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ABSTRACT 

In this paper, we explore some ways in which symbolic 
knowledge representations have been evaluated in the past and 
provide some thoughts on what should be considered when 
applying and evaluating these types of knowledge representations 
for real-time robotics applications. The emphasis of this paper is 
that the robotic applications require real-time access to 
information, which has not been one of the aspects measured in 
traditional symbolic representation evaluation approaches.  

Categories and Subject Descriptors 
I.2.4. [Computer Methodologies]: Artificial Intelligence: 
Knowledge Representation Formalisms and Methods – 
Representation languages  

General Terms 
Measurement, Performance 

Keywords 
Robotics, knowledge representation, performance metrics, real-
time, ontologies 

 

1. INTRODUCTION 
 

A robot can only perform tasks based on what it knows, which is 
often captured within the robot’s internal knowledge 
representation. This representation can take many forms and 
knowledge can be captured at various levels of specificity. With 
the growing complexity of behaviors that robots are expected to 
perform, the need to measure the knowledge representation, in 
terms of coverage, the ability to reason to infer new knowledge, 
and the ability to successfully complete complex tasks, is 
becoming more evident. 

Knowledge representations have historically been evaluated using 
metrics such as completeness (Is all necessary knowledge 
represented?), expressiveness (Can all necessary knowledge be 
represented?), accuracy (Is the represented knowledge correct?), 

and consistency (Are there contradictory facts represented?)[1, 2]. 
While these metrics are important in a theoretical sense, 
knowledge representation for robotics introduces a series of 
additional metrics, such as performance (real-time access), 
flexibility (ability to constantly update knowledge as new 
information becomes available), and relevance (is information 
represented at a level of resolution that can be used by planning 
systems). In addition, the way that the representations are 
evaluated must change when introducing these new metrics. For 
example, while running a consistency checker can help to identify 
contradictory knowledge, it does not assess the representation’s 
ability to respond to an ever-changing environment. Successful 
measures for these types of metrics may include the ability (and 
time) to answer what-if questions, the ability to support real-time 
planning, etc.    
In this paper, we explore some ways in which knowledge 
representations have been evaluated in the past and provide some 
thoughts on what should be considered when evaluating 
knowledge representation for real-time robotics applications. This 
paper is organized as follows: 

• Section 2 discusses current knowledge representation 
approaches in the robotics domain  

• Section 3 describes an ontology standardization effort 
that will serve as the basis for future research efforts 

• Section 4 describes some previous efforts that have 
explored how to measure the performance of symbolic 
knowledge representations with an emphasis on 
ontologies 

• Section 5 attempts to categorize the types of metrics that 
have been used in the past along with some thoughts on 
their applicability to the robotics domain 

• Section 6 concludes the paper by discussing the 
relationship between ontology metrics and traditional 
robotics knowledge representation approaches and 
where the current gaps lie. 

 

2. KNOWLEDGE REPRESENTATIONS 
FOR ROBOTICS 
 

Traditionally, robots use a wide array of knowledge 
representations. Some of these include parametric knowledge, 
spatial knowledge, and symbolic knowledge. A good overview 
of these types of knowledge and how they have been applied 
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to the robotics domain can be found in [3]. An overview of 
these types of knowledge is described below. 
 

2.1 Parametric Knowledge 
 

The lowest levels of any control system, whether for an 
autonomous robot, a machine tool, or a refinery, are at the 
servo level, where knowledge of the value of system 
parameters is needed to provide position and/or velocity and/or 
torque control of each degree of freedom by appropriate 
voltages sent to a motor or a hydraulic servo valve. The 
control loops at this level can generally be analyzed with 
classical techniques and the “knowledge” embedded in the 
world model is the specification of the system functional 
blocks, the set of gains and filters that define the servo controls 
for a specific actuator, and the current value of relevant state 
variables. These are generally called the system parameters, so 
we refer to knowledge at this level as parametric knowledge. 
 
