
 

 

Residual Layer Thickness Control and Metrology in Jet and Flash 
Imprint Lithography 

 
Shrawan Singhala, Ravikiran Attotab, S.V. Sreenivasana1 

aDepartment of Mechanical Engineering, The University of Texas at Austin, 1 University Station 
C2200, Austin, TX 78712; 

bNanoscale Metrology Group, Semiconductor and Dimensional Metrology Division, National 
Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899-8212 

 
ABSTRACT 

 

Jet-and-Flash Imprint Lithography (J-FIL) has demonstrated capability of high-resolution patterning at low costs. 
For accurate pattern transfer using J-FIL, it is necessary to have control of the residual layer thickness (RLT) of 
cured resist underneath features. Variation in RLT leads to critical dimension variation, thereby degrading device 
performance. Substrate nanotopography and feature density variation are two unavoidable sources of variation in 
RLT uniformity. The first part of this paper demonstrates the effect of these parameters on RLT variation. Through 
experiments and modeling, it has been observed that flatter wafers with lower nanotopography and thinner RLT lead 
to better RLT uniformity. However, for studying RLT variation, accurate metrology is critical. Currently, all 
metrology is done using destructive cross-section scanning electron microscopy (SEM), which may not be sufficient 
for process control. To this end, nondestructive optics-based methods, including the Through-focus Scanning 
Optical Microscopy (TSOM) method have been explored in this paper. Simulations reveal the potential to measure 
mean RLT, RLT variation, and uncertainty in feature dimension to an accuracy of 1 nm. Experimental validation 
and calibration are works in progress. Subsequent development of this technique can lead to a viable in-line 
metrology solution for RLT underneath features. 

1. INTRODUCTION 
 

Imprint lithography (IL) has demonstrated sub-10 nm 
resolution at low cost. Jet and Flash Imprint 
Lithography or J-FIL is a variant of IL (also known as 
Step-and-Flash Imprint Lithography, S-FIL)[1-2]. It 
uses low pressure at room temperature and UV exposure 
to cure  a low viscosity material that is dispensed using 
ink-jets as discrete drops of pico-liter volume. These 
drops fill in the mask features when the gap between the 
substrate and the mask is closed. After resist 
solidification, the mask is separated leaving the imprint 
material on the substrate. The low viscosity fluid leads 
to rapid fluid filling in the absence of a high 
compressive pressure, which results in lower machine 
complexity and high throughput. A process flow of the 
established technique has been illustrated in Figure 1. 

Figure 1. Schematic of Jet and Flash Imprint Lithography (J-FIL) 

Control over the resist residual layer thickness (RLT) underneath the patterned features is absolutely critical for the 
J-FIL process. It directly influences the transfer of the pattern into the substrate through subsequent processing steps 
such as descum etching. Any spatial variation in the RLT is reflected in the transferred pattern by way of variation in 
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the critical dimension, which is detrimental to the performance of the manufactured device. Hence, understanding 
how RLT varies is extremely important for designing a process control framework. At the same time, it is also 
imperative to have robust non-destructive metrology for the RLT underneath features, which can complement 
process control for high throughput manufacturing.  

One unavoidable source of variation in RLT is the non-planarity of the substrate. If the substrate-fluid-template 
sandwich is allowed to evolve or spread for a sufficiently long time prior to the UV exposure, the topography can 
lead to mm-scale variations in RLT. This variation can be qualitatively observed visually as changes in color. This 
observation has motivated a more detailed investigation into potential RLT non-uniformity and its mitigation, 
stemming from the coupling of substrate topography with the process time scale. Another source of RLT non-
uniformity is variations in feature density across the patterned area. This variation is more subtle and requires the 
use of quantitative metrology, for which cross-section SEM has been the workhorse. Given the limitations of cross-
section SEM in a high-throughput manufacturing environment, calibration and validation of a new optics-based 
method has been sought to bring out the within-wafer and across-wafer variations in RLT. However, prior to 
detailing the experiments and results, it is instructive to understand the nature of substrate topography and pattern 
density variations as applicable for this study. The influence of substrate topography on the J-FIL process has also 
been briefly stated with the help of a basic model of thin film flow between two elastic plates.  

