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Abstract

The Casimir force between bodies in vacuum can be understood as arising from their interaction

with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a

complex dependence on the shape and material of the interacting objects. Becoming dominant

at small separations, the force plays a significant role in nanomechanics and object manipulation

at the nanoscale, leading to a considerable interest in identifying structures where the Casimir

interaction behaves significantly different from the well-known attractive force between parallel

plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal

surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be

observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features

strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond

what would be expected by any existing theoretical prediction.

PACS numbers:
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The Casimir effect, in its most basic form, can be understood as a direct macroscopic man-

ifestation of quantum electrodynamics, whereby changing the relative position of metallic

or dielectric bodies modifies the zero point energy of the surrounding electromagnetic vac-

uum, resulting in a measurable interaction force between them [1]. This direct connection to

fundamental concepts in quantum mechanics has made this effect the object of continuous

theoretical and experimental attention for over 60 years since it was first brought to light

by H. Casimir. More broadly, it is also a particular case of fluctuation-induced interaction

phenomena encountered in a wide variety of physical systems, such as binary liquid mixtures

[2], cell membranes and proteins [3], and even in cosmology [4].

The Casimir force has important technological consequences and untapped application

potential in the field of micro- and nano-electromechanical systems - engineered devices with

moveable parts ranging from 500 µm down to 10 nm in size. For example, in nanoelectome-

chanical contact switches [5] currently being developed as complements or even potential

successors of conventional CMOS, movable parts are separated by much less than 1 µm, and

accounting for the Casimir force is essential for their correct design and functioning. It has

been shown that this force significantly modifies both the static and the dynamic MEMS

performance, leads to unwanted stiction, and is an important source of nonlinear behavior

[6]. On the other hand, it has potential uses for non-contact low-dissipation actuation and

tuneability of such nanomachines [7]. Beyond nanomechanics, controlling this force is im-

portant for a diversity of fields, ranging from quantum computing with atom chips [8] to

searches for non-Newtonian gravity at sub-micron scales [9, 10].

The seminal theoretical work of Lifshitz [11] on the Casimir force between planar closely

spaced dielectric surfaces led to a complete framework for computing forces arising from

fluctuating electromagnetic fields. Well-established approximations, such as the proximity

force approximation [12] (PFA), have been widely utilized to extend the theory to non-planar

complex geometries. The PFA assumes that the force between non-planar objects is the sum

of the forces between infinitesimal planar sections computed with Lifshitz’s approach. The

theory has been experimentally verified under a broad range of conditions, e.g., at differ-

ent length scales, where either quantum or thermal fluctuations dominate the interaction,

with different materials and even with fluids between the surfaces [13–21]. However, with

few exceptions [22, 23], these precision measurements so far have been limited to planar

or near-planar surfaces. The Casimir effect with complex, non-planar geometries, where
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simple approximations are not applicable, continues to present theoretical and experimen-

tal challenges. While the underlying theoretical principles, approaches, and approximations

describing the interaction of electromagnetic waves with metallic and dielectric structures

of complex shapes are well established in classical photonics, the extra challenge stems from

the inherently broadband nature of the Casimir effect, where fluctuations at all frequencies

and wave-vectors have to be taken into account simultaneously. This not only makes the

problem more complex and less amenable to an analytical solution, but also many of the

abstractions based on narrow-band intuition become less applicable.

In the last few years, advances in numerical techniques give us the tools to compute

the Casimir force between complex structures made of real materials [24–26]. However,

on the experimental side, due to the difficulties associated with the reliable fabrication

of nanostructured samples and the measurement of the force, there have been very few

measurements involving nanostructured surfaces. Only recently the Casimir interaction

between nanostructured silicon gratings and a gold-coated sphere has been measured, with

conclusive evidence of the strong geometry dependence and non-additivity of the Casimir

force [22]. Specifically, it was observed that the patterning of periodic nanoscale trenches

into a silicon substrate makes the Casimir force per unit area more attractive than the

corresponding PFA prediction.

Metallic nanostructures have the potential to unveil a new realm for Casimir force manip-

ulation. Indeed, they support collective surface EM modes called surface plasmons, which

can propagate along the surface, decay exponentially away from it, and have a characteristic

frequency of the order of the plasma frequency. In the simple plane-plane configuration, it is

known that surface plasmons affect the Casimir force in a non-trivial manner, featuring an

attractive (repulsive) contribution to the force for distances shorter (larger) than the plasma

wavelength [27]. Nanostructured surfaces with tailored plasmonic dispersion relations have

already impacted classical nano-photonics, with applications ranging from extraordinary

light transmission to surface-enhanced Raman scattering [28, 29]. Likewise, metallic struc-

tures, with strong deviations from the planar geometry and possessing geometrical features

on very small scales, are likely to give significant new insights into potential Casimir devices.