Figure 1shows a traditional PD (Proportional Derivative) servo 
control for a motor of a robot arm. All six or seven motors that 
drive the arm will have basically the same servo control, but 
each will have different parameters because there are different 
size motors driving different loads at different points in the 
arm. Any errors that deal with a single degree of freedom, 
such as ball screw lead errors, contact instabilities, stiction, 
and friction are best compensated for at this level. 
 

 
Figure 1: PD Servo Control 

 

2.2 Spatial Knowledge 
 

Above the servo level are a series of control loops that 
coordinate the individual servos and that require what can be 
generally called “geometric knowledge,” “iconic knowledge,” 
“metrical maps,” or “patterns.” This knowledge is spatial in 
nature and can be defined as 2D or 3D array data in which the 
dimensions of the array correspond to dimensions in physical 
space. The value of each element of the array may be Boolean 
data or real number data representing a physical property such 
as light intensity, color, altitude, range, or density. Each 
element may also contain spatial or temporal gradients of 
intensity, color, range, or rate of motion. Each element may 
also contain a pointer to a geometric entity (such as an edge, 
vertex, surface, or object) to which the pixel belongs. 
 
Examples of iconic knowledge include digital terrain maps, 
sensor images, models of the kinematics of the machines being 
controlled, and knowledge of the spatial geometry of parts or 
other objects that are sensed and with which the machine 
interacts in some way. This is where objects and their 
relationship in space and time are modeled in such a way as to 
represent and preserve those spatial and temporal 
relationships, as in a map, image, or trajectory. 

 
For industrial robots, machine tools, and coordinate measuring 
machines, the first level above the servo level deals with the 
kinematics of the machine, relating the geometry of the 
different axes to allow coordinated control. Linear, circular 
and other interpolation and motion in world or tool coordinates 
is enabled by such coordination. The “knowledge” here may 
be the kinematic equations or Jacobian coefficients that define 
the geometric relationships of the axes, or the mathematical 
routines for interpolation or coordinate transformations. It is at 
this level that systematic multi-dimensional geometric errors 
such as non-orthogonality of axes of a machine tool are 
considered. 
 
For mobile autonomous robots, there are two main categories 
of spatial knowledge representation that are useful. These are 
sometimes referred to as metrical maps in the literature. One 
captures what the sensors see (the view “out the windshield”). 
This may be two-dimensional images, as is the case for CCD 
(Charge Coupled Device) cameras, or three-dimensional 
images, in the case of range sensors such as LADARs (laser 
Detection and Ranging). Some mobile robots successfully 
accomplish their goals by planning based on a world model 
derived purely from the sensor image view.  
 

 
Figure 2: Occupancy Grid Map for Mobile Robot 

Figure 2 shows a typical local map from a mobile robot 
navigating through an indoor environment. The robot’s 
position at the center is indicated by marking the occupied 
cells with “R”. The numbers in certain cells indicate the 
degree of confidence that there is an obstacle occupying that 
cell.  
The second type of spatial representation is akin to the “bird’s- 
eye-view.” Figure 3 shows a higher level map for path 
planning for outdoor navigation. This map contains several 
feature layers, including elevation, vegetation, roads, 
buildings, and obstacles. Digital maps are a natural way of 
representing the environment for path planning and obstacle 
avoidance, and provide a very powerful mechanism for sensor 
fusion since the data from multiple sensors can be represented 
in a common format. Digital terrain maps are essentially two-
dimensional grid structures that are referenced to some 
coordinate frame tied to the ground or earth. A map may have 
multiple layers that represent different “themes” or attributes 



at each grid element. For instance, there may be an elevation 
layer, a road layer, a hydrology layer, and an obstacle layer. 
The software can query if there is a road at grid location [x, y] 
and similarly query for other attributes at the same [x, y] 
coordinates. 
 

 
Figure 3: Multi-Terrain Digital Terrain Map 

 

2.3 Symbolic Knowledge 
 

At the highest levels of control, knowledge will be symbolic, 
whether dealing with actions or objects. It is at this level that a 
large body of relevant work exists in knowledge engineering 
for domains other than real-time control, such as formal logic 
systems or rule-based expert systems. Whether the knowledge 
is represented in terms of mathematical logic, rules, frames, or 
semantic nets, there is a formal linguistic structure for defining 
and manipulating and using the knowledge.  
 
