 (they must be

the only edges across those two connected components), then Ê = Ê + e1 because G\E is “almost”
the same as G\{E + e1 + e2} except that in G\E the classes V1 and V2 are connected by e1 and
e2. Thus, removing e1 from G\E will let V1 and V2 connected (by e2). Hence the partitions ΠE

and ΠE+e1
have the same classes and thus Ê = Ê + e1. This implies that κ(E) = κ(E + e1), and

κ(E) − κ(E + e1) = 0 ≤ κ(E + e2) − κ(E + e1 + e2).

• If e1 and e2 go across different connected components of G\{E+e1, e2}, then Ê 6= Ê + e1, Ê 6= Ê + e2,

and Ê + e1 = ̂E + e1 + e2. To show that the LHS of (39) is smaller than its RHS, we consider the
changes in the value of the LP in the definition of κ(·) (38) when we go from E to E +e1 to E +e1 +e2

and from E to E + e2 to E + e1 + e2. Notice that since the definition of κ(·) is a maximization, going
from E to E + e1 introduces a new constraint and hence decreases the value of the LP from κ(E) to
κ(E + e1). Let the difference be d1 = κ(E) − κ(E + e1). Similarly, we define d2 = κ(E) − κ(E + e2)
as the difference of going from E to E + e2, d1→12 = κ(E + e1) − κ(E + e1 + e2) as the difference of
going from E + e1 to E + e1 + e2, and finally d2→21 = κ(E + e2) − κ(E + e1 + e2) as the difference of
going from E + e2 to E + e1 + e2. Figure 8 gives an illustration of this process of going from one LP
solution to another. Notice that the value of the final LP p∗12 can be written as

κ(E + e1 + e2) = κ(E) − (d1 + d1→12) = κ(E) − (d2 + d2→21) .

Also, we have that
κ(E + e1) = κ(E) − d1, and κ(E + e2) = κ(E) − d2
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Replacing these definition in the inequality (39) gives us

κ(E) − κ(E + e1) ≤ κ(E + e2) − κ(E + e1 + e2)

⇔ (40)

κ(E) − (κ(E) − d1) ≤ (κ(E) − d2) − (κ(E) − (d2 + d2→21))

⇔ (41)

d1 ≤ d2→21 (42)

Thus, we only need to show that d1 ≤ d2→21. To show this, we consider the dual of the LP presented
in the definition of the function κ(·) (see (38)).

κ : DS(E) −→ R (43)

E 7−→ κ(E) = min{1Ty, Λ bE
y ≥ 1}, (44)

Now, notice that going from E to E + e1 introduce a new variable ye1
to the optimization (44). This

adds one degree of freedom and hence the solution of the LP defined with E can be improved to get that
of the LP defined by E + e1. The net improvement be computed by using the dual simplex algorithm.
The algorithm starts from the current solution (with ye1

= 0) (notice that the current solution is
feasible for the new LP) and makes a series of pivots to find the new optimal solution. Since the dual
is a minimization, this new optimal solution is a feasible vector (for the new LP) that maximizes the
improvement d1 obtained by the introduction of the new variable ye1

(in LP terms, we say that ye1
has

become a basic variable). Again, the constraints to the maximization of the improvement is to maintain
feasibility (A

Ê+e1
y ≤ 1). Making the same reasoning for going from E + e2 to E + e1 + e2, we have

that d2→12 is the maximum improvement to the solution of the LP defined by E + e2 (with ye1
= 0)

with the constraints that (A ̂E+e1+e2
y ≤ 1). Now, notice that any solution of the LP defined by E is

a solution to the LP defined by E + e2 (with ye2
= 0) and any solution of the LP defined by E + e1 is

a solution to the LP defined by E + e1 + e2. Hence the solution set of the maximization to obtained
d1 is a subset of the solution set of the maximization to obtain d2→12. But, max{f(x), x ∈ S} is an
increasing function of the solution set S. As a consequence, d1 ≤ d2→12, which gives the inequality in
(42).

Next, we discuss one nice property of the normalized tree-link (payoff) matrix introduced in sections 2.2.