To investigate the impact of nanostructuring on the Casimir effect we have designed and

fabricated high aspect ratio nanostructured gold gratings with critical dimensions ranging

from 90 nm to 200 nm (Fig. 1), of the order of the plasma wavelength of gold. The grating
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area has lateral dimensions of 50×50 µm2 and is surrounded by flat uniform gold films used

for reference and calibration (see Supplementary Information). We have then performed

high precision measurements of the Casimir force in vacuum between a gold-coated sphere

and our nanostructured gold gratings.

Fabrication of large area Au nanostructures with uniform sub-100 nm in-plane dimensions

and vertical sidewalls with depth ≥ 200 nm (aspect ratio larger than one) remains challeng-

ing. The standard dry etching techniques, e.g. reactive ion etching, do not generally work

well for noble metals because they generate large amount of sputtered material that re-

deposit onto the structures being fabricated. Focused ion beam or ion milling may provide

an alternative, but even in this case avoiding re-sputtering, creating deep vertical sidewalls

and uniform depth, and ensuring the metal on the surface is pristine is close to impossible.

Techniques based on gold deposition, e.g. lift-off or sputtering, are very popular but their

applicability is limited to nanostructures with small aspect ratio (< 1), while achieving nar-

row structures with tall vertical sidewalls and uniform height is limited by the inability to

uniformly fill deep trenches during deposition. We were able to achieve this by first using

state-of-the-art high-voltage 100 keV electron beam lithography to generate structures of

the needed size and geometry in e-beam resist materials, and then using them as templates

for pure gold deposition by either electroplating or sputtering. The e-beam parameters were

carefully optimized to achieve the needed aspect ratios, separately for trenches in a positive

tone resist for electroplating, and for ridges in a negative tone resist for sputtering. The

gold deposition processes were also highly optimized to achieve uniform plating thickness

and highly conformal sputtering coverage, both with low surface roughness. Figs. 1B to 1D

show scanning electron microscopy (SEM) images with details of the gratings used. The

gratings dimensions are: width w from 90 nm to 200 nm, period p from 250 nm to 800 nm,

and height h from 200 nm to 500 nm. A typical sample layout is shown in Fig. 1B. As

described below, the two flat uniform gold films that bound the grating area were used for

system calibration and distance reference. Fig. 1C shows the uniformity of the nanofab-

ricated surfaces and a cross-section of a single grating element is shown in Fig. 1D. (See

Supplementary Information for details of surface roughness and uniformity.)

The experimental setup for measuring the Casimir effect is similar to the one we have

used in previous work [30], which allowed us to perform the most precise measurement to

date of the force between metallic surfaces. Fig. 1A shows a schematic of the experimental
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system used (see details in Supplementary Information). It consists of a metal-coated sphere

of radius R = (151.7 ± 0.2) µm, attached to a micro-mechanical torsional oscillator. The

metallic grating is attached to an optical fiber that, at each distance d, is used to keep the

sphere-grating separation stable within half a nanometer. As the grating is brought into

close proximity of the sphere, the interaction between the two surfaces produces a shift in

the oscillator resonance frequency, which is used to extract the gradient of the Casimir force,

∂dFsg.

The measured force gradient shows finite size effects when the sphere is near the edge

of the gratings. In order to avoid these effects, the sphere was positioned close to the

center of the samples under investigation. The measurement results become experimentally

indistinguishable from each other once the center of the sphere is at a distance of the order

of or larger than 10 µm from the edge of the sample (See Supplementary Information).

The apparatus was calibrated using a known, calculable interaction - the electrostatic one.

Two different calibration techniques were employed: the first one used the flat continuous

film in the immediate vicinity of the grating for calibration just before performing any

measurement on top of the grating area; the second one performed the whole electrostatic

calibration process over the grating itself. The latter technique required calculating the

system capacitance, which was done by solving the electrostatic problem using a finite

elements analysis. Both procedures produced experimentally indistinguishable results (see

Supplementary Information for further details). The use of a sphere instead of another

planar surface avoids the problem of keeping the two objects parallel but complicates the

exact theoretical description. A common approach to bypass this difficulty relies on the PFA:

this approximation assumes that when the sphere’s radius is much larger than the sphere-

grating distance d (d/R � 1), the relevant EM field modes see the sphere as effectively

planar and one can then approximate the sphere’s surface as a collection of planar elements.

Within this procedure the force gradient can be calculated as the sum of several local parallel

plane interactions, which can be evaluated using the Lifshitz formula. Each local pressure

depends on the distance between the sphere and the grating surface at that location, giving

as a result

∂dF
PFA
sg (d) = 2πR[fPpp(d) + (1− f)Ppp(d+ h)] ≡ 2πRPPFA

pg (d), (1)

where Ppp(d) is the Lifshitz formula for the Casimir pressure between two parallel planes [11].
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In the previous expression the impact of nanostructuring is captured in the grating’s filling

factor f = w/p, and in the limit of f → 1 we recover the usual result for the sphere-plane

configuration.