1.1 Substrate Topography 

Deviations of any surface from ideal planarity is usually classified into three categories: (i) micro-roughness of 
spatial wavelength less than 0.1 mm and amplitude variation ≈10 nm, (ii) nanotopography [3] of spatial wavelength 
0.1 mm to 20 mm and amplitude ≈100 nm to1um, and (iii) nominal shape of spatial wavelength greater than 20 mm. 
For semiconductor-process substrates, micro-roughness is usually minimal and well-mitigated by standard polishing 
processes like chemical mechanical polishing (CMP). Nominal shape, on the other hand, is well defined by the 
substrate geometry. However, nanotopography can remain a conspicuous artifact, even after multiple polishing 
steps. Current acceptable photolithography standards demand site flatness of less than 40 nm. This requires 
expensive polishing for substrates like Si. However, III-V substrates like GaAs wafers that are frequently used in the 
fabrication of optical devices like high-brightness LEDs are susceptible to the formation of columnar epitaxial 
defects. Moreover, because of their softer surface compared to Si, these substrates also cannot tolerate many 
polishing steps. Hence, they tend to exhibit significant nanotopography variation, beyond current acceptable 
photolithography standards of sub-40 nm site flatness, which makes using such processes extremely challenging. To 
this end, the influence of this topography variation on RLT has been studied using 50 mm diameter GaAs wafers. 
For comparison, 200 mm diameter Si wafers were also used as substrates for imprinting the same pattern. These 
wafers typically have much lower nanotopography compared to 50 mm GaAs as per vendor specifications. 

 

Figure 2. Illustration of topography of a surface depicting the classification of pre-patterning topographical features based on 
their spatial wavelength and amplitude. 

h = 0.1 μm to 1 μm, L = 0.2 mm to 20 mm 

Roughness, h = 1 nm to 10 nm, L<<0.1 nm (≈ 10 μm) 

Nominal shape, h = 0 mm to 10 mm, L > 20 mm
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Figure 11. Method to construct TSOM images from a conventional optical microscope. 

3.1 Metrology method (TSOM)  

Instead of relying on a single best focus image, which is usually the norm in standard optical microscopy, TSOM 
relies on a number of through-focus images of the desired pattern, as given in Figure 11. The intensity profiles of 
these images give a unique signature that can be used to determine the nature of the pattern measured. With 
appropriate calibration, this method can be used to measure parameters in absolute values, such as the feature 
dimension. In addition, it can also be used for differential analyses; i.e., measuring the difference in one or more 
feature parameters. TSOM images of different samples can be compared for differential analysis as they give a 
unique signal which scales linearly with the magnitude of difference. This could be a useful technique for defect 
analysis also. So far, this technique has been validated for features on Si wafers, but has not been used for measuring 
RLT,; i.e., thickness of a polymeric film present underneath imprinted features, but above the Si substrate. This 
latter case is fundamentally different from the former case as the TSOM measurements for RLT require the optical 
signal to penetrate into the film beneath the features, which is not the same with features on Si wafers.. Calibration 
of this method is preceded by a full-fledged optical simulation with parameters across the full process window to 
understand the usefulness of the library approach method. Subsequent to this exercise, experimental validation can 
be conducted for absolute and differential TSOM. Modeling and simulation work are discussed in the next section. 
While experiments are underway, calibration and validation have not been completed yet. 

3.2 Modeling and simulation 

A spectrum of optical simulations of TSOM has been conducted for cases with varying mean RLT, as typically seen 
for J-FIL. This includes changes in feature dimensions for the template pattern shown in Figure 5 with pattern 
density variation. These simulations reveal usefulness of the differential TSOM method to identify changes in the 
RLT using intensity variations. This fact can be utilized to generate a calibration curve against which all RLT 
measurements may be compared to determine process performance. Moreover, the method is potentially useful for 
defect measurements, as it can also detect changes in feature dimensions, the signal for which can be decoupled 
from that of any difference in RLT. The parameter decoupling is one of the important characteristics of the TSOM 
method [8], and we expect similar behavior in the current application also. The optical simulation results with RLT 
parameters are shown in Figure 12.  

Figure 12. TSOM simulation results. (Top Left): RLT = 20 nm, (Top Middle): RLT = 30 nm, (Top Right): RLT = 40 nm, 
(Bottom Left): Differential TSOM image with 2 nm RLT difference, (Bottom Middle): Calibration curve for differential TSOM 
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image intensity against RLT difference showing linear trend, (Bottom Right): Differential TSOM image of 20 nm feature 
dimension difference decoupled from RLT difference. 

 

4. CONCLUSIONS 
 

Control over the RLT mean and variation is desirable for successful pattern transfer using J-FIL. Substrate and/or 
template nanotopography can cause undesired variation in the RLT, as predicted by a basic thin film fluid-structure 
model. This variation can be minimized by keeping the process time scale low by reducing the mean RLT. This has 
been demonstrated using a combinatorial set of experiments on two different substrates (50 mm GaAs and 200 mm 
Si) with two different target RLTs (15 nm and 50 nm). 

Accurate metrology of RLT under features is imperative for control of RLT uniformity especially when feature 
density varies in the same imprinted field. Currently, this is done using destructive cross-section SEM, which is not 
a viable solution for generating spatial maps of RLT variation or for measuring wafer-wafer variation. To this end, a 
robust optics-based solution in the form of the TSOM method has been sought. Simulations indicate good potential 
accuracy of within 1 nm for measuring RLT mean, variation, and changes in feature dimension. Further calibration 
is underway to make the process more amenable for integration in the J-FIL process control framework.  
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