Property 6 If the graph G = (V , E) is simple (does not contains parallel or loop links of ) and 2-vertex
connected, then each column Λ[:, e] of the payoff matrix contains all possible values of λ(T, e).

In other terms, the matrix Λ is balanced in the sense that there is not an entry that largely dominates (or
is dominated by) the other entries. Other way to state the lemma is that for each edge e ∈ E and for each
partition (N1, N2) of N (i.e. N1 + N2 = N), there exists a spanning tree T containing e such that removing
e disconnects T into 2 subtrees; one containing N1 nodes and the other N2 nodes. We denote that property
by T − {e} = TN1

∪ TN2
.

If the graph contains a bridge 9.a, then the column corresponding to the bridge contains only one value.
If the graph contains a cut vertex (as in figure 9.b), then there might exist edges that are not “balanced”.
In figure 9.b the dashed edge cannot separate any spanning tree into 2 subtrees with respectively 2 and 5
nodes. Figure 9.c is a simple graph that is not 2-vertex connected but on which the property holds.

Proof: We show the lemma by induction on the size of the graph (n, m) (number of vertices, number of
edges).
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Figure 9: Examples of simple graphs that are not 2-vertex connected.

The property is trivial for the simple and 2-vertex connected graph of size (2, 1) (the only not one value of
λ(T, e) is 0). Also, it can easily be checked for the simple and 2-vertex connected graph of size (3, 3). Again,

the only possible value of λ(T, e) is 1− f(1)+f(2)
f(3) and each column of Λ has 2 entries with this value and one

entry with a 0.
Now suppose that the property is satisfied for all graphs of size small than the size (n, m) of some arbitrary
graph G. Then let’s show that it must be satisfied for G.

First recall that if graph is 2-vertex connected, every edge is either contractable or deletable (one or the
other), i.e. if the edge is contracted (else/or deleted), then the resulting graph (after removing parallel and
loop links) is another 2-vertex connected graph.

Now consider an arbitrary edge e(u, v) of the graph G. We would like to show that for any pair (n1, n2)
such that n1 + n2 = n, there exist a spanning tree T containing f such that removing f separates T into
2 subtrees one with n1 nodes and the other with n2 nodes (i.e. T − {e} = Tn1

∪ Tn2
). Let f be a vertex

incident to e. If f is deletable, then we are done. We delete f and apply the induction hypothesis to the
new graph G′ = G−{f} of size (n, m− 1). Any spanning tree on that graph is a spanning tree in G. If f is
not deletable, then it must be contractable. For each pair (n1, n2), we will show the property by exhibiting
a spanning tree that e divides into subtrees of respectively n1 and n2 nodes, i.e. T − {e} = Tn1

∪ Tn2
. We

do so by contracting e (and removing all loops and parallel links). The contraction leads to a smaller graph
G′ of size (n − 1, m′), m′ < m, for which the induction hypothesis applies. Hence, there exists a spanning
tree T ′ of G′ containing e such that T ′ − {e} = T ′

1 ∪ T ′
n−2. Without loss of generality we let T ′

1 = {u}. Two
scenarios are possible.

• If f is incident to v (see figure 10.a) and 10.ab), then uncontracting f transform T ′
n−2 to another

subtree T ′
n−1 = T ′

n−2 + {f} that contains n − 1 nodes. Furthermore, T = T ′ + {f} is a spanning tree
of the original graph G and T − {e} = T ′ + {f} − {e} = T ′

1 ∪ T ′
n−1.

• If f is incident to u (see figure 10.c)), then f = (u, u′) for some node u′ that must have a neighbor
v′ among the nodes of T ′

n−2 (because the graph is 2-vertex connected). Let f ′ = (u′, v′). Then,
T = T ′+{f ′} is a spanning tree of the origin graph G and T−{e} = T ′+{f ′}−{e} = T ′

1∪
(
T ′

n−2 + {f ′}
)
.