An example of a formal description of a solid model of a part 
is shown in Figure 4. A block is being described using 
International Standards Organization Standard for the 
Exchange of Product Model Data (STEP) Part 21 [4]. Note 
that this representation can be linked by pointers to a 
geometric representation where, for example, a block might be 
represented by equations of six planes with bounding curves 
and a coordinate transformation matrix to position the block 
within a given coordinate system. 
 
Linguistic representations provide ways of expressing 
knowledge and relationships, and of manipulating knowledge, 
including the ability to address objects by property. Tying 
symbolic knowledge back into the geometric levels provides 
symbol grounding, thereby solving a serious problem inherent 
to purely symbolic knowledge representations. It also provides 
the valuable ability to identify objects from partial 
observations and then extrapolate facts or future behaviors 
from the symbolic knowledge. In the manufacturing domain, 
using a feature-based representation (which is symbolic) is 

reasonable at the generative planning level (Figure 5a). 
Graphical primitives (Figure 5b) that relate to the geometry 
can be tied to features to let users easily pick a feature (such as 
a pocket) by selecting on a portion of it on the screen. The 
geometric representation of each edge and surface that 
comprise a feature (Figure 5c) can be tied to the feature 
definition in order to facilitate calculations for generating the 
tool paths. 
 

 
Figure 4:  STEP Representation of a Block 

 
Another type of symbolic representation for representing rules 
is ontological. Ontologies are definitions and organizations of 
classes of facts and formal rules for accessing and 
manipulating (and possibly extending) those facts. [5] There 
are two main approaches to creating ontologies, one 
emphasizing the organizational framework, with data entered 
into that framework, and the other emphasizing large scale 
data creation with relationships defined as needed to relate and 
use that data. Cyc [6] is an example of the latter, an effort to 
create a system capable of common sense, natural language 
understanding, and machine learning. 
 
An ontology may be designed to make it easy for reasoning 
systems to reason using the ontology. This includes being able 
to infer information that may not be explicitly represented, as 
well as the ability to pose questions to the knowledge base and 
receive answers in return. One way of enabling this 
functionality is to represent the symbolic information in the 
world model in a logic-based, computer-interpretable format, 
such as in the Knowledge Interface Format (KIF) 
representation [7] and using a logic programming tool such as 
Prolog. [8] 
 



 
Figure 5: Pocket Feature 

 
Through the use of an inference engine or theorem prover, 
information represented in this format could be queried, and 
logically-proven answers could be returned. As an example, a 
manufacturer may want to know whether a given set of fixture 
positions is suitable to fully inspect a part. Assuming that the 
necessary inspection points, access volumes, and machine 
capabilities are represented in KIF, the manufacturer could 
enter in the fixture positions and the system could logically-
prove whether those positions are sufficient to fully inspect the 
part.  
 
The focus of the remainder of this paper will be on symbolic 
representation, as it will be the focus of future research efforts.  
 

3. IEEE ROBOTICS AND AUTOMATION 
SOCIETY (RAS) ONTOLOGIES FOR 
ROBOTICS AND AUTOMATION (ORA) 
WORKING GROUP  
 
For the research effort described later in this paper, a standard 
knowledge representation (ontology) is needed. IEEE had 
formed a working group to explore the development of a 
standard robot ontology. It is anticipated that this ontology 
will serve as the basis for this work and is described below. 
 
In October 2011, IEEE approved a new working group called 
Ontologies for Robotics and Automation (ORA) [9]. The goal 
of this working group is to develop a standard ontology and 
associated methodology for knowledge representation and 
reasoning in robotics and automation, together with the 
representation of concepts in an initial set of application 
domains. The standard provides a unified way of representing 
knowledge and provides a common set of terms and 
definitions, allowing for unambiguous knowledge transfer 
among any group of humans, robots, and other artificial 
systems. To date, the working group is made up of over 115 
members containing a cross-section of industry, academia, and 

government and representing over twenty countries. 
 
