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Abstract: We report on the measurement of somatosensory-evoked and 
spontaneous magnetoencephalography (MEG) signals with a chip-scale 
atomic magnetometer (CSAM) based on optical spectroscopy of alkali 
atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 
mm3 inside a sensor head of volume 1 cm3 and enabled convenient 
handling, similar to an electroencephalography (EEG) electrode. When 
positioned over O1 of a healthy human subject, α-oscillations were observed 
in the component of the magnetic field perpendicular to the scalp surface. 
Furthermore, by stimulation at the right wrist of the subject, somatosensory-
evoked fields were measured with the sensors placed over C3. Higher noise 
levels of the CSAM were partly compensated by higher signal amplitudes 
due to the shorter distance between CSAM and scalp. 
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1. Introduction 

Optical technologies are broadly used and widely investigated for application to problems in 
biomedicine. In most cases, optical fields are made to interact directly with biological tissue, 
giving information about structure and chemical content related to the optical properties of the 
medium. On the other hand, optical fields can also be used as a spectroscopic source for 
instruments outside the body. Such optics-based instruments, for example optical 
magnetometers, can make sensitive external measurements and infer associated properties 
inside the body. 

Magnetoencephalography (MEG), for example, is an established (usually non-optical) 
technique for imaging sources of magnetic fields inside the brain. Because of its high 
bandwidth and electromagnetic measurement focus, MEG gives access to neuronal 
electrochemical function and can be used to deduce localized neuronal activity in the brain. 
Superconducting quantum interference device (SQUID) magnetic sensors are currently the 
most widely used technology for MEG [1,2,], with more than 100 systems containing over 
200 SQUIDS each, in operation worldwide [3]. However, optical spectroscopy of well-
controlled atomic ensembles confined in vapor cells enables equally precise measurement of 
magnetic fields with instruments that do not need to be cooled to cryogenic temperatures, and 
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hence are potentially far simpler and less costly to operate. Atomic or optical magnetometry 
has seen rapid progress over the last decade. The sensitivity of laboratory prototypes has been 
improved by more than two orders of magnitude to less than 0.2 fT/Hz1/2 over a narrow 
frequency range near DC [4]. Such atomic magnetometers are currently far from being 
multichannel turnkey systems, but nevertheless show the potential for an uncooled alternative 
to SQUIDs for some applications. 

While magnetic fields emitted by the human heart have already been measured with 
atomic magnetometers in the 1970s [5] the field found a new revival with the work of Bison et 
al. [6], who recently demonstrated a room-temperature 19-channel magnetocardiography 
(MCG) system [7]. Work led by the Princeton group to suppress spin-exchange collisions in 
atomic magnetometers [4] has enabled much higher sensitivities and allowed for the recording 
of magnetoencephalography signals in a low ambient magnetic field environment [8]. Since 
then, a number of other groups have worked towards the use of atomic magnetometers for a 
variety of biomedical applications such as MCG [9], MEG [10,11], and magnetic resonance 
imaging (MRI) [12,13]. For most of these applications, the high sensitivities of atomic 
magnetometers combined with the characteristics of room-temperature sensors are the most 
attractive features. Nevertheless, these sensors are by no means compact, and their practical 
operation in a real biomagnetic measurement is often no easier than the use of helium-cooled 
SQUIDs. Also, their relatively large measurement volume over which the magnetic 
measurement is integrated complicates the interpretation of the data. 

Chip-scale microfabricated versions of atomic magnetometers (CSAMs) allow for a 
reduced sensitive volume and the potential for low-cost manufacturing, at the expense of 
worse fundamental sensitivity. Simple and scalable fabrication based on methods of 
microelectromechanical systems (MEMS) could enable relatively inexpensive and low-
maintenance multi-channel systems. The best sensitivity reported to date was 5 fT/Hz1/2 in a 
laboratory system with a sensitive volume of 1 mm3 [14]. The small size of these sensors in 
combination with their flexible optical and electrical wiring allows placing the sensors very 
close to the skull or thorax, so that they can be attached almost like electrocardiography 
(ECG) or encephalography (EEG) electrodes. Here, we report on the first measurement of 
somatosensory and spontaneous MEG signals recorded with a chip-scale optical 
magnetometer. Brain signals can be easily distinguished in MEG from artifact signals by their 
field map, which requires a multi-channel system. For the CSAM, only a single channel was 
available and the reasoning that a brain signal was detected relies on a particular temporal 
sequence of peaks. This sequence is well known for the two types of brain activity 
investigated and corroborated by multi-channel SQUID measurements, as the same brain 
signals were recorded by use of a SQUID sensor array within 20 minutes and without moving 
the subjects. 