For any other pair (n1, n2) > (1, 1) we can find a spanning tree T of G such T −{e} = Tn1
∪Tn2

as follow. By
the induction hypothesis, there exists a spanning tree T ′ of G′ such that T ′ −{e} = T ′

n1−1 ∪ T ′
n2

(see figures
11.a) and 11.b)). If f is incident to a node in T ′

n1−1 otherwise we can find T ′ such that T ′−{e} = T ′
n1
∪T ′

n2−1.
Uncontracting f gives a spanning tree T = T ′+{f} such that T −{e} = T ′+{f}−{e} =

(
T ′

n1−1 + {f}
)
∪T ′

n2

(if f is incident to a node in T ′
n1−1 otherwise T − {e} = T ′ + {f} − {e} = T ′

n1
∪
(
T ′

n2−1 + {f}
)
). This ends

the proof of the lemma.

B.2 Blocker of the payoff matrix

For any non negative vector v ∈ Rm
+ , we let χv be the entries of v that have positive value.

Conjecture
Vertices of the blocker of the payoff matrix are vectors ω such that χω is a MDS. Each such vertex is
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Figure 10: Illustrative figures for the proof of Lemma 6: building a spanning tree T such that T − {e} =
T1 ∪ Tn−1.
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Figure 11: Illustrative figures for the proof of Lemma 6: building a spanning tree T such that T − {e} =
Tn1

∪ Tn2
.
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obtained by solving an LP of the form

Minimize ωTy

subject to Λ bE
y ≥ 1 (45)

y ≥ 0,

where the weights ω depend on the value models.

C Algorithm to compute a critical subset

In this section we present the algorithm to compute a critical subset of a critical subset of a graph.
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D Proof of the NE theorem

In this section we provide a proof of the Nash equilibrium theorem presented in section ??.

D.1 “No Attack” Option

We start by showing that if θ ≤ 0 “No Attack” and α verifying (32) are best responses to each other.

D.1.1 Best Responses

First, notice that if the attacker chooses “No Attack”, then any α will result to the minimum loss of zero
for the defender (in particular the one given in the theorem). Now, assume that α satisfies (32). Then, “No
Attack” is a dominant strategy for the attacker. In fact, the expected attack reward is

R(α, β) =
∑

e∈E

β(e)
(
λ̄α(e) − µ(e)

)
, (46)

which is less than zero if λ̄α(e) − µ(e) ≤ 0, ∀ e ∈ E , and for any β. On the other hand, zero reward can
always be achieved by playing e∅. As a consequence, not attacking is a best response to α satisfying (32).

D.1.2 Existence of the Equilibrium Distribution

Now, we need to prove the existence of a distribution α that satisfies (32) whenever θ ≤ 0. To summarize,
we are looking for α verifying:

α :






α ≥ 0
1′
T α = 1

λ′α ≤ µ,
(47)

We first show the following lemma.

Lemma 4
θ ≤ 0 ⇒ µ ∈ Pλ. (48)

Proof: For this we show that if θ ≤ 0, then µ′ω ≥ 1, for any vertex ω of bl(Pλ). As a result of this, µ

belongs to the blocker of bl(Pλ) which is Pλ.

If θ ≤ 0, then we have that, for all ω ∈ Ω,

∑

e∈E

ω(e)

ω(E)
µ(e) ≥ min

T∈T

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

)
. (49)

Or, equivalently

µ′ω ≥ min
T∈T

(
∑

e∈E

ω(e)λ(T, e)

)
, for all ω ∈ Ω. (50)

Now, since ω ∈ bl(Pλ) we have that ∑

e∈E

ω(e)λ(T, e) ≥ 1, (51)

which implies that µ · ω ≥ 1, ∀ ω ∈ Ω, or equivalently µ ∈ Pλ.
Using Lemmas 1 and 4, we conclude that the value of the following LP is greater than 1.

Maximize 1T x

subject to λ
′x ≤ µ, and x ≥ 0 (52)
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Construct α satisfying (32) by normalizing any solution of this LP.

D.2 The “Always Attack” option

As in the previous section, we will first argue that the strategies given in the theorem are best responses to
each other, then we show the existence of a distribution (αT , T ∈ T ) that satisfies (34). We start by the
following lemma.

Lemma 5 If θ > 0, then “No Attack” is a strictly dominated strategy for the attacker.

Note that if θ ≥ 0, all the steps of the proof still hold. However, “No Attack” will only be weakly dominated,
and as seen in the previous case, there will exist equilibrium for which the attacker will opt to not launch
an attack. In other words, if θ = 0 there exist equilibria for which βe∅

= 1, as well as equilibria for which
βe∅

= 0.