The working group defines an ontology as a knowledge 
representation approach that represents key concepts, their 
properties, their relationships, and their rules and constraints. 
[10] Whereas taxonomies usually provide only a set of 
vocabulary and a single type of relationship between terms 
(usually a parent/child type of relationship), an ontology 
provides a much richer set of relationships and also allows for 
constraints and rules to govern those relationships. In general, 
ontologies make all pertinent knowledge about a domain 
explicit and are represented in a computer-interpretable format 
that allows software to reason over that knowledge to infer 
additional information. 
 
The working group acknowledges that it would be extremely 
difficult to develop an ontology that could cover the entire 
space of robotics and automation. As such, the working group 
is structured in such a way as to take bottom-up and top-down 
approaches to addressing this broad domain. From a top-down 
approach, a sub-group entitled “Upper 
Ontology/Methodology”. (UpOM) is exploring the 
identification or development of an upper ontology on which 
to hang more detailed concepts. In addition to this upper 
ontology, a methodology is being developed that would allow 
interested colleagues to propose additional concepts and 
reconcile any differences between the new concepts and those 
that already exist. 
 
From a bottom-up perspective, three sub-groups have been 
formed which will take a detailed look at three sub-domains in 
the robotics and automation area. Those sub-domains are 
Autonomous Robots (AuR), Service Robots (SeR), and 
Industrial Robots (InR). Each of those subgroups will deeply 
explore their respective areas by identifying key concepts, 
along with their definitions, that need to be represented. The 
group’s structure is shown in Figure 6. These concepts and 
definitions will then be modeled more formally in an ontology. 
 

 
Figure 6: IEEE ORA Group Structure 

 
The sub-domain ontologies will serve as a test case to validate 
the upper ontology and the methodology. The sub-domains 
were determined in such a way to ensure that there would be 
overlap amongst them. Once initial versions of the ontologies 
are completed, they will be integrated into the overall 
ontology. During the integration process, as overlapping 
concepts are identified, a process will be formalized to 
accurately determine if these concepts should be merged, if 
they should be separated into two separate concepts, or if some 
other approach should be explored to reconcile them. 
 
For this effort, the working group has decided to use OWL 
(Web Ontology Language) [11] as the knowledge 
representation language. OWL is a family of knowledge 



representation languages for authoring ontologies and is 
endorsed by the World Wide Web Consortium (W3C). It is 
characterized by formal semantics and RDF/XML-based 
serialization for the Semantic Web. OWL was chosen by the 
group because of its popularity among the ontology 
development community, its endorsement by the W3C, as well 
as the number of OWL tools and reasoning engines that are 
available. 
 

4. RELATED WORK 
 

Performance evaluation of symbolic knowledge representation 
is not a new area; research has been explored for many years. 
Most of these research efforts have focused on the application 
of symbolic representations (specifically, ontologies) to 
domains that do not require real-time access and have 
primarily focused on the structure and consistency of the 
ontology as opposed to how it is applied to the domain. 

In [12], Bhattacharya and Ghosh describe a generalized 
method for comparatively evaluating different knowledge 
representation schemes. They use expressiveness and 
performance as the primary metrics. Expressiveness is defined 
as the capability to correctly express the information appearing 
in one scheme in terms of the other scheme. Performance is 
defined as how resource “hungry” a knowledge representation 
scheme is with respect to processing, memory consumption, 
errors involved, etc. They evaluate systems based on criteria 
such as time complexity, space complexity, accuracy, 
relational capacity, maintainability, and user friendliness. As 
test examples, they use these metrics to perform pair-wise 
comparisons of rule-based schemes, object-oriented schemes, 
relational schemes, and hybrid schemes. They determined that 
hybrid schemes are best for the representation of zonation of 
landslide hazards, which is the domain they used for their 
study. 
In [13], Aruna et. al. propose an evaluation framework made 
up of a number of different existing tools including 
OntoAnalyser [14], OntoGenerator, OntoClean [15], ONE-T, 
and S-OntoEval [16]. The supposition is that all of these tools 
provide different functionalities and benefits and that a 
combination of all of them is needed to perform a thorough 
ontology evaluation. The criteria that are proposed for 
evaluation include: 