2.2. Principle of operation 

2.2.1. Chip-scale atomic magnetometer design 

The magnetometer is based on optical measurements of electron-spin precession of a vapor of 
rubidium atoms in a magnetic field. The atoms can be spin polarized when they absorb light 
from a circularly-polarized light field, one of a class of processes called optical pumping. This 
leads to a macroscopic polarization, and corresponding magnetization, of the atomic vapor. In 
a weak magnetic field, the mean polarization of the atomic ensemble precesses and the 
reorientation of the resulting polarization, detected through the interaction with a probe light 
field, is a measure of the magnetic field strength. In a simple version, as implemented in this 
chip-scale magnetometer, pump and probe light come from the same laser beam. The 
transmission of this light through the atomic vapor is a measure of the steady-state spin 
polarization, which is a function of the applied magnetic field [15,16]. In order to improve the 
signal-to-noise ratio (SNR), an oscillating magnetic field at 1.8 kHz is applied perpendicular 
to the direction of the laser beam. While a higher frequency would be desirable to reduce 1/f 
components in the noise spectrum, the signal will roll off at higher frequencies, limited by the 
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intrinsic bandwidth of the atoms. The signal is demodulated by means of a lock-in amplifier 
such that the output of the magnetometer is a voltage proportional to the component of an 
external magnetic field parallel to the applied oscillating field. In order to reach high 
sensitivities, the magnetometer is operated in the so-called spin-exchange relaxation-free 
regime [17]. This limits the dynamic range of the sensors to roughly a few hundred 
nanoteslas, when operated without feedback in an open-loop configuration, as done in these 
experiments. 

2.2.2. Sensor construction/fabrication/assembly 

The optical magnetometer is similar to the one described in [18] and a photograph and 
schematic can be seen in Fig. 1. The magnetometer sensor head has a volume of roughly 1 
cm3. A microfabricated vapor cell [19] of volume (2 mm)3 contains 87Rb atoms and is 
suspended on a web of polyimide [20]. It is heated by microfabricated bifilar titanium heaters, 
which are lithographically patterned onto 300 μm thick glass slides and glued to both 
windows of the vapor cell, to raise the number of atoms in the vapor. The current flowing 
through the heaters is modulated at 30 kHz, which lies outside the bandwidth of the optical 
magnetometer. 

Light at 795 nm from a diode laser is carried to and from the sensor through optical fibers 
of 5 m length. The optical fibers connect to a remotely situated control system that houses the 
lasers, optics, and detectors. On the sensor head itself, a micro-prism directs the light through 
the vapor cell. The interaction region of the light with the atoms roughly defines the sensitive 
volume of the sensor to a cylinder of 2 mm length and 700 μm diameter, since the diffusion 
can be neglected due to the high buffer-gas pressure. The distance between the center of this  

 
Fig. 1. (Top) Vision of a flexible fiber-coupled magnetometer system. (Middle) Schematic of 
the microfabricated sensor head. (Bottom) Photograph of the microfabricated sensor head. 
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volume and one surface of the sensor is 4 mm. A second micro-prism behind the cell directs 
the light onto a mirco-ball lens, which focuses it onto a multi-mode fiber. At the end of the 
fiber, the transmitted light is detected with a single slow photodiode. 