Fig. 2A shows the Casimir pressure for several gold nanostructured gratings with different

dimensions. To simplify the data analysis, it is convenient to normalize the experimentally

measured sphere-grating Casimir force gradient, ∂dFsg, dividing it by the factor 2πR. Within

PFA this ratio represents the data in terms of the equivalent plane-grating pressure Ppg. As

expected, as the filling factor is reduced the Casimir pressure is also reduced. This is a simple

effect showing the dependence of the Casimir effect on the optical density of the involved

bodies: nanostructuring leads indeed to a more diluted optical permittivity, which implies

less force. In addition, the Casimir interaction for samples with similar filling factors appears

to be independent of the height of the grating. For samples of similar geometry the results

are substantially the same and do not depend on the sample preparation methodology, i.e.

sputtering or electroplating. In order to clearly identify the influence of the grating geometry

on the Casimir interaction, it is helpful to compare data obtained in nanostructured gratings

having similar filling factors for which PFA predicts about the same result. Figures 2B and

2C show the data for two specific electroplated samples we will focus on in the remainder

of the paper. Their filling factors are f1 = 0.360 (Fig. 2B) and f2 = 0.387 (Fig. 2C).

The dashed lines show the behavior of the plane-grating pressure as calculated within a

PFA treatment. It is clear from Figs. 2B and 2C that, in our case, the PFA gives a poor

description of the equivalent plane-grating Casimir pressure.

This disagreement is even more evident in Fig. 3 where the experimental data are normal-

ized by the corresponding PFA expressions. By performing this normalization one suppresses

geometrical effects associated with the filling factor and with the redefinition of the distance

due to the height of the grating. As is clear in Fig. 3, this normalization gives very different

results even for samples with similar filling factors. At short separations the experimental

data show an equivalent pressure larger than the one predicted by PFA in Eq.(1), i.e., the

force per unit area becomes more attractive, similarly to what has been observed in silicon

gratings [22]. However, at large separations, the equivalent Casimir pressure is reduced with

respect to the PFA prediction, i.e., the force per unit area becomes less attractive, reaching

values more than 2 times smaller than the predicted by PFA. The separation at which the

crossover between these two regimes occurs is roughly proportional to the period of the grat-
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ing. This is the first experimental report of such significant pressure reduction with respect

to the PFA prediction and of a crossover from enhancement to reduction of the Casimir

force per unit area. The same behavior has been observed in each one of the 17 metallic

gratings measured during this experiment, independently of the method used to fabricate

the gratings. The inset in Fig. 3 shows the ratio Ppg/P
PFA
pg for a grating fabricated using

sputtering techniques.

An apparent trend is also clear when comparing data of nanostructures with similar filling

factors but different periods: (i) at short distances, the shorter the grating period the larger

the enhancement of the Casimir pressure with respect to the PFA, and (ii) at large distances,

the opposite happens - shorter period leads to a stronger reduction of the Casimir force. Since

at large distances ∂dF
PFA
sg (d) ∝ d−4, the data shows that the force gradient or the equivalent

Casimir pressure decreases faster than the inverse fourth-power distance. In addition, for

fixed filling factor the rate of decrease is larger for smaller period gratings. This latter

observation can be understood from a scaling argument (see Supplementary Information).

At these large distances, this behavior is in contradiction with what is intuitively expected:

in the limit of small period one should progressively recover the plane-plane result.

Deviations from PFA are not surprising and are known, at least theoretically, for some

simple geometries. For example, in the sphere-plane configuration PFA overestimates the

exact result, the leading correction to PFA being of the order d/R [31]. In the case of a

doped silicon grating with micrometer features interacting with a Au sphere it was shown

that PFA instead underestimates the correct result for plane-grating distances below 500

nm [22]. To improve on our PFA expression (1) we numerically computed the equivalent

plane-grating pressure Ppg for our configuration taking into account the small size and the

high conductivity of our nanostructures, and approximated the sphere-grating force gradient

in this modified PFA as 2πRPpg(d). Within the scattering formalism [25, 26] the pressure

is expressed as a series over Matsubara frequencies ξl = 2πlkBT/~

Ppg(d) = −kBT∂d
∞∑′

l=0

Tr ln[1−Rp(iξl) · χpg(d, iξl) · Rg(iξl) · χpg(d, iξl)]. (2)

Here T is temperature, Rp(g) is the reflection operator of the plane (grating), and χij are

plane-wave translation operators between the two surfaces. The primed sum means that

the l = 0 term is counted with half weight. The trace operation sums over the two light

polarizations, over different Brillouin zones of the periodic structure, and integrates over
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the parallel wavevectors kx (direction of grating modulation) and ky (invariant direction

for grating) from −π/p to π/p and −∞ to ∞, respectively. The broadband nature of

the Casimir interaction is apparent in the above expression. The reflection operators are

computed from the solution to Maxwell equations for the EM field conveniently decomposed

in terms of the natural modes of the structures [26]. In our calculation the temperature is

set to T = 300 K and for simplicity we model the permittivity of gold using a Drude model

