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ABSTRACT

Block copolymers offer an appealing alternative to current lithographic techniques with regard to fabrication of the next generation micro-

processors. However, if copolymers are to be useful on an industrial manufacturing scale, they must meet or exceed lithography specifications

for placement and line edge roughness (LER) of resist features. Here we discuss a field theoretic approach to modeling the LER of lamellar

microdomain interfaces in a strongly segregated block copolymer system; specifically, we derive a formula for the LER as a functions of the

Flory Huggins parameter χ and the index of polymerization N . Our model is based on the Leibler-Ohta-Kawasaki energy functional. We

consider a system with a finite number of phase separated microdomains and also show how the LER depends on distance of the microdomain

interface from the system boundary. Our results suggest that in order to meet target LER goals at the 15 nm, 11 nm, and 6 nm nodes, χ

must be increased by a factor of at least 5 above currently attainable values.

1. INTRODUCTION

Self-assembling block copolymers have received considerable attention in recent years in the hope that they can
augment state-of-the-art lithographic techniques as semiconductor features approach the 15 nm, 11 nm, and 6
nm nodes.1–4 In particular, template directed self assembly (TDSA) – the spontaneous formation of polymer
micro-domains between lithographically etched boundaries – is being studied as a way to decrease the domain
spacing of semiconductor features without increasing the resolution of current lithography tools.5–8 A critical
task in assessing the usefulness of block-copolymers is therefore to characterize the fundamental limitations on
the roughness of the patterns that polymers form. If the roughness cannot be controlled sufficiently well, devices
fabricated using TDSA will have high soft-defect densities, precluding the use of block copolymers in many
semiconductor manufacturing settings.

Our goal in this paper is to analytically predict the line edge roughness (LER) of block copolymer microdomain
interfaces as a function of the Flory-Huggins parameter χ and the index of polymerization N ; in the present
analysis, we focus on lamellar systems in the strong segregation regime (SSR). Similar tasks have been pursued
by, e.g. Semenov,9 Detcheverry and de Pablo,10–12 and Bosse;13,14 however, to the best of our knowledge, these
treatments either (i) relied heavily on numerical methods and computer simulations (which we do not use here),
or (ii) considered geometries and physical parameters corresponding to systems in a weak segregation regime.
With this work, we aim to supply formulas that predict what values of χ and N are needed to bring the LER
within acceptable levels for systems that are of direct interest to the semiconductor industry.

The starting point of our analysis will be the phase field model originally developed by Leibler, Ohta, and
Kawasaki (LOK),15,16 which gives the energyH[φ] of a polymer melt as a functional of the relative density φ of the
monomer species. In their original work,16 Ohta and Kawasaki determined that the lowest-energy configuration
(for equal molecular weights of the two monomer components) was indeed a lamellar phase-separated system
(but with zero LER). Our main task will be to determine the fluctuation eigenmodes of the system about that
mean-field configuration. We then construct the total LER as a weighted sum of the LERs associated with each
eigenmode, where P [ψ] is the weighting function given by the Maxwell-Boltzmann distribution,

P [ψ] ∝ e−H[ψ]/kBT , (1)

and ψ is a fluctuation eigenmode.

Our choice of model is driven in large part by consideration of the features that we wish to describe. On a mi-
croscopic scale, individual polymers exhibit complicated geometries and foldings, which are adequately described
by Gaussian chain models, molecular dynamics, and Monte Carlo simulations. However, for polymer melts whose



domains span tens of nanometers, the computational expense of using such models becomes insurmountable, ow-
ing simply to the number of particles that must be taken into account. Moreover, at such length scales, one
typically wishes to study mesoscopic features (such as the LER) of the melt as a whole, as opposed to the struc-
ture of individual molecules. Phase field models therefore enter as computationally tractable alternatives that (i)
permit study of quantities relevant at the nanometer length scale, while (ii) coarse-graining microscopic features
that otherwise render computation difficult. In our present analysis, we use the LOK phase field model, since re-
cent studies suggest that it could be well suited to describe fluctuations in technologically relevant systems.13,14

We note, however, that while this model is amenable to analytic computation, it is nonetheless complicated
enough that we do not find exact expressions for the LER; rather, we arrive at our final results by means of
perturbation theory and a series of asymptotic approximations that become increasingly accurate as χ and/or
N increase, i.e. as the system parameters move further into the SSR.