2.3. Sensor characterization 

The sensitivity of the chip-scale optical magnetometer was measured after assembly at the 
National Institute of Standards and Technology (NIST) in Colorado, as well as after the 
transport to the Physikalisch-Technische Bundesanstalt (PTB) in Berlin. Inside the 
magnetically-shielded room BMSR-2 at the PTB [21] the sensitivity was measured to be 200 
fT/Hz1/2 between 5 Hz and 150 Hz, as shown in Fig. 2. At lower frequencies, the sensitivity 
was degraded, largely due to instabilities in the heater currents and fluctuations in the light 
polarization at the sensor head. While the sensitivity above 5 Hz was photon-shot noise-
limited, we had previously measured sensitivities in the laboratory at NIST that were nearly a 
factor of two better, since we were able to operate with a steeper resonance slope. This slight 
difference in performance is attributed to variations in cell temperature and light power after 
the transport. 

 
Fig. 2. Sensitivity of the chip-scale magnetic sensor measured inside the magnetically-shielded 
room BMSR-2. (Inset) Bode plot for a typical CSAM determined by use of a coil driven by a 
signal generator. The 300 µs time constant was used in the MEG recordings to achieve an 
effective bandwidth of up to 150 Hz. 

The high-frequency cutoff was carefully optimized in relation to the modulation frequency 
of 1.8 kHz and the need to achieve a sufficient bandwidth for the recording of relatively fast 
brain signals in the range between 50 and 100 Hz. Using a coil as signal source to the sensors, 
we verified the bandwidth experimentally through a frequency sweep. The resulting Bode plot 
in the inset of Fig. 2 shows that the −3 dB cut-off is at 50 Hz for a time constant of 1 ms and 
at 150 Hz for 300 μs when using a 24 dB/octave filter. The earliest brain response due to an 
electrical stimulation at the wrist occurs about 20 ms after the stimulation and is followed by 
responses at 30 ms and later. To resolve the first response, the N20m, it is clearly desirable to 
have a bandwidth exceeding 50 Hz and the 300 μs time constant was used. 

3. MEG measurements 

3.1. Experimental setup 

The CSAM sensor head was inserted into holes of a transparent acrylic plate, which was then 
attached to a dewar that houses a 304 channel low-temperature SQUID array inside the 
magnetically-shielded room BMSR-2 [21]. The SQUID array and sensors are devices made 
by PTB (cf [21]. and references therein). The sensors are magnetometers with a pick-up loop 
area of roughly 1 cm2. The SQUID dewar is of the flat bottom type and the magnetometers are 
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sensitive to the normal direction of the bottom. The SQUID dewar was hanging vertically 
from the ceiling with the CSAM attached to the bottom center and therefore SQUIDs and 
CSAM measure the same field component, although there is a vertical offset between the two 
due to the vacuum space of the Dewar. The control system was kept outside the seven-layer 
mu-metal room, and the cables and fiber connections to the sensor head were routed through 
small tubes that penetrate the walls of the shielded room. The sensor was oriented such that 
the radial component of the magnetic field of the head was measured. Both CSAM and 
SQUID signals were collected with the same data recording system with a sampling rate of 1 
kHz and an analog bandpass filter of 0.1 to 500 Hz. For the SQUID signals, the bandwidth 
given by the recording bandpass filter, while the bandwidth of the CSAM signals is limited by 
its driving circuitry, as was discussed in section 2.3. 

 
Fig. 3. Sketch of the measurement positions on the head used to detect 
magnetoencephalographic signals. Spontaneous activity around 10 Hz linked to closing and 
opening of the eyes was measured with the sensor positioned above O1 (international 10-20 
system for electrode positioning), whereas signals related to an electrical stimulation at the 
wrist were obtained over position C3. 

3.2. Spontaneous brain activity 

Spontaneous α–oscillations, triggered by a closing of the eyes, are employed in numerous 
studies as exemplary signals of spontaneous brain activity. The corresponding MEG was 
recorded for the first time several decades ago even before the advent of SQUIDs [22]. 