ε(ω) = 1−Ω2
p/(ω

2+iΓω) with plasma frequency Ωp = 8.39 eV and dissipation rate Γ = 0.0434

eV. Numerically, the errors in the computation of the Casimir pressure mainly arise from the

truncation of the Matsubara sum and of the reflection and translation operators, represented

as finite-size matrices. In our implementation, the total theoretical/numerical error is less

than 2 % over the entire pressure-displacement curve. The accuracy of our numerical results

could nevertheless be affected by the model and optical parameters chosen to describe the

actual permittivity of gold used in our samples. For example, a more accurate description of

the optical properties for gold requires the introduction of the interband electronic transitions

in the dielectric function. Generally, a good description of this effect is given by using the so-

called 6-oscillator Drude-Lorentz model. We have checked that the inclusion of the interband

contribution results in a plane-grating pressure a few percent stronger than the one given

by the simple Drude model, and that at large distances its effect is negligible since the low

frequency behavior is dominated by the Drude contribution. On the other hand, the use of

a plasma model - Γ = 0 - produces similar numerical results for the pressure in the whole

experimental range.

The solid lines in Figure 2B and 2C are the result of the modal approach numerics for

the equivalent plane-grating pressure Ppg. At short distances this approach agrees with the

data better than PFA, as was already observed in the case of silicon gratings [32]. At large

distances, however, we observe an even stronger disagreement with the experiment. By

normalizing our numerical results obtain from Eq.(2) by the values calculated using PFA

given in Eq.(1), the disagreement at large distance becomes even more evident (see Fig.3).

In contradiction with the experiment, the two solid lines describing this ratio have values

always larger than 1, attaining the maximum at distances of the order of the grating period.

The ratio tends to 1 in two opposite limits: (i) at short distance, substantially confirming the

validity of the PFA (see Fig. 5 of the Supplementary Information) and (ii) at large distance,

where both the equivalent plane-grating PFA pressure and the pressure calculated using the
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previous numerical approach tend to the same value, i.e. the Lifshitz plane-plane formula

(see details in Supplementary Information). Several checks, including a comparison with

the Casimir plane-grating pressure computed within the framework of an effective medium

approach [33], have confirmed the validity of our calculation for the plane-grating geometry.

While disagreement with the usual PFA, Eq.(1), was expected, the one with its modified

version 2πRPpg(d), using an exact theoretical description for the equivalent plane-grating

interaction, is unanticipated. Two main differences distinguish our numerical calculation

and the experimental setup: the PFA treatment of the sphere’s curvature, i.e. the calcula-

tion of the equivalent plane-grating pressure, and the assumption of an infinitely periodic

system, which is in contrast with the finiteness of all bodies used in the experiment. Both

assumptions rely on common approximations that are known for providing a good theory-

experiment agreement for planar unstructured samples, as long as d is much smaller than

R and any lateral dimensions of the sample. As a check of the sensitivity of our experi-

ment we have performed Casimir measurements with the sphere on top of the flat metallic

pads, which have lateral dimensions similar to the grating (see Fig. 4 of the Supplemen-

tary Information). We found good agreement between the data and the standard theoretical

treatment that uses PFA, neglecting any finite-size effects of the pads, as well as an excellent

agreement with the previous measurements of the Casimir force in the sphere-plane config-

uration. In this case deviations due to the curvature of our sphere tend to reduce the force

with respect to its PFA value with a difference of less than 1 % for distances shorter than

one micron [31]. The nanostructuring of the metallic surface, however, introduces into the

problem additional length-scales and substantially modifies the mode structure between the

two plates. In contrast to previous experiments [24], here we explored distances larger than

the grating’s period, where we observed the strong deviations from the theoretical values

for the effective plane-grating pressure. Unfortunately, state-of-the-art numerical techniques

cannot solve exactly the sphere-grating problem for our case given the disparate ranges of

length-scales present in the experiment (100’s nm-sized grating features, > 100 µm sized

sphere, and < 1 µm separation distances), preventing at the moment an in-depth study of

the validity of a PFA treatment of the sphere’s curvature in our experimental sphere-grating

geometry.

In conclusion, we have shown that by nanostructuring the metal surface of interacting

bodies at scales below the plasma wavelength, a new regime in the Casimir interaction can
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be achieved. This regime is significantly different from the well-known attraction between

parallel plates and is characterized by a crossover from enhancement to strong reduction

of the Casimir force. For large inter-surfaces separation, the Casimir interaction decreases

faster than the usual d−4 power law, reaching values more than 2 times smaller than the one

predicted by the proximity force approximation for planar-like geometries. We demonstrated

that existing state-of-the-art theoretical modeling, based on the proximity force approxima-

tion for treating the curvature of our large-radius sphere and an exact ab-initio scattering

analysis of the resulting effective plane-grating geometry, does not reproduce the experimen-

tal findings. The development of a full numerical analysis of the sphere-grating geometry,

capable of dealing with the disparate length scales present in our experiment, remains an

open problem.
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FIG. 1: (A) Schematic drawing of the experimental configuration used to measure the Casimir

force between a gold-coated sphere and a nanostructured grating. The sphere is attached to the

torsional plate of a micromechanical oscillator and the nanostructured grating is fixed to a single

mode optical fiber. The optical fiber is used to monitor the distance between the bottom of

the fiber and the supporting substrate while the micromechanical oscillator provided a capacitive

measurement of the Casimir interaction. (Inset) Definitions of the geometrical parameters of the

metallic nanostructures. (B-D) SEM images of typical samples used in the reported experiments.