• Ontology	  properties	  
o 	  language	  conformity	  (syntax)	  	  
o consistency	  (semantics)	  	  

• Technology	  properties	  
o interoperability	  
o turn	  around	  ability	  
o performance	  
o memory	  allocation	  
o scalability	  
o integration	  into	  frameworks	  
o connectors	  and	  interfaces	  

The paper explains why this is important, but never goes into 
detail about how these tools can be combined into a common 

framework. It simply describes each tool without any 
conclusions. 
In [17], Brank, Grobelnik, and Mladenic perform a survey of 
various ontology evaluation techniques. They describe 
evaluation approaches at various “levels,” including 
lexical/vocabulary/data layer, hierarchy/taxonomy (and other 
semantic relationships), context/application level, syntactic 
level, and structure/architecture/design. They also describe 
various evaluation approaches and classify them as (1) 
comparing to a golden standard, (2) using ontologies in 
specific applications, (3) comparing ontologies with source 
data (e.g., collection of documents), and (4) evaluations 
performed by humans. They do not give opinions on which is 
best or worst… they simply try to classify the different 
approaches. 
In [18], Gruninger and Fox describe the concept of 
competency questions to help evaluate ontologies. They start 
by defining scenarios that are relevant to the domain for which 
the ontology is being developed, and then develop competency 
questions that capture the questions that the ontology is 
intended to be able to answer. From these questions, concepts 
are identified and defined. There should be a direct mapping 
from the competency questions and the concepts, such that all 
of the concepts are present that allow the competency 
questions to be answered and no concepts are present that do 
not contribute to the answer to the questions. This approach 
focuses more on evaluating the concepts that are represented 
in the ontology as opposed other metrics such as performance 
related issues. 
In [1], Vrandecic presents  a theoretical framework and several 
methods for ontology evaluation with a focus on the Semantic 
Web. He focuses on the following three scenarios as relevant 
for ontology evaluation: 

• Mistakes and omissions in ontologies can lead to the 
inability of applications to achieve the full potential of 
exchanged data. Good ontologies lead directly to a higher 
degree of reuse of data and a better cooperation over the 
boundaries of applications and domains. 

• People constructing an ontology need a way to evaluate 
their results and possibly to guide the construction 
process and any refinement steps. This will make the 
ontology engineers feel more confident about their 
results, and thus encourage them to share their results 
with the community and reuse the work of others for their 
own purposes. 

• Local changes in ontology development and maintenance 
processes may affect the work of others who are using the 
ontology. Ontology evaluation technologies allow a 
system to automatically check if constraints and 
requirements are fulfilled, in order to automatically reveal 
usability and compatability problems. 

 
 
 
  



5. EXISTING METRICS FOR 
EVALUATING ONTOLOGIES 
 

There are many different aspects of ontologies that one can 
analyze and measure. There are at least five significant 
additional research efforts that have attempted to capture some 
of these metrics. An excellent overview of ontology evaluation 
efforts is described in [1] and many of the descriptions below 
are adapted from this work. A superset of all of these metrics 
are listed below in alphabetical order, with pointers to the 
publications from which they arose. Some liberty was taken 
and assumptions applied to cluster metrics when significant 
overlap was perceived. 
 