The rest of the paper is organized as follows. In Section 2 we review the basic principles of the LOK model and
derive the energy functional describing fluctuations. In Section 3 we use perturbation theory to approximately
diagonalize the energy functional. In Section 4 we define and calculate the LER. In Section 5 we discuss our main
results in the context of the requirements set forth by the International Technology Roadmap for Semiconductors,
and Section 6 we briefly summarize our work.

We end this section by summarizing notation that will be used throughout the remainder of the text:

i) a is the Kuhn statistical length, which measures the average distance between two adjacent monomers.
This length is considered small relative to the system size.

ii) χ denotes the dimensionless Flory-Huggins parameter, which characterizes the repulsion between different
monomer species.

iii) N denotes the index of polymerization, the number of monomers in a single chain.

iv) f is the (normalized) molecular weight of A monomers; (1− f) is the molecular weight of B monomers.

v) φ(x) = φA(x)− φB(x) denotes the relative density of A monomers [φA(x)] and B monomers [φB(x)]. We
choose the normalization 0 ≤ φA(x), φA(x) ≤ 1 and impose the incompressibility condition φA(x) + φB(x) = 1,
so that −1 ≤ φ ≤ 1.

v) Ω is the physical domain of the polymer melt, whose volume will be denoted |Ω|. The symbol V will denote
a unit volume.

vi) Informally, the expression g = O(δ) means that g is roughly the same size as δ.∗

vii) Unless otherwise noted, italicized variables will represent quantities having dimensions, whereas non-
italicized versions of the same variables will be dimensionless. For example, if x represents a length in some units
(e.g. nm), the variable x will be a rescaled, dimensionless version of x. The scaling of non-italicized variables
will always be defined at their first appearance.

2. PHYSICAL SYSTEM: GEOMETRY, KEY PARAMETERS, AND ANALYTIC
DESCRIPTION OF FLUCTUATIONS

The system we wish to describe is a lamellar, diblock copolymer melt in the SSR (cf. Fig. 1). For simplicity, we
take the molecular weights of the A and B subchains to be equal (i.e. f = 1/2) and denote ` as the mean-field
width of A (or B) domains. Since the system is in the SSR, the boundaries (yellow regions in Fig 1) between
the A and B domains are small compared to `. The parameter h denotes the height of the melt, and we assume
that the system is infinite in the y direction.† If the polymers are placed between parallel, chemically templated
boundaries that are separated by some multiple integer of `, then the polymer microdomains will form rows
between the templated boundaries (cf. Fig. 1).

∗More precisely, g = O(δ) signifies that g/δ is bounded from above by a constant as δ → 0.
†Our analysis is trivially generalized to systems that are finite in the y direction by converting the appropriate integrals

to sums. In Section 3 we indicate where these changes should be made.



Figure 1. [Color online] Three views of a polymer melt in the lamellar phase. Inset (i) shows a single block copolymer
with A (red or light gray) and B (blue or dark gray) components, alongside two microdomains comprising a full pitch;
a boundary (yellow) separates regions of different monomer species (red and blue). We assume that the microdomains
extend to ±∞ in the y direction.† Inset (ii) shows a system with three full pitches. Boundaries are located at integer
values of `. Inset (iii) shows a top down view of a system with different types of fluctuating boundaries. The black
dotted lines indicate the mean field positions of the phase boundaries. All boundaries exhibit displacement fluctuations
corresponding to f1 [cf. Eq. (11)].

We describe this system with the Leibler-Ohta-Kawasaki energy functional, which takes the general form

H[φ] =
kBTχ

V

∫
dV

{
ξ2

2
(∇φ)2 − φ2

2
+
φ4

4
+
ς

2

∫
Ω

dV ′φ(r)g(r, r′)φ(r′)

}
, (2)

ξ2 :=
a2

3f(1− f)χ
ς :=

36

f2(1− f)2a2χN 2
. (3)

The product kBT is Boltzmann’s constant times the temperature, and the function g(r, r′) is the Green’s function
of the Laplacian. We assume that the normal derivatives of φ and g vanish at the x boundary, but we impose
periodic boundary conditions on both functions in the y and z directions.