(B) The nanostructured gratings are limited by two uniform films used for calibration and reference.

(C) Magnified detail of the grating area showing the high spatial uniformity achieved in these

samples. (D) SEM cross-sectional photograph of a single grating element.
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FIG. 2: Equivalent plane-grating Casimir pressure as a function of separation between the sphere

and the grating. (A) Measurements done for metallic nanostructured samples with different pa-

rameters. The data show that the main effect of the nanostructure is to reduce the values of the

pressure according to the samples filling factors. (B-C) Results for two samples of similar filling

factors (f1 = 0.360 and f2 = 0.387, respectively). Experimental measurements (dots with error

bars), proximity force approximation as in Eq. (1) (dashed lines), and modal approach calculation

as in Eq. (2) (solid lines). Error bars are the variance of the mean measured pressure over the 45

repetitions of the experiment for each sample. They are plotted every fifth data point to increase

the clarity of the figure (see Supplementary Information for more details). Geometrical parameters

of the gratings are indicated as p (period)/w (width)/h (height), all in nanometers.
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FIG. 3: Main figure: Equivalent plane-grating Casimir pressure normalized by the PFA expression

in Eq. (1), as a function of separation between the sphere and the grating for samples made with

electroplating of high aspect ratio molds. Data are presented with dots and error bars for sample

1 (blue) and sample 2 (red). A weighted rolling average over a variable bin width is performed for

the pressure, as described in the Supplementary Information, which also describes how error bars

are obtained. The full lines correspond to the modal approach numerical prediction given in Eq.

(2). Parameters are the same of Figure 2. The observed fluctuations on the experimental data

originate from the rolling average. The effect of points far from the mean is extended over the bin

where the average is performed. Inset: Characteristic results for samples made by sputtering of

Au onto hydrogen silesquioxane structures (see Supplementary Information).
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FIG. 1: SEM image of a typical HSQ mold before deposition of Au.

I. SAMPLE PREPARATION

The nanostructured gratings used in this work were fabricated using two different methods

as described below.

A. Method I: Sputtering of gold onto hydrogen silsesquioxane (HSQ) structures

HSQ is an inorganic negative tone e-beam resist which is basically a spin-on dielectric

with silicon dioxide-like physical properties. HSQ was patterned with an e-beam lithography

system, developed and cured. In Sup. Fig. 1, we show a HSQ grating with lines having a

height of 380 nm and width of 40 nm (≈ 10 : 1 aspect ratio structure).

After patterning, these HSQ structures were coated with Au by conformal sputter depo-

sition. The conformality of our deposition is around 0.25 and hence the widening of the lines
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is minimal but thick enough to completely cover the dielectric with Au. After deposition of

130 nm of metal, a 40 nm wide line becomes a ≈ 100 nm wide line. This results in 4 : 1

aspect ratio metallic nanostructures. This method does have its limitations in the smallest

width achievable due to the minimal thickness required for Au in Casimir measurements.

Since HSQ itself has very smooth surfaces after patterning it results in a smooth Au surface

when coated. The Au surface quality from atomic force microscopy (AFM) measurements

show that the deposited Au has a RMS surface roughness of ≈ 1.0 nm and is comparable

to the surface roughness of Au deposited on single crystal silicon. Varying structures with

different widths (100 nm to 200 nm) and period (300 nm to 800 nm) were fabricated so that

structures can be compared in measurements with different dimensions but similar filling

factors.

B. Method II: Electroplating of high aspect ratio molds

In this method the gold gratings are fabricated by electron beam lithography and elec-

troplating. Briefly, a very high-resolution positive e-beam resist (ZEP520 [1]) with thickness

500 nm is spun on Si chips coated with 5 nm Ti, 200 nm Au, and 5 nm Ti layers. The resist is

exposed in an e-beam lithography system at 100 kV and developed in hexyl acetate to form

a high-resolution, high aspect ratio mold. The top Ti layer is then etched off in reactive ion

etching, so that the Au is exposed at the bottom of the mold (the top Ti layer is necessary

due to the poor adhesion of the e-beam resist to the Au surface). Next, Au electroplating is

performed in an AuCN bath at room temperature using a current density of 30 A/m2. The

deposition rate is measured experimentally, and the time is varied to attain the desired Au

thickness. After electroplating, the chip is rinsed and the e-beam resist stripped in a solvent

bath. The plated structures are characterized by optical profilometry, SEM, and AFM. The

measured RMS roughness of the lines is on the order of 1.5 nm, and the thickness variation

across a structure is approximately 10 nm.