• Clarity/Understandability: The ontology should 
effectively communicate the intended meaning of defined 
terms. Definitions should be objective. When a definition 
can be stated in logical axioms, it should be. Where 
possible, a definition is preferred over a description. All 
entities should be documented with natural language. [19] 
[20] [21] 

• Competency: The goals and purpose of the ontology is 
described using competency questions and the ontology 
has the concepts (and only the concepts) necessary to 
successfully answer the questions. [18] 

• Completeness/Coverage: All the knowledge that is 
expected to be in the ontology is either explicitly stated or 
can be inferred from the ontology. [2] [20] 

• Computational Integrity and Efficiency: the principle 
characteristics of an ontology that can be 
successfully/easily processed by a reasoner (inference 
engine, classifier, etc.). These could include logical 
consistency, disjointness ratio,  etc, [21] 

• Conciseness / Minimal Ontological Commitment: The 
ontology should specify the weakest theory (i.e., allowing 
the most models) and defining only those terms that are 
essential to the communication of knowledge consistent 
with that theory. [2] [19] 

• Consistency/Coherence: capturing both the logical 
consistency (i.e., no contradictions can be inferred) and 
the consistency between the formal and the informal 
descriptions (i.e., the comments and the formal 
descriptions match) [2] [19] [20] 

• Expandability/Extendibility: An ontology should offer a 
conceptual foundation for a range of anticipated tasks, 
and the representation should be crafted so that one can 
extend and specialize the ontology monotonically. New 
terms can be introduced without the need to revise 
existing axioms. [2] [19] 

• Mappability to upper level and other ontologies [20] 
• Minimal encoding bias: An encoding bias results when 

representation choices are made purely for the 
convenience of notation or implementation. Encoding 
bias should be minimized, because knowledge-sharing 
agents may be implemented with different libraries and 
representation styles. [19] 

• Relevance: Evaluation against specific use cases, 
scenarios, requirements, applications, end-user 

knowledge, and data sources the ontology was developed 
to address [20] 

• Reusability/Flexibility: How easily the developed 
ontologies can be applied to unanticipated domains that 
require the same sort of knowledge or lend itself to 
various views. [20] [21] 

• Sensitivity: relates to how small changes in an axiom alter 
the semantics of the ontology. [2] 

• Soundness: Free from error [20] [21] 
• Types of inferences that can be used [20] 
• Usability/Organization Fitness: Compliance to procedures 

for extension, integration, adaptation, and access for 
effective application. Can it be easily deployed within an 
organization? [21] 

 
This information in tabular form is included below: 
 

Table 1: Ontology Evaluation Metrics 
Metric Gangemi 

[21] 
Gomez
-Perez 

[2] 

Gruber 
[19] 

Gruninger 
[18] 

Obrst 
[20] 

Clarity / 
Understandable 

x  x  x 

Competency    x  

Completeness / 
Coverage 

 x   x 

Computational 
Integrity and 
Efficiency 

x     

Conciseness / 
Minimal 
Ontological 
Commitment 

 x x   

Consistency / 
Coherence 

 x x  x 

Expandability / 
Extendability 

 x x   

Mappability     x 

Minimal 
Encoding Bias 

  x   

Relevance     x 

Reusability / 
Flexibility 

x    x 

Sensitivity  x    

Soundness x    x 

Types of 
Inferencing 

    x 

Usability / 
Organization 
Fitness 

x     

 

It is interesting to note the relatively minimal overlaps 
between the metrics mentioned in each of the papers. There is 
no metric that shows up on more than three of the research 
papers and this only happens two times. In addition, eight of 
the metrics only show up once in the five research papers. This 
could be due to a number of factors: 



1. There is not broad agreement in the community about the 
metrics that should be used to evaluate ontologies. 

2. There is some overlap among the requirements such that 
the same things are evaluated but are categorized 
differently. This could be due to the liberties that were 
taken by this paper’s author to categorize the metric 
descriptions in the respective papers or from different sets 
of terminologies used by each paper’s author. 

3. The authors focused on specific aspects of ontology 
evaluation and did not try to take a comprehensive view 
of all of the aspects involved. 

 
It is likely that this lack of overlap is due to some combination 
of all three items above, though it is the authors’ belief that 
item #1 (lack of broad agreement) is the most substantial. 
 