Proof: Suppose that ω ∈ Ωmax is a critical vertex of bl(Pλ) and let β = ( ω(e)
ω(E) , e ∈ E). We will show that

the attacker can achieve positive reward by playing β (independently of α). To see this, first notice that
since θ(ω) = θ > 0 for all ω ∈ Ωmax, we have that

λ(ω) = min
T∈T

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

)
>
∑

e∈E

ω(e)

ω(E)
µ(e) =

µ′ω

ω(E)
(53)

Playing the strategy β, the attacker’s expected reward against any defense strategy α is given by

R(α, β) =
∑

e∈E

ω(e)

ω(E)

(
∑

T∈T

αT λ(T, e) − µ(e)

)

=
∑

T∈T

αT

(
∑

e∈E

ω(e)

ω(E)
λ(T, e) −

∑

e∈E

ω(e)

ω(E)
µ(e)

)
(54)

≥
∑

T∈T

αT

(
λ(ω) −

∑

e∈E

ω(e)

ω(E)
µ(e)

)
(55)

=
∑

T∈T

αT

(
λ(ω) −

µ′ω

ω(E)

)
(56)

= λ(ω) −
µ′ω

ω(E)
(57)

> 0, (58)

where in (55) we use the definition of λ(ω); (58) is implied by (53).

As a consequence of this lemma, we conclude that if θ > 0, then the attacker will never play the “No Attack”
(i.e. e∅) strategy.

D.2.1 Best Responses

Given the set of critical vertices Ωmax and α satisfying (34), any distribution β of the form β(e) =∑
ω∈Ωmax

γω
ω(e)
ω(E) for some distribution γ = (γω , ω ∈ Ωmax), achieves a reward of θ. This is the maximum

possible reward that the attacker can get. To see this, observe that for any β,

R(α, β) =
∑

e∈E

β(e)
(
λ̄α(e) − µ(e)

)
≤
∑

e∈E

β(e)θ ≤ θ. (59)
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The upper bound of θ is achieved by any β̃ = ( ω(e)
ω(E) , e ∈ E) and ω ∈ Ωmax, because for any such β̃,

R(α, β̃) =
∑

e∈E

ω(e)

ω(E)

(
∑

T∈T

αT λ(T, e) − µ(e)

)
(60)

=
∑

T∈T

αT

(
∑

e∈E

ω(e)

ω(E)
λ(T, e) −

∑

e∈E

ω(e)

ω(E)
µ(e)

)
(61)

≥
∑

T∈T

αT

(
λ(ω) −

∑

e∈E

ω(e)

ω(E)
µ(e)

)
(62)

=
∑

T∈T

αT θ (63)

= θ, (64)

where (62) uses the definition of λ(ω), and in (63) we use the fact that ω ∈ Ωmax.

As a consequence, any distribution of the form ( ω(e)
ω(E) , e ∈ E) for ω ∈ Ωmax is a best response and any convex

combination of those distributions is also a best response.

Now assume that β is given as in (33) for some distribution (γω , ω ∈ Ωmax). Then, the distribution
(αT , T ∈ T ) in (34) achieves a loss of r(γ) =

∑
ω∈Ωmax

γωλ(ω). This is the minimum possible loss. To see
this, note that, for any α, the expected loss seen by the defender is given by

L(α, β) =
∑

T∈T

αT

(
∑

e∈E

β(e)λ(T, e)

)
(65)

=
∑

T∈T

αT

(
∑

e∈E

(
∑

ω∈Ωmax

γω
ω(e)

ω(E)

)
λ(T, e)

)
(66)

=
∑

T∈T

αT

(
∑

ω∈Ωmax

γω

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
(67)

≥
∑

T∈T

αT

(
∑

ω∈Ωmax

γωλ(ω)

)
(68)

=
∑

T∈T

αT r(γ) (69)

= r(γ). (70)

The lower bound r(γ) can be achieved by choosing α such that
∑

T∈T αT λ(T, e) = θ + µ(e) for each e ∈ E
such that β(e) > 0 (the existence of such α is shown in the second part of the theorem). This can be seen
by rewriting L(α, β) as