II. EXPERIMENTAL SETUP AND CALIBRATION

We use a torsional oscillator (Fig. 1A) to measure the Casimir force between the gold

sphere and the nanostructured gratings. The oscillator plate and a sapphire sphere are

3



coated with a ≈ 1 nm layer of Cr followed by a ≈ 200 nm thick layer of Au. The oscillator

is a 500 x 500 µm2, 3.5 µm thick heavily doped polysilicon plate suspended at two opposite

points by serpentine springs. Serpentine springs were selected over conventional torsional

rods because for equal sensitivity, they occupy a smaller region and reduce vertical sag of the

torsional paddle. The springs are anchored to a silicon nitride covered Si platform. When

no net torque is applied, the plate is separated from the platform by a ≈ 2 µm gap. Two

independently contacted polysilicon electrodes located under the plate are used to measure

the capacitance (Andeen-Hagerling AH2700A capacitance bridge [1]) between the electrodes

and the plate. The oscillator/sphere assembly is mounted on a 5-axis stepper motor driven

positioner (Newport 561 series [1]). The nanostructured surface is mounted on a xyz piezo-

driven, closed-loop, 70 µm range per axis (MadCity Labs Nanopositioning System [1]). Both

positioning systems, which are attached to a rigid, 5 kg stainless steel structure, allow for

positioning and repeatability better than 0.2 nm. The whole assembly is contained in a

vacuum chamber maintained at P = 2.6 × 10−5 Pa. There is passive magnetic damping

between the assembly and the vacuum chamber. The vacuum chamber is mounted on an

optical table with active vibration isolation control (TMC Precision Electronic Positioning

System [1]). As measured at the sample’s position, the vibrational amplitude of motion is

smaller than 10 pm in the 10 Hz to 1000 Hz range. The sphere used in the experiments

has a radius of curvature R = (151.7 ± 0.2) µm. The physical parameters for the sphere

(radius and sphericity) were determined by means of SEM. Both were found to be within

the specifications of the manufacturer. Deposition induced asymmetries were found to be

smaller than 10 nm, the resolution of the SEM. A single mode optical fiber (Corning SM-28

[1]) is rigidly attached to the nanostructured grating, and it is used to constantly monitor

the absolute separation D between the end of the fiber and the substrate below the torsional

oscillator. The RMS error in the interferometric measurements is δD = 0.25 nm, dominated

by the overall stability of the closed-loop feedback system. Details on how the separation d

between the sphere and a uniform sample (i.e. the pad in Fig. 1B) is obtained can be found

in previous work [2].

The apparatus is calibrated using the electrostatic interaction between the sphere and

the grating/pad plate. The torsional spring constant κ = (8.85 ± 0.03) Nm is found in this

way. Once the system is characterized a potential difference V0 6= 0 between the sphere and

the pad is applied to minimize, within the experimental error, the electrostatic force. We
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FIG. 2: Plane-grating electrostatic force obtained using a commercial finite element electrostatic

solver (solid lines) and the shifted measured data (black squares). The inset shows, in addition to

these two sets, the data before shifting (open circles).

checked that V0 is independent of position when the sphere is either on top of the pad or

above the nanostructured surface.

Samples grown by metal sputtering (sample preparation method I) have equal pad and

grating heights, as determined by AFM measurements. Consequently the distance D mea-

sured between the fiber and the pad was used for obtaining the distance d between the apex

of the sphere and the nanostructured surface. In contrast, in samples grown by electroplat-

ing (method II) the pad is not as high as the grating, the height difference depending on

the preparation conditions. In this case, two different approaches were used:

(i) The capacitance and the electrostatic force between the sphere and the grating were

measured as a function of separation D. These values were compared with calculations
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performed using a commercial finite element electrostatic solver. To this aim we first calcu-

lated the capacitance per unit of area between a plane and a grating by numerically solving

the electrostatics equations. The modeling was conducted using Comsol 3.51 software [1].

Translational symmetry in the direction of the grating lines allows us to formulate the prob-

lem in 2D, while the periodicity in principle allows us to model only one period. In practice

the model included two periods, because if was computationally affordable and provided

for better visualization. Parametric study as a function of gap was performed by smoothly

deforming the mesh without re-meshing for each gap to avoid numerical noise in the capaci-

tance derivative. Two models were created: One with a bigger domain suitable for modeling

gaps above 500 nm, while the other with a smaller domain was used for the gaps in the 100

nm to 600 nm range. For each model a mesh was created with higher density of elements

near the ends of grating fingers. These meshes were further refined twice and the modeling

repeated for each refinement. The refined meshes have 164460 (137768) degrees of freedom,

15093 (13371) mesh points and 29696 (26288) triangular elements for the larger (smaller)

model domains. Typical relative numerical error in the capacitance values between the two

models and the three different meshes within each of the models is below 2e-3 with better

agreement between the finer mesh cases. This imprecision is significantly below the other

sources of uncertainly in the experiment. The metal surfaces were assumed perfect conduc-

tors at fixed electrical potentials. To calculate the capacitance as a function of separation

distance, the mesh was smoothly deformed as the plane - grating separation was changed.