To detect α–oscillations, the magnetic sensors were placed over the occipital region of a 
subject (O1), the area where the signals were expected to be biggest (see Fig. 3). Here, both 
CSAM and SQUID array were positioned over the same area of the head, with the Dewar  

 
Fig. 4. Time-frequency analysis of the CSAM signal (left) and a SQUID signal (right) obtained 
during a repeated sequence of 20 s of eyes open followed by 20 s of eyes closed. The eyes-
closed sections start at 20 s and 60 s, lasting for 20 s as indicated, and the increase in α–power 
in the 10 Hz band is immediately visible both in the CSAM and the SQUID signal. 
Measurement position was O1, as sketched in Fig. 3 (International 10-20 system). 
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housing the SQUIDs above the CSAM at a much larger distance to the subject’s head. The 
subject was instructed verbally via a speaker to alternately close and open the eyes in intervals 
of 20 s. The alternating states of the eyes are known to induce changes of bioelectric brain 
activity in the alpha band (8-13 Hz) and, accordingly, should lead to related changes in MEG 
signal power around 10 Hz. To analyze the spectral content of the data, a wavelet transform 
(Morlet type) with a frequency resolution of 2 Hz was applied to the data. The results are 
shown in Fig. 4 as a time-frequency distribution of the CSAM time series (left) and a SQUID 
signal (right). The first twenty seconds refer to the condition with eyes open, and, upon 
closing the eyes at t = 20 s, signal energy clearly appears in the 10 Hz band for the next 20 s. 
This is repeated subsequently at 60 s. The two data sets for CSAM and SQUID were 
measured consecutively, without the subject changing positions. Simultaneous measurements 
were not possible, since CSAM heaters caused a perturbing field at 30 kHz that saturated the 
SQUIDs. The data of Fig. 4 give clear evidence for the detection of α–oscillations by the 
CSAM. The signal strength in the CSAM measurements is higher, due to a closer proximity of 
the CSAMs to the skull. We will come back to this point in the following section. 

3.3. Somatosensory evoked fields (SEFs) 

For applications such as studies on cognitive processes or clinical preoperative function 
mapping [23–25], brain responses due to a stimulation are often more important than 
spontaneous signals. A continuous signal is recorded for a sequence of up to several thousands 
of stimulations, and a stimulus-triggered average of the brain signal is calculated offline. This 
so called event-related field due to brain activity is usually completely obscured by technical 
noise in the raw data, biological artifact signals, and spontaneous brain signals unrelated to the 
stimulation. Here, we use an electrical stimulation at the wrist to evoke a well-defined 
biomagnetic brain activity starting 20 ms after the stimulus. This somatosensory-evoked field 
component, the N20m, is known since long from MEG studies using SQUIDs [26,27]. Here, 
we use CSAMs to measure N20m signals and compare them with those obtained with 
SQUIDs. 

The dewar with the CSAM was placed roughly 5 mm from the scalp, above position C3 of 
a healthy human subject, lying on his right side, as sketched in Fig. 3. A 100 μs current pulse 
of 8 mA, repeated every 223 ms, was applied to the Median nerve of the right hand, which 
excites primarily the left somatosensory cortex associated with C3. In total, the MEG signal 
following the stimulation pulses was recorded sequentially using CSAM and SQUID, but 
without changing the position of the subject. The responses to the 5000 stimuli were averaged 
in the subsequent preprocessing of the data. It is known that the N20m response does not 
show habituation effects for at least 10000 stimulations [28] and the sequential measurement 
is a reasonable approach. By choosing a stimulation periodicity of 223 ms, any harmonic 
relation to the 50 Hz power-line noise is avoided. This means that the 50 Hz power-line noise 
is effectively suppressed in the averaged data and the N20m is clearly visible. 

Averaged SEFs from recordings of three subjects (S1, S2, and S3) are shown in Fig. 5. For 
display purposes the SQUID signal was low pass filtered to achieve a bandwidth similar to the 
CSAM. Both CSAM and SQUID signal consist of a sequence of three peak regions. The first 
peak at 0 ms has a technical origin, because the current stimulation pulse at the wrist creates a 
magnetic field and the occurrence of this peak is indirect proof for proper recording 
conditions. The second peak can occur between 20 and 25 ms and it is of physiological origin. 
It is due to a focal current within the so-called somatosensory cortex, which becomes excited 
once the peripheral nerve signal is relayed through subcortical structures to the cortex. Note 
that the 20 ms delay between stimulation and brain response corresponds to the speed of 
signal propagation along the nerves, which is in the range of 50 m/s. The temporal location of 
the third peak is less well defined as several brain areas become activated in sequence after 
the N20m. The observed peak at about 50 ms (termed the P50m due to EEG nomenclature) is 
a superposition of contributions from more than one activity center [27], which can vary 
between subjects. Therefore a sequence of three peaks leads to the conclusion that the N20m 
is indeed observed in the CSAM signal in Fig. 5 of the three subjects. 
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Fig. 5. Averaged SEF for three different subjects with the CSAM and SQUID data taken 
sequentially over position C3 as indicated in Fig. 3. Left side: CSAM result; Right side: 
SQUID result. The stimulus artifact at 0 ms is visible in the curves, as are the N20m and later 
responses, which can vary in timing. The field strength is much smaller in the SQUID curves 
due to the much larger distance between source and sensor, which is estimated to be 2.5 cm for 
the CSAMs and 6 cm for the SQUIDs. 