6. WHERE ARE THE GAPS? 
 
Robots are innately real-time systems. However, real-time is a 
relative word. At the servo level, real-time can mean tens or 
hundreds of cycles per second. At the higher-level planning 
level, real-time can be on the order of tens of seconds or 
minutes (or even longer). The trick is to figure out where 
symbolic representations like ontologies play a role, both in 
the usefulness of the information that they provide and in the 
representation’s ability to work within a system to deliver 
information at the rate necessary. 
Many of the lower-level real-time aspects have been removed 
from the symbolic representation realm and applied to other 
types of representations that are better suited for them (e.g., 
parametric and spatial knowledge levels, as discussed in 
Section 2). While this has worked in the past, symbolic 
representations provide a level of information that would be 
valuable to real-time applications, including the ability to 
reason over existing knowledge at a level deeper than what is 
possible in other types of representations. As can be seen in 
Section 5, almost all of the metrics focus on the structure of 
the ontology, including clarity, completeness, relevance, 
sensitivity, soundness, etc. Almost none of the metrics focused 
on the functionality that the ontology supports, such as how 
quickly it is able to work within a system to process new data 
or how rapidly it is able to work within a system to provide 
useful data back to the application. This is alluded to in the 
metric “computational integrity and efficiency” but this was 
just presented as a concept in the literature without details of 
how one would go about analyzing it and how one would 
determine if the resulting metrics are suitable for the 
application of interest. 
One area that will be explored in the future is coupling the 
ontology with other types of symbolic representations, such as 
databases, that may be able to handle real-time applications 
more efficiently at lower levels in the control hierarchy. In 
concept, there are several data structures in the ontology which 
would not need to be updated in real time and would likely 
stay static throughout an entire ontology application. This may 
include the names of certain objects, their capabilities, and in 
the case of static items, their locations.  

For example, in a manufacturing plant performing automated 
kitting operations, the names of the machines, their locations, 
and their capabilities may stay the same during the entire 
operation. However, the exact location of their robotic arm, 
what kit they are working on at the time, and the parts that are 
being manipulated may change by the minute or second. The 
idea is that these “dynamic” concepts would have a link from 
their instances and structures in the ontologies to a database 
that would be dynamically updated as new information is 
made available from the sensor systems (or entered by a 
human).   
Information can either be “pushed” from the database to the 
ontology instances when some criterion is reached (e.g., an 
object’s location is moved by over a predefined distance, the 
state of the overall system reaches a milestone, an error state is 
detected, etc.), or can be “pulled” from the database to the 
ontology at certain time intervals or just before reasoning is 
about to be performed. With this approach, a system would 
rely on the database structures for the real-time access and 
updating functions but would still get the benefit of ontology 
reasoning through the links between the database and the 
ontology. 
Another advantage of this approach is the reusability and 
semantics that the ontology provides that may not be available 
through the database alone.  Databases are very good at 
representing concepts and their characteristics, but do not 
provide detailed semantics about what the concepts and 
characteristics mean. By coupling the database fields with the 
ontology instances, detailed semantics can be captured in the 
ontology while not slowing down the processing of the 
information in the database.  
Once the application is concluded (e.g., a kitting operation), 
the resulting database information can be written back to the 
ontology and easily shared with other applications. This could 
include scheduling systems, process planning systems, or other 
management-type applications that have a need to see and 
understand the state of the factory at any given time. 
Ontologies are often developed to be highly reusable, thus 
providing another benefit of the database-ontology integration. 
 

7. CONCLUSION 
 
In this paper, we discuss some of the ways that knowledge is 
represented in robotic applications, describe an IEEE effort to 
standardize symbolic representation in robot systems, look at 
some metrics that have been applied to measuring the quality 
of symbolic representations, and provide thoughts on what 
other types of metrics and procedures may be necessary to 
measure the performance of symbolic representations (with an 
emphasis on ontologies) in robotic applications. This is the 
first paper in what is expected to be a series of papers detailing 
ways to measure and apply symbolic representations to the 
robotics field. With much of the research in this area not yet 
started, the purpose of this paper is to describe some related 
efforts and some preliminary thoughts that will set the stage 
for future work. 
 



DISCLAIMER 
 
The name of commercial products or vendors does not imply 
NIST endorsement or that this product is necessarily the best 
for the purpose. 
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