Solutions at different mesh densities were compared to ensure numerical accuracy. Finally,

PFA was used to obtain the gradient of the capacitance for the sphere/grating configuration,

∂dC. Since the measured values of capacitance are inherently affected by parasitic capaci-

tance, the comparison with the electrostatic force was deemed more reliable. In this scenario

the gradient of the capacitance with respect to the separation was used to determine the cal-

culated electrostatic force Fe = 1/2∂dC∆V 2, where ∆V is the potential difference between

the two plates of the capacitor. It was observed that the experimental curve, when the data

was plotted as a function of d (when the sphere is on top of the grating) has to be shifted

by a sample-dependent amount di0 (≈ 15 nm) to make the calculated and measured values

coincide.

(ii) The height difference dii0 between the pad and the ridges was measured using an AFM.

This difference was taken into account when determining the separation between the sphere
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and the nanostructured surface. Specifically, for the sample with h = 400 nm, w = 130 nm,

p = 350 nm, di0 = (17 ± 2) nm was obtained by a least square fitting of the electrostatic force

with a single fitting parameter, as shown in Sup. Fig. 2. Using the AFM method, dii0 = (17

± 1) nm was found. In the latter case the error is the standard deviation of the values found

when measuring the height difference at 25 different points. Since both methods yielded

identical results within the experimental error, method (ii) was preferred due to its smaller

intrinsic error.

Data reported in Fig. 3 of the main paper were obtained by performing a weighted rolling

average over n consecutive points. The value of the pressure at position d is

P pg(d) =

∑n−1
i=0 Ppg(d+ i∆dd)δP−2

pg (d+ i∆dd)∑n−1
i=0 δP

−2
pg (d+ i∆dd)

, (1)

where d = (1/n)
∑n

i=0(d + i∆dd) , and d + i∆dd represent the n different separations con-

sidered. δPpg is the random error in the determination of the pressure Ppg at distance d.

The random error of the weighted rolling average is δP pg(d) =
[∑n−1

i=0 δP
−2
pg (d+ i∆dd)

]−1/2
.

The number of data points n used in the rolling average varies as a function of separation:

n =10 for d < 300 nm and then it increases linearly with separation to reach a value of

n = 35 at d = 1000 nm, the maximum separation between the sphere and the grating. The

total error in the pressure is obtained as the addition of the systematic and random errors.

The maximum contribution to the systematic error δP
syst

pg arises from the uncertainty in the

measurement of the resonant frequency (δfr = 6 mHz) and from the error in the measure-

ment of the sphere’s radius R. The systematic error is smaller than the random error in the

whole separation range. Between 300 nm < d <1000 nm, δP
syst

pg ≈ 0.2 mPa. In the binning

process, the error in the separation is determined as the variance of the different separations

used, which is dominant when compared to the error in the measurement of the separation

δd ≈ 2 nm. The experimental data before this smoothing procedure are shown in Sup. Fig.

3.

The measurements reported in Fig. 3 and in supplementary Fig. 3, were performed at

the center of each grating. In order to find the center of the grating the sphere was scanned

on top of the sample until a region where the measured signal did not depend upon position

was found. One of such scans is shown in supplementary Fig. 4. This scan was performed

in 0.5 µm intervals along the long axis of the pad-grating system. Outside the pads (left and

right parts of the figure) the separation between the sphere and the sample is large and as a
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FIG. 3: Equivalent plane-grating Casimir pressure normalized by the PFA expression shown in

Eq. (1), as a function of separation between the sphere and the electroplated gratings. The upper

panel shows the results obtained using sample 2 and the lower panel the ones from sample 1.
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FIG. 4: Equivalent pressure as a function of position when the sphere is scanned on top of the

pad-grating system. Data was acquired at a sphere-grating separation of 200 nm. The sample

used was Sample 3 (300/130/480). For clarity, the schematic of the pad-grating assembly is shown.

Inset: Zoom in on the grating region, showing the flatness of the data on the center region.

consequence, the signal is very small. For the measurements performed on top of the pads

and on top of the grating, we observed that there is a finite region (about 30 µm across)

where the signal is independent of the position.