L(α, β) =
∑

e∈E

β(e)

(
∑

T∈T

αT λ(T, e)

)
(71)

=
∑

e∈E

β(e) (θ + µ(e)) (72)

= θ + β′µ = r(γ). (73)
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The last equality above is justified by

θ + β′µ = θ +
∑

ω∈Ωmax

γω

(
1

ω(E)
ω′µ

)
− r(γ) + r(γ) (74)

= θ +
∑

ω∈Ωmax

γω

(
1

ω(E)
ω′µ − λ(ω)

)
+ r(γ) (75)

= θ +
∑

ω∈Ωmax

γω (−θ) + r(γ) (76)

= θ − θ + r(γ) (77)

= r(γ), (78)

where in (74) and (75) we use the definitions of β and r(γ) respectively and write the summation over E as
a product of a row vector and a column vector. In 75 we have also used the definition of θ(ω) for a critical
vertex ω ∈ Ωmax.

From this analysis, we see that for the set Ωmax of critical vertices, the distributions given in the theorem
are best responses to each other, as a consequence, they form a Nash equilibria under the assumption that
α exists. Such existence is shown in the next section.

D.2.2 Existence of the Equilibrium Distribution

We claim that for any (β(e), e ∈ E) of the form in the statement (33) of Theorem 3, we can find an associated
(αT , T ∈ T ) of the form (34).

Theorem 4 Assume that θ ≥ 0 and let Ωmax be the set of critical vertices. Let x∗ be the solution of the
following LP:

Maximize 1′
T x

subject to A′x ≤ b, x ≥ 0. (79)

where b = θ(E)1E + µ. Then,

a) 1′
T x∗ ≤ 1;

b) 1′
T x∗ ≥ 1;

c) A′x∗(e) = b(e), ∀e ∈ E for which β(e) > 0.

As a consequence, x∗ satisfies (34) and implies the existence of α.
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Proof: a) To prove that 1′
T x∗ ≤ 1, we first observe that

β′λ′x =
∑

T∈T

xT

(
∑

e∈E

β(e)λ(T, e)

)
(80)

=
∑

T∈T

xT

(
∑

e∈E

(
∑

ω∈Ωmax

γω
ω(e)

ω(E)

)
λ(T, e)

)
(81)

=
∑

T∈T

xT

(
∑

ω∈Ωmax

γω

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
(82)

≥
∑

T∈T

xT

(
∑

ω∈Ωmax

γωλ(ω)

)
(83)

=
∑

T∈T

xT r(γ) (84)

= r(γ)1′
T x (85)

On the other hand, from the constraints λ′x ≤ b = θ1E + µ and from (78), we have that

β′λ′x ≤ β′ (θ1E + µ) = θ + β′µ = r(γ) (86)

Combining (85) and (78) it follows that,

r(γ)1′
T x ≤ β′λ′x ≤ r(γ) (87)

Thus 1′
T x ≤ 1 for all feasible x, i.e. the value of the program is at most 1.

b) To prove that 1T
T x∗ ≥ 1, we use Lemma 1 above to claim that it suffices to verify that the vector b

belongs to the polyhedron Pλ. For that, we will show that b′ω ≥ 1 for all ω ∈ Ω. In fact∗,

ω′b = θω′1E + ω′µ (88)

= ω(E)

(
θ +

1

ω(E)
ω′µ

)
(89)

≥ ω(E)

(
λ(ω) −

1

ω(E)
ω′µ +

1

ω(E)
ω′µ

)
(90)

= ω(E)λ(ω) (91)

= ω(E) min
T∈T

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

)
(92)

= min
T∈T

(
∑

e∈E

ω(e)λ(T, e)

)
(93)

≥ 1 (94)

where (94) follows from the fact that ω ∈ bl(Pλ). Indeed, if ω ∈ bl(Pλ), then by definition of the blocker
polyhedron,

∑
e∈E ω(e)λ(T, e) ≥ 1 for all T ∈ T . Thus, we have that Ωb ≥ 1, which implies that b belongs

to the blocker of bl(Pλ) which is equal to Pλ.

∗Again we use vector product for summation.