The single SQUID signal in Fig. 5 was chosen from the multi-channel data to contain the 
important temporal features discussed above. The chosen SQUID is not necessarily the 
SQUID closest to the CSAM as the magnetic field is a vector field and due to the vertical 
offset between SQUID and CSAM the directions of strongest magnetic field varies with 
distance. Still the lateral distance between CSAM and the chosen SQUID was less than 5 cm. 
The details of the SEF traces differ between the SQUID and CSAM data due to the different 
spatial locations of the two sensors and the fact that a single trace reflects a superposition of 
several activity centers. This leads to a complex spatio-temporal field evolution, which can be 
fully characterized only by a multi-channel system. The complexity is exemplified by the 
opposite sign of the peaks in the CSAM data of S3, which is a consequence of the lateral 
distance between SQUID and CSAM. The N20m has typically a dipolar field map with a 
polarity change in the radial field direction directly above the activated brain region [27], 
where our sensors were positioned. Therefore, a polarity change is not surprising. The CSAM 
curves are noisier, as expected from the CSAM sensitivity curves in Fig. 2, but in terms of the 
signal-to-noise ratio, this is partly compensated by a larger amplitude of the signal of interest. 
This can be seen in the data of S2, which shows clearly an N20m signal in the CSAM data, 
but the SQUID signal is difficult to interpret. The N20m was probably too weak in this subject 
to be detectable by SQUIDs due to their larger distance from the head compared to the 
CSAM. 

The white noise level of the CSAM is ~200 fT/Hz1/2. A unity SNR would correspond to a 
signal of 3.2 pT with a measurement bandwidth of 250 Hz. Weaker signals can be detected 
through averaging. For uncorrelated noise the SNR increases by N1/2 with N the number of 
repetitions and 5000 repetitions result in a detection limit of ~45 fT. This is clearly sufficient 
to detect the N20m with an amplitude of 0.5 pT. 

The N20m amplitudes of the CSAM and SQUID curves are summarized in Table 1. 
Subject S1 was measured twice on different days and with slightly different sensor positions. 
The amplitudes are the difference between the average value in a baseline window from 5 to 
15 ms and the absolute peak value in the 20 to 25 ms window. The baseline window is chosen 
in accordance with the literature [26,27], as the earliest cortical signal is the N20m and no 
brain signal is expected earlier. The baseline window allows an estimate of the background 
noise, which is lowest in the 5 to 15 ms window for S1 and increases for S2 and S3. 
Nevertheless, the N20m response is stronger than the background noise even for the signal of 
S3, which shows remnants of power line interference. The peaks in averaged MEG data are 
often not significantly different from the background using simple statistical methods. 
Therefore usually a group of subjects yields statistical power. The data from the three subjects 
here do not contradict each other and a clear trend is observed. Note that the amplitudes are 
rough estimates to be used in the following consistency check involving a simple model of 
brain currents. These N20m amplitudes can be compared to an estimated field strength using 
the model of a brain current dipole Q parallel to the surface of a conductor with the z-direction 
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normal to the surface (Eq. (35) in [1]). By applying this model we treat the head surface 
locally as a plane, which is sufficient to get an estimate of brain currents close to a sensor. The 
choice of a current dipole parallel to the plane reflects the fact that in a precisely spherical 
conductor geometry, only tangential currents contribute to the magnetic field. Following [1] 
the field Bz normal to the plane is 
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Q z
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r r
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Here r is the position of the sensor, rQ is the position of the current dipole, Q is the current 
dipole source, ez is the unit vector normal to the surface, and μ0 is the Bohr magneton. It is 
assumed for simplicity that Q and (r-rQ) are perpendicular to each other and that the CSAM 
and the SQUID are offset horizontally with respect to the position of the current dipole. 
Directly above Q the nominator in Eq. (1) is zero, and consequently Bz = 0. 