Equation (2) is an effective field theory that views the melt from a coarse-grained perspective. Individual
polymers are not considered; rather the configuration of the system is represented by the relative density φ of A
and B polymers, which is a continuous function of position. Interfaces between A and B domains will therefore
be represented by boundary layers (cf. Fig. 2), i.e. narrow regions in which the density φ changes rapidly.
The parameter ξ determines the boundary layer thickness and is generally considered small in the sense ξ � `
whenever χN � 1, which corresponds to the system being in the SSR. We note in passing that χ = O(1) is
considered a large value of the Flory-Huggins parameter.

The lowest energy polymer density φ0 may be found by taking a variational derivative of Eq. (2) with respect
to φ and setting the resulting first variation equal to zero. This procedure yields a complicated integro-differential
equation for φ0; solutions to this equation were originally pursued by Ohta and Kawasaki, who determined to
good approximation that,16

φ0 = −
N∑
j=1

(−1)j tanh

[
x− j`√

2ξ

]
, N odd

φ0 = 1 +

N∑
j=1

(−1)j tanh

[
x− j`√

2ξ

]
N even (4)

where N (distinct from N , the index of polymerization) is the number of interfaces. The form of φ0 given above
is essentially a square wave oscillating between ±1; physically, this solution corresponds to a lamellar phase-
separated system with perfectly straight interfaces having a width ξ (cf. Fig. 2). The domain spacing ` was
originally determined16 by inserting Eq. (4) into Eq. (2) and minimizing the resulting expression with respect to
`. This procedure yields ` ∝ N 2/3χ1/6.



If ψ is some perturbation of the mean field density, then we write φ = φ0 + ψ and expand Eq. (2) to second
order in ψ; doing so yields,

H[φ] ≈ H[φ0] +H1[ψ] +O(ψ3) (5)

H1[ψ] :=
kBTχ

V

∫
dV

{
ξ2

2
(∇ψ)2 − ψ2

2
+

3

2
φ20ψ

2 +
ς

2

∫
dV ′ ψ(r)g(r, r′)ψ(r′)

}
, (6)

where H1 is the approximate energy perturbation due to ψ. Since fluctuations with large energies should have
small probabilities [via Eq. (1)], the above approximation is justified for small enough temperatures by noting
that the statistics of the system will be dominated by those states whose energies are near that of the ground
state.

At this point, our main task should be to diagonalize Eq. (6) in terms of its eigenmodes, which determine the
probability of the system expressing a particular configuration. Before continuing, however, we examine the terms
in Eq. (6) to gain insight into the types of fluctuations that are actually allowed by our model, especially since we
are looking specifically for fluctuations of interfaces. The term ξ2(∇ψ)2 yields a (small) energy penalty for non-
constant fluctuations, while the non-local term multiplying ς promotes oscillations. The term (1/2)(3φ20 − 1)ψ2

yields an energy penalty for non-zero fluctuations except in the boundary layers [i.e. when |x − `n| ≤ O(ξ)],
where this term promotes fluctuations. This last observation suggests that we look for eigenmodes localized
at microdomain interfaces and define the LER in terms of those modes. We pursue this task in the following
section.

3. DIAGONALIZATION OF H1

In this section, our goal is to diagonalize Eq. (6) and find the eigenmodes corresponding specifically to interface
fluctuations. We begin by non-dimensionalizing space via dV → dṼ := dV/ξ3. Equation (6) then becomes

H1[ψ] :=
kBTχξ

3

V

∫
dṼ

{
1

2
(∇̃ψ)2 − ψ2

2
+

3

2
φ20ψ

2 +
ξ2ς

2

∫
dṼ ′ ψ(r̃)g̃(r̃, r̃′)ψ(r̃′)

}
, (7)

where g̃(r̃, r̃′) is the dimensionless Green’s function [g(r, r′) has units of inverse length]. If ς is sufficiently small,
then to leading order we may diagonalize the energy by solving the eigenvalue problem,

−∇̃2ψ −
(
1 + 3φ20

)
ψ = E(0)ψ, (8)

where E(0) is a dimensionless, leading-order energy eigenvalue. We may then use standard perturbation tech-
niques to calculate corrections to E(0) and ψ. At the end of our analysis, we will determine the values of ς for
which our perturbation theory is valid.