40



Now, using Lemma 1, we conclude that the value of the LP is greater than 1.
This, together with the previous part a) imply that the value of the LP is equal to 1; hence, any solution x∗

is a probability distribution on T .

c) We first observe from (85) and (78) that

β′λ′x∗ = r(γ)1T x∗ = r(γ). (95)

Also, λ′x∗ ≤ θ1E + µ by the constraints of the primal LP above.
Now, assume that λ′x∗(e) < θ + µ(e) for some e ∈ E with β(e) > 0. Then,

β′λ′x∗ =
∑

e∈E

β(e)λ′x∗(e) (96)

<
∑

e∈E

β(e)(θ + µ(e)) (97)

= θ +
∑

e∈E

β(e)µ(e) (98)

= r(γ), (99)

where the last equality is obtained by using the same arguments as in (74)-(78). This contradicts observation
(95). As a consequence, λ′x∗(e) = θ + µ(e) for all e ∈ E with β(e) > 0.

This ends the proof of the theorem and establishes the existence of an α satisfying (34) for any β defined as
in (33).

D.3 Enumerating all Nash Equilibria

In this section, we consider the zero-sum game where µ = 0. In this case, since there is no cost of attack
θ > 0. We will show that for any strategy pair (αT , T ∈ T ) and (β(e), e ∈ E) that are in Nash equilibrium,
it must be the case that (β(e), e ∈ E) is given by

β(e) =
∑

ω∈Ωmax

γω
ω(e)

ω(E)
, (100)

for some probability distribution (γω , ω ∈ Ωmax).
As a consequence of this, we will conclude that α must be in the form given in the Nash equilibrium theorem.

First, notice that since µ = 0, we have that λ(ω) = θ(ω) (see the definitions in (30) and (27)).
Next, we use the zero-sum structure of the game to observe that it has a well-defined value, which, by the
second part of Theorem 3, is equal to,

θ = max
ω∈Ω

(λ(ω)) = max
ω∈Ω

(
min
T∈T

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
. (101)

Thus, we must have that, for any Nash equilibrium pair (α, β),

θ =
∑

T∈T

∑

e∈E

αT β(e)λ(T, e) =
∑

T∈T

αT

(
∑

e∈E

β(e)λ(T, e)

)
> 0. (102)

From the above equation we can argue that there exists a scaling factor κ̃ > 0 such that (κ̃β(e), e ∈ E)
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belongs to the blocker bl(Pλ), or equivalently,

∑

e∈E

κ̃β(e)λ(T, e) ≥ 1, for all T ∈ T . (103)

In fact, by letting αmax be the maximum αT , and defining κ̃ = Nαmax

θ
, then (κ̃β(e), e ∈ E) verifies (103).

We let κ denote the smallest such scaling that works among all scalings κ̃ > 0.

Also, observe that since κ is the smallest nonnegative scaling of (β(e), e ∈ E) such that (κβ(e), e ∈ E) belongs
to bl(Pλ), there must exist some To ∈ T for which

∑
e∈E κβ(e)λTo,e = 1.

Indeed this is the case because since κβ ∈ bl(Pλ), we have that
∑

e∈E κβ(e)λ(T, e) ≥ 1 for all T ∈ T .
If this inequality were strict for all T ∈ T , then considering the strategy Tmin that minimizes the sum∑

e∈E κβ(e)λ(T, e) over all T , we can construct

κ̃ =
κ∑

e∈E β(e)λTmin,e

. (104)

κ̃ verifies κ̃ < κ and κ̃β ∈ bl(Pλ). This contradicts the assumption that κ was the smallest such κ̃.

Now, we claim that:

Lemma 6 If (αT , T ∈ T ) and (β(e), e ∈ E) form a NE of the game, then we can write

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
, (105)

for some probability distribution (γω , ω ∈ Ω).

We delay the proof of this lemma for later.