 
Fig. 6. Sketch of the geometry of brain current dipole source Q parallel to the surface of a 
horizontally layered conductor and the two sensors used in this study. Both sensors measure Bz, 
which is zero directly above Q, and therefore the sensors are assumed to be offset horizontally. 

This geometry is sketched in Fig. 6, and Eq. (1) simplifies to 
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where α is determined by the horizontal offset. In the literature [2,26] the magnitude Q for a 
somatosensory source is in the range of 10 nA m. Using this value for Q and a horizontal 
distance between rQ and sensors of 1 cm, a vertical distance between CSAM and rQ of 2.5 cm, 
and vertical distance between SQUID and rQ of 6 cm, the following results are estimated: 
Bz(CSAM) = 550 fT, Bz(SQUID) = 42 fT. This agrees well with observed values given in 
Table 1. 

Table 1. Measured N20m amplitudes for CSAM and SQUID from the curves in Fig. 5 

  CSAM N20m (fT) SQUID N20m (fT) 

S1 500 30 
S2 700 20 
S3 700 45 
S1 700 50 
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4. Summary and outlook 

We report on MEG measurements of healthy human subjects with a fiber-coupled chip-scale 
atomic magnetometer. Spontaneous and somatosensory-evoked brain fields were measured 
and validated with SQUID measurements. While the noise of the optical magnetometer was 
higher than that of the SQUID, this was partly compensated for by an increased amplitude of 
the physiologic signal of interest. This benefit was made possible by the small size of the 
CSAM and the easy handling of the devices, which enables the attachment of the sensors 
close to the surface of the skull, almost like conventional EEG electrodes. 

The sensitivity of the CSAM sensor is currently limited by the photon-shot noise in the 
detected light. Since the beam diameter covers only 20% of the vapor cell area, and the 
detection efficiency is only 30%, the sensitivity of the CSAMs could be improved by an order 
of magnitude when more light is detected. More detailed numerical calculations suggest that 
sensitivities around 3 fT/Hz1/2 should be achievable with the current method [29]. Higher 
sensitivities can be reached with larger cell sizes, but since the noise floor in most 
commercially-available shielded rooms is of similar sensitivity, cell sized around (2 mm)3 
seem reasonable. We furthermore plan to optically heat the CSAMs, which would eliminate 
the fields generated at 30 kHz and allow for simultaneous measurements with SQUIDs and 
CSAMs [30]. 

While these measurements presented here can give us some ideas about the capabilities of 
CSAMs as inexpensive, uncooled sensors for biomedical applications, the next step would be 
the design of a multi-channel system to be able to localize sources and to suppress noise 
signals using multivariate statistics such as principal component analysis (PCA) and 
independent component analysis (ICA). The spatial sampling needed for brain magnetic fields 
was analyzed for SQUID-based sensor arrays in [31]. Those results might need minor 
adjustments due to the smaller distance between brain source and CSAM compared to the 
brain to SQUID array geometry. Newer results [32] estimating the necessary number of 
sensors from the degrees of freedom of brain magnetic fields indicate that 100 sensors are the 
absolute minimum. Therefore, the optimal number of channels in a CSAM system is not 
obvious at present and will be investigated in the future. Further CSAM system design 
improvements might include closed-loop configuration to extend the dynamic range needed 
for less-well shielded environments, the demonstration of gradiometers, and full vector-field 
measurements. These might allow at some point a fully geometrically flexible and lightweight 
MEG system, although the reality of this is still a long way ahead. Many small developments 
are needed, e.g., the projection vectors for the subtraction of background noise cannot be 
easily computed for a flexible geometry. 
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