For a system having a single interface, Eq. (8) can be approximately solved if we cast it into the standard
form,

ψ =
∑
kz

∫
dky
2π

f(x)eikyy+ikzz (9)

0 = ∂xxf + λ2f + 6 sech2(x)f, (10)

where λ2 = 2E(0)−2q2‖−4 and q2‖ = k2y+k2z is a wave-vector parallel to the mean field interface profile. The above

expression are written in terms of the rescaled variables x = x/(
√
2ξ), y = y/ξ, and z = z/ξ. The wave-vector

ky is a continuous parameter (in units of ξ−1), whereas kz = 2πnξ/h, n = 0,±1,±2, ... may only take discrete
values.¶

¶If the system is finite in the y direction, then Eq. (9) is appropriately modified by changing the integral over ky to a
sum and allowing ky to only take discrete values, in the same manner as kz.



Figure 2. [Color online] The effect of f1 fluctuation modes on φ0. In inset (i), we plot φ0 for a polymer system with
a 10 nm half pitch and a single interface (located at 10 nm); we set ξ = 0.5 nm. The yellow region is the boundary
layer (or interface) separating A (red or light gray) and B (blue or dark gray) monomer domains. Insets (ii) shows the
functions f1 localized at the interface. Inset (iii) shows that f1 displaces the interface (i.e. the boundary layer) away from
its mean position. As in the previous figures, red and blue shading indicates regions A and B monomer micro-domains,
respectively. Fluctuations of the type f1 determine the LER.

Equation (10) is in fact a version of the well-studied Pöschl-Teller equation used to model diatomic molecules;
general solutions can be found in Ref. [18], for example. For the case at hand, there is a single type of interface
fluctuation corresponding to the LER.19 Specifically,

f1(x) = sech2(x), E
(0)
1 = q2‖, (11)

where the dimensionless energy E(0) = E(0)V/(kBTχξ3). A fluctuation of the form ψ = f1(x)e
ikyy+ikzz cor-

responds to an oscillation of the interface about its mean position without a broadening of the width of the
boundary layer itself [see Fig. 1(iii) and Section 4 for more explanation of this point].

For a system with N > 1 interfaces, Eq. (10) takes the approximate form,

0 = ∂xxf + λ2f + 6f
N∑
j=1

sech2[x− jL] , (12)

where L = `/(
√
2ξ). We subsequently assume that the bound state eigenfunctions f1 can be written in the form,

f1(x) =

N∑
j=1

Ξjf1[x− jL], (13)

where Ξj are phase factors chosen to ensure that we have a complete basis of states. Since f1 asymptotes
to zero away from an interface, the solutions that we construct in this way will then solve Eq. (12) up to
exponentially small corrections. For the same reason, we may use any orthonormal basis of phase factors Ξj
without introducing significant error. The most natural choice is a Kronecker delta function basis, Ξj = 1 for
j = m and zero otherwise, where j,m = 1, 2, ..., N ; that is

f1(x;m) = f1[x−mL]. (14)

This basis yields N independent fluctuation modes corresponding to the situations in which each one of the N
interfaces fluctuates independently.

Considering only f1 fluctuation modes, Eq. (7) is written to leading order in diagonal form as,

H1 =

√
2kBThχξ

2

2V
∑
n

∫
dky
2π

N∑
m=1

{
q2‖|C

(m)
1 (q‖)|2〈f21 (x;m)〉

}
(15)



where 〈f21 (x;m)〉 :=
∫
dxf21 (x;m) ≈ 2/3, and C

(m)
1 (q‖) is the amplitude of a fluctuation of the mth interface

having frequency q‖.

From perturbation theory, it is well known that the first order correction to the energy eigenvalues can be
written in general as

∫
dVΨ†ĤΨ, where Ĥ is some perturbing potential, and Ψ is an eigenfunction of the leading

order problem.20 In our case, we find,

E
(1)
1 (m, q‖) ≈ G(m`,m`) =

πξ

hq‖

{
cosh[q‖`N/ξ] + cosh[(q‖/ξ)(`N − 2`m)]

sinh(`Nq‖/ξ)
− 2πξ

`Nq‖

}
, (16)

where E
(1)
1 is the first order energy corrections for the f1 states. In calculating Eq. (16), we approximate

f1(x) ≈
√
2ξδ(x− `m) and use the definition

g̃(r̃, r̃′) =
∞∑

m=−∞

∑
kz

∫
dky
2π

eikz(z−z′)+iky(y−y′) cos(πmx/LN) cos(πmx′/LN)

k2z + k2y + (πm/LN)2
. (17)

It is possible to continue perturbation theory indefinitely, computing corrections to the energy eigenfunctions
and eigenvalues. We recall, however, that in the multiple interface problem, all f1(m) have the same energy for
a fixed value of m, q‖. In order to calculate additional corrections to either the eigenmodes or eigenenergies, it
is necessary to rewrite the f in a basis that is orthogonal in the non-local term. Applying the approximation
f1(x) ≈

√
2ξδ(x− `m), this procedure is achieved by solving the eigenvalue problem

λΞi =
∑
j

G(`i, `j)Ξj , (18)

which determines the values of Ξj appearing in Eq. (13). For our present purposes, it suffices to stop with the
first order correction to the eigen-energies.