III. THEORETICAL AND NUMERICAL METHODS

Within the scattering approach to Casimir physics, the calculation of the plane-grating

Casimir pressure is essentially reduced to the computation of the reflection operators R of

the plane and the grating. For the planeRp is given by the usual Fresnel coefficients. For the

grating Rg is computed following the modal approach [3]. We divide the grating geometry

into three regions (see inset of Fig. 1A): (1) the vacuum, homogeneous region z > h above
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the grating, (2) the grating region 0 ≤ z ≤ h, periodically modulated along the x-direction

and invariant along the y-direction, and (3) the Au bulk, homogeneous region z < 0 below

the grating. Within each i-th region the EM field can be expressed as a series in terms of

the eigenvectors which are solutions to Maxwell equations, namely

F (i)(x, y, z, t) =
∑
m

A(i)
m Y

(i)
m (x)eiλ

(i)
m zei(kyy−ωt). (2)

Here F denotes any component of the electric or magnetic field, and the sum is over a discrete

set of complex eigenvalues λ
(i)
m ; the corresponding eigenvectors are denoted by Y

(i)
m . These

quantities are computed using the quasi analytical approach discussed in the second reference

in [3]. The complex coefficients A
(i)
m are then determined by imposing boundary conditions

on the vacuum-grating and grating-bulk interfaces, and finally the reflection operator Rg is

obtained and employed in the Matsubara series expression for the Casimir pressure.

Some analytical predictions can be made about the plane-grating pressure. First, at

very large separations it is dominated by the low-frequency/low-momentum behavior of

the reflection matrices: above ≈ 3 µm the zeroth Matsubara term is practically describing

the whole interaction. For this term, using the Drude model for Au it is also possible

to analytically solve for the eigenvalues and the eigenvectors of the EM field expansion in

the grating [4]. Only the transverse magnetic components matter, and in this limit the

corresponding reflection matrices are equal to unity, for both the plane and the grating

(the latter fact was numerically verified). Since the PFA expression for the plane-grating

pressure,

PPFA
pg = fPpp(d) + (1− f)Ppp(d+ h), (3)

shows exactly the same behavior in the same distance range, the ratio Ppg/P
PFA
pg must go to

1 at separations much larger than the ones accessed in the experiment (see supplementary

Fig.3).

Second, in order to gain further insights into the large-separation behavior, we calculated

the plane-grating Casimir pressure using an effective medium approximation (EMA) for the

nanostructure [5]. This approximation consists in replacing the spatial-dependent electric

permittivity ε(ω, r) describing the geometrical and optical properties of the nanostructure

by an effective homogeneous (not necessarily isotropic) permittivity, ←→ε EMA. The EMA

is expected to be valid for separations much larger than the geometrical features of the

nanostructure (above ≈ 5 µm). The EMA permittivity tensor is modeled as that for a
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FIG. 5: Plot of the equivalent plane-grating pressure for sample 1 normalized by the corresponding

PFA prediction in Eq.(1). The solid line is the full numerical result for the modal approach as in

Eq. (2), and the dotted line represents the result of the calculation performed within an effective

medium approach (see text). These results show that effective medium cannot be trusted below 5

µm.

uni-axial anisotropic medium [6], ←→ε EMA = diag(εxx, εyy, εzz) with εyy = εzz = εDf + (1− f)

and εxx = εD [f + εD(1− f)]−1, and the resulting EMA plane-grating pressure is calculated

following the technique of previous work [6]. As follows from supplementary Fig. 5, the

EMA fails to reproduce the exact results for distances below 5 µm. In the expected range

of validity of EMA, the ratio PEMA
pg /PPFA

pg is always close to 1.

Third, at short (d ≤ 400 nm) and intermediate (400 nm ≤ d ≤ 1000 nm) separations,

the respective enhancement and reduction of Ppg/P
PFA
pg are stronger for the grating with

the shorter period (see Fig. 3). It should be noted that the two fabricated samples have

slightly dissimilar filling factors. However, it can be numerically shown that for gratings with

identical filling factors, an analogous behavior occurs. This feature can be understood with
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the help of the following scaling argument. In connection with the scale invariance of Maxwell

equations, the plane-grating Casimir pressure satisfies the scaling property Ppg(d, p, f, l) =

p−4Ppg(d/p, 1, f, l/p), where l denotes all other characteristic lengths in the problem (height,

Au plasma wavelength, thermal wavelength, etc.). Let us suppose that in the distance

regimes considered, Ppg does not appreciably depend on l. Then, for two gratings with

identical filling factors (f = f1 = f2) but different periods (p1 < p2), the respective pressures

are given by P1 ≈ p−4
1 P (d1/p1, 1, f) and P2 ≈ p−4

2 P (d2/p2, 1, f). One expression can be

obtained from the other by using the set of linear transformations: P2 = (p1/p2)
4P1 and

d2 = (p1/p2)d1 . As a direct consequence, if the pressure can be approximately described

by a power-law P ∝ d−n in a certain region of distances, then P1 ∝ d−n implies P2 ∝

(p1/p2)
4−nd−n. Therefore, at the same plane-grating distance, P2 < P1 for n < 4 (this is the

scenario in Fig. 3 at short separations) and P2 > P1 for n > 4 (this is the scenario in Fig. 3

at large separations). Small deviations from the above scaling argument are due to the role

played by l, and also to the slightly different filling factors of the two fabricated samples.
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