Using this expression of κβ, we can write the value of the game θ as:

θ =
1

κ

∑

T∈T

αT

(
∑

e∈E

κβ(e)λ(T, e)

)
(106)

=
1

κ

∑

T∈T

αT

(
∑

e∈E

(
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)

)
λ(T, e)

)
(107)

=
1

κ

∑

T∈T

αT

(
∑

ω∈Ω

γω

(
1

λ(ω)

∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
(108)

≥
1

κ

∑

T∈T

αT

(
∑

ω∈Ω

γω

)
(109)

=
1

κ
, (110)

where in (109) we use the fact that λ(ω) ≤
∑

e∈E
ω(e)
ω(E)λ(T, e) for all T ∈ T .

Now, since (α, β) is a Nash equilibrium pair, the expression
∑

e∈E β(e)λ(T, e) is minimal for each T ∈ T for
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which αT > 0. Furthermore, this minimum value is equal to θ. From this, we get that,

θ = min
T∈T

(
∑

e∈E

β(e)λ(T, e)

)
(111)

=
1

κ
min
T∈T

(
∑

e∈E

κβ(e)λ(T, e)

)
(112)

≤
1

κ
, (113)

where in (113) we use the fact that the minimum in (112) is less than
∑

e∈E κβ(e)λTo,e, which, by definition,
is equal to 1. Thus, θ = 1

κ
.

This, combined with (105) that we sum over e ∈ E , imply:

1

θ
= κ =

∑

e∈E

κβ(e) (114)

=
∑

e∈E

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
(115)

=
∑

ω∈Ω

γω
1

ω(E)λ(ω)

∑

e∈E

ω(e) (116)

=
∑

ω∈Ω

γω
1

λ(ω)
. (117)

Now, recalling (101) that θ = maxω∈Ω (λ(ω)), we conclude that γω can be nonzero only for ω ∈ Ω that
satisfies λ(ω) = maxω̃∈Ω (λ(ω̃)). In other terms, γω > 0 only for ω ∈ Ωmax.
Hence, we can write

β(e) =
∑

ω∈Ωmax

γω
ω(e)

ω(E)
. (118)

The last thing that remains to be shown to complete the proof of the theorem is that if (αT , T ∈ T ) and
(β(e), e ∈ E) are in Nash equilibrium and (β(e), e ∈ E) is of the form (33) in the statement Theorem 3, then
(αT , T ∈ T ) must also be of the form in the statement (34) of the theorem. We have already shown that for
(β(e), e ∈ E) of the form (33), we must have for every strategy (α̃T , T ∈ T )

∑

T∈T

α̃T

∑

e∈E

β(e)λ(T, e) =
∑

T∈T

α̃T

(
∑

e∈E

(
∑

ω∈Ωmax

γω
ω(e)

ω(E)
λ(T, e)

))
(119)

=
∑

T∈T

α̃T

(
∑

ω∈Ωmax

γω

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
(120)

≥
∑

T∈T

α̃T

(
∑

ω∈Ωmax

γωθ

)
(121)

= θ, (122)

where (121) follows from (101). The minimum value of θ can be achieved by choosing α such that
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∑
T∈T αT λ(T, e) = θ whenever β(e) > 0. To see that, rewrite the summation as

∑

T∈T

α̃T

∑

e∈E

β(e)λ(T, e) =
∑

e∈E

β(e)

(
∑

T∈T

α̃T λ(T, e)

)
, (123)

and observe the claim.

The existence of such α has been shown in the previous section. It also has been shown that such α is
a best response to (β(e), e ∈ E). For β to be a best response to α (hence, the (α, β) pair to be in Nash
equilibrium), α must also satisfy ∑

T∈T

αT λ(T, e) ≤ θ for all e ∈ E . (124)

Suppose, on the contrary, that this is not the case (i.e. there is some e ∈ E for which
∑

T∈T αT λ(T, e) > θ).
Then the attacker will prefer to switch to playing strategy e with probability 1 and receive higher reward.
This violates the assumption that (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium. Thus, α satisfies
(124). This completes the proof of the theorem, provided that the claim in Lemma 6 can be justified. We
give a proof of the lemma in the next section.

D.3.1 Proof of Lemma 6

The claim is that if (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium, and if κ > 0 denotes the smallest
κ̃ > 0 for which (κ̃β(e), e ∈ E) ∈ bl(Pλ), then we must have

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
, (125)

for some probability distribution (γω , ω ∈ Ω).