Combining Eq. (15) with Eqs. (16), we can write the probability density of a given fluctuation as

P [ψ] ∝ exp

{√
2hχ

2V
∑
n

∫
dky
2π

N∑
m=1

(2/3)[q2‖ +G(m`,m`)]|C(m)
1 (q‖)|2ξ2

}
, (19)

where we restrict ψ to fluctuations containing only f1 modes.

4. THE LINE EDGE ROUGHNESS AND INTERFACE THICKNESS

In Fig. 2 we show heuristically how the f1 modes give rise to the line edge roughness. It is also possible to show
this analytically by deriving Eq. (6) in a way that manifestly yields f1 modes as LER fluctuations. Specifically,
if we momentarily consider the 1-interface problem, we may write,

φ = φ0[x+ ξζ(y, z)] ≈ φ0(x) + ξφ′0(x)ζ(y, z) +
ξ2

2
φ′′0(x)ζ(y, z)

2, (20)

where ξζ(y, z) is a small fluctuation in the position of the equilibrium interface and φ′0, φ
′′
0 denote the first and

second derivatives of φ0; substitution of Eq. (20) into Eq. (2) (with ς = 0) then yields (note that φ′0 ∝ f1)

H[ζ] ≈ kBTχ

V

∫
dV

{
ξ2

2

[
(f ′1)

2ζ2 + f21 (∇‖ζ)
2
]
− 1

2
f21 ζ

2 +
3

2
φ20f

2
1 ζ

2)

}
. (21)

Equation (21) is in fact just Eq. (6) with ψ = f1ζ. Comparison to Eq. (9) reveals that Eq. (21) can be diagonalized
if ζ is written as product of Fourier modes in the y and z directions. Therefore, we may conclude that f1 modes
correspond to a shift in position of the interface, where ξ is the physical amplitude of the actual fluctuation. ‡‡

‡‡While this procedure is useful for physically interpreting the f1 modes, we cannot assume that an expansion having
the form of Eq. (20) will yield all of the possible interface fluctuation modes; in fact, the assumptions underlying Eq. (20)
completely neglect fluctuations that alter the width of the interface itself, which are predicted by the LOK model.



Figure 3. LER in frequency and real space. Inset (i) shows the amplitude 〈ζ2j (q‖)〉 for a system with 7 interfaces, a 20
nm half-pitch, and an interface thickness ξ = 1 nm. Note that 〈ζ2j (q‖)〉 = 〈ζ28−j(q‖)〉. Interfaces closer to the domain
boundary in general have a smaller LER than interfaces in the middle of the domain; the figure shows, however, that only
the low frequency fluctuations differ significantly among interfaces. Inset (ii) shows values of 3σ given by Eq. (23); at the
11 nm node, industrial specifications require that 3σ ≤ 1.1 nm. Our results therefore predict that χ must be increased by
at least a factor of five above previous limits in order to bring copolymers within reach of industrial specifications. This
figure also shows that the number of microdomains has a larger impact on LER than the position of an interface relative
to the system boundary.

This analysis may be extended to the case N > 1 to show that the modes f1(x,m) correspond to LER of the
mth interface.

Based on the above analysis, we define the LER per Fourier mode q‖ and interface m as

〈ζ2m(q‖)〉 =
∫
D[ψ]ξ2|C(m)

1 (q‖)|2P [ψ] =
V
hχ

[
3

2
√
2 ξq2‖ + 6ςhG(`m, `m)

]
, (22)

where D[ψ] is a functional measure over ψ and V is a unit volume. We may define the LER of the mth interface
in real space by integrating over Eq. (22); specifically,

σ2(m) =
∑
n

∫
dky
2π

〈ζ2m(q‖)〉=
∑
n

∫
dky
2π

V
hχ

[
3

2
√
2 ξq2‖ + 6ςhG(`m, `m)

]
. (23)

Note that when ς = 0, Eq. (23) does not depend on m; this is a direct consequence of Eqs. (16) and (19), which
states that each interface fluctuates independently from the others. Physically this makes sense; in the strong
segregation regime, we expect polymer fluctuations to depend largely on the local behavior of the (mean-field)
interface. It is the non-local term multiplying ς that induces a position dependence (relative to the system
boundary) on the LER. Again, this result is to be expected; following the analogy to electrostatics, the non-local
term gives rise to interactions between components of the system.