Indeed, this needs a proof, because a priori we only know that we can write

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
+ v(e), (126)

for some probability distribution (γω , ω ∈ Ω) and some (v(e), e ∈ E) such that v(e) ≥ 0 for all e ∈ E .

We now provide the proof that works as follow. We consider the expression of this form for (κβ(e), e ∈ E)
for which v(E) :=

∑
e∈E v(e) is as small as possible. We will assume that v(E) > 0 for this expression, and

arrive at a contradiction.
Note that we must have v(E) < κ for this expression, i.e. there has to be a nontrivial “convex hull part”.
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First observe that for all T ∈ T , we have

∑

e∈E

β(e)λ(T, e) =
1

κ

∑

e∈E

κβ(e)λ(T, e) (127)

=
1

κ

∑

e∈E

(
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
+ v(e)

)
λ(T, e) (128)

=
1

κ

∑

ω∈Ω

γω

(
1

λ(ω)

∑

e∈E

ω(e)

ω(E)
λ(T, e)

)
+

1

κ

∑

e∈E

v(e)λ(T, e) (129)

≥
1

κ

∑

ω∈Ω

γω +
1

κ
vλ(T ) (130)

=
1

κ
+

vλ(T )

κ
, (131)

where in (130) we use the definition of λ(ω), and define vλ(T ) :=
∑

e∈E v(e)λ(T, e). As a consequence, we
have that

min
T∈T

(
∑

e∈E

β(e)λ(T, e)

)
≥

1

κ
+ min

T∈T

(
vλ(T )

κ

)
(132)

Next, observe that since (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium, it must be the case that∑
e∈E β(e)λ(T, e) is the same for every T ∈ T such that αT > 0. Also, by the same reasoning as in (113),

we have that for all such T
∑

e∈E

β(e)λ(T, e) = min
T̃∈T

(
∑

e∈E

β(e)λT̃ ,e

)
≤

1

κ
. (133)

This, combined with (124), implies that minT∈T

(∑
e∈E β(e)λ(T, e)

)
= 1

κ
and that vλ(T ) = 0 for all T ∈ T

such that αT > 0.

Now, let

β̃(e) :=
1

κ − v(E)

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
. (134)

This quantity satisfies
∑

(e)β̃(e) = 1 and β̃(e) ≥ 0 for all e ∈ E . Thus, (β̃(e), e ∈ E) is a probability
distribution on E , and can be used as a strategy by the attacker. This can be verified by summing both sides
of (126) over e ∈ E to get,

κ =
∑

e∈E

κβ(e) =
∑

e∈E

(
∑

ω∈B

γω
ω(e)

ω(E)λ(ω)
+ v(e)

)
(135)

=
∑

e∈E

(
∑

ω∈B

γω
ω(e)

ω(E)λ(ω)

)
+ v(E) (136)

= (κ − v(E))
∑

e∈E

β̃(e) + v(E). (137)

This last equation implies that
∑

e∈E

β̃(e) =
κ − v(E)

κ − v(E)
= 1. (138)
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For this strategy (β̃), in response to (αT , T ∈ T ), the attack reward is at least 1
κ−v(E) . In fact,

∑

T∈T

αT

∑

e∈E

β̃(e)λ(T, e) =
∑

T∈T

αT

(
∑

e∈E

(
1

κ − v(E)

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)

)
λ(T, e)

)
(139)

=
1

κ − v(E)

∑

T∈T

αT

(
∑

ω∈Ω

γω
1

λ(ω)

(
∑

e∈E

ω(e)

ω(E)
λ(T, e)

))
(140)

≥
1

κ − v(E)

∑

T∈T

αT

∑

ω∈Ω

γω (141)

=
1

κ − v(E)
. (142)

However, because of the fact that v(T ) = 0 for all T ∈ T for which αT > 0, the benefit obtained by the
attacker by playing the NE strategy (β(e), e ∈ E) is only 1

κ
, which is strictly smaller than 1

κ−v(E) under the

standing assumption that v(E) > 0. As a consequence, if v(E) > 0, the attacker can be better off by changing
her strategy to β̃. But this contradicts the assumption that (α, β) form a NE. Thus, v(E) = 0 implying that
v(e) = 0 for all e ∈ E as we wanted to show.
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