We note that Eq. (23) is log divergent if we allow n and ky to go to infinity. Following Semenov,9 we define
a cutoff frequency such that 0 ≤ q‖ ≤ 2/ξ, which renders the integral finite and bounded; this cutoff signifies
that the mean field theory breaks down for fluctuation wavelengths that are the same order of magnitude as the
interface thickness.

5. DISCUSSION

Our goal in this section is to discuss the implications of Eq. (23) in the context of manufacturing specifications
set forth by the ITRS. We also discuss key approximations and limitations of our approach.

The ITRS specifies that the LER must satisfy 3σ < 1.1 nm at the 11 nm node. In Fig. 3 we estimate values
of χ that will be required to reach these goals. Using the the values N = 300, ξ = 1 nm, ` = 10 nm,6 Eq. (23)
predicts that values of χ ≈ 5 will be required to reduce the LER to within acceptable limits. These values of χ
are extremely large relative to typical values seen in systems such as PS-PDMS and PS-PMMA, where typical



values of χ range from O(10−4) to O(10−1).21–25 Although effective values of χ as large as O(1) have been
reported in some systems, our results suggest that a significant increase in χ is necessary to reach target goals
at the 11 nm node.

Our analysis reveals a connection between the LER and the number and position of microdomains between
template boundaries. Figure 3 provides a representative illustration, which shows that, for a fixed value of χ
and `, decreasing the number of microdomains can reduce the LER by a factor of 20 % or more. This amounts
to reducing the distance between templated boundaries. On the other hand, the position of the individual
microdomains within the actual system has a much smaller effect on the LER.

While the values of χ that we consider here are relatively large, we caution that the analysis herein should
be taken more as a qualitative estimate of the necessary system parameters as opposed to a strict, quantitative
prediction. As noted earlier, the LOK energy is known to predict behavior seen in many experimental systems.
Moreover, the physics of the f1 fluctuation modes appears naturally through an analysis of the relevant differential
equations. However, at the length scales we consider, we begin to push the model to the limits of its validity.
This fact is seen by a close examination of the parameters entering the model. Notably, for a physical system in
which ξ = 1 nm and ` = 10 nm, we find that a2 = 3χξ2/4, which is O(1) nm2 for χ = 1. Thus, for large enough
values of the Flory-Huggins parameter, the Kuhn statistical length exceeds the interface thickness; we are forced
to re-interpret a as an effective parameter if we choose to keep the model.

The perturbation methods we use, while approximate, pose minimal problems with regard to the validity of
our results. We noted in Section 2 that the parameter ς had to be small. From purely dimensional considerations,
the product `2σ should be the largest combination of terms (involving ς) appearing in the perturbation analysis;
if `2ς � 1 in the region of parameter space we consider, then our perturbation analysis should be valid. We
can estimate ς value from its definition in Eq. (3). Again taking ξ = 1 nm and letting N ≈ 300, we find that
ς ≈ 10−3/χ2 nm−2. If we use χ = 10 as an upper limit suggested by our analysis, then we find `2ς ≈ 10−3 is
sufficiently small in the regimes we consider. We expect that our analysis should be valid for values of χ as low
as χ ≈ 1, which yields `2ς ≈ 10−1.

6. CONCLUSION

In this paper, we have used the Leibler-Ohta-Kawasaki phase field model to calculate the LER associated with
microdomains of block copolymers in the lamellar phase; we consider system geometries that are expected to
be used in a manufacturing setting, i.e. a few microdomains on a templated substrate. Using values of the N
(the index of polymerization) and ξ the (interface thickness) that correspond roughly to the 11 nm half-pitch
node, we predict that the Flory-Huggins parameter χ must be increased by at least a factor of five above current
experimental values in order to reach target goals for the LER set forth in the ITRS. Our analysis also reveals
that the number of microdomains has a greater affect on LER than the position of the microdomain interfaces
relative to the boundary of the system.
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