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Abstract 
 
The National Institute of Standards and Technology (NIST) Speaker Recognition Evaluations (SRE) 
are an ongoing series of projects conducted by NIST. In the NIST SRE, speaker detection 
performance is measured using a detection cost function, which is defined as a weighted sum of 
probabilities of type I error and type II error. The sampling variability can result in measurement 
uncertainties of the detection cost function. Hence, while evaluating and comparing the 
performances of speaker recognition systems, the uncertainties of measures must be taken into 
account. In this article, the uncertainties of detection cost functions in terms of standard errors (SE) 
and confidence intervals are computed using the nonparametric two-sample bootstrap methods based 
on our extensive bootstrap variability studies on large datasets conducted before. The data 
independence is assumed because the bootstrap results of SEs matched very well with the analytical 
results of SEs using the Mann-Whitney statistic for independent and identically distributed samples 
if the metric of area under a receiver operating characteristic curve is employed. Examples are 
provided. 
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1 Introduction 
 
The National Institute of Standards and Technology (NIST) Speaker Recognition Evaluations (SRE) 
are an ongoing series of projects conducted by NIST [1]. These evaluations have been making 
important contributions to the direction of research efforts, and the calibration of technical 
capabilities of the research community working on the general problem of text independent speaker 
recognition. 
 
The 2008 NIST SRE consisted of 13 tests [1, 2]. Each test consisted of a sequence of trials, where 
each trial consisted of a target speaker, defined by the training data provided, and a test segment. For 
each trial, the system to be evaluated needed to decide whether the speech of the target speaker 
occurred in the test segment, and generate a similarity score. Target (i.e., genuine) scores are created 
in trials where the test speech segment contains speech of the model speaker defined in the training 
data; and non-target (i.e., impostor) scores are generated in trials where the test speech segment does 
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not contain speech of the model speaker. A higher similarity score indicates greater confidence that 
the speech of the target speaker occurs in the test segment. In the 2008 NIST SRE, generally 
speaking, the total number of target scores was about 20,000 and the total number of non-target 
scores was about 80,000 [2, 3]. 
 
Among the 13 tests given in the 2008 NIST SRE, there was a single core test formed by short2 of 
training conditions and short3 of test segment conditions, for which all participants were required to 
submit results. The details of the evaluation plan can be found in Ref. [2]. Therefore, this core test 
was of interest, and in this article all speaker recognition data were taken from this core test. In the 
SRE, the speaker detection performance is measured using a detection cost function that is defined 
as a weighted sum of probabilities of type I error (miss) and type II error (false alarm) [1, 2]. 
 
As is well-known, the sampling variability can result in uncertainties of any measures [4]. If sets of 
samples are collected under the same circumstances, the measures in evaluation may fluctuate. This 
happens in SRE as well. Hence, while evaluating and comparing the performances of speaker 
recognition systems, the uncertainties of measures must be taken into account. Now, the key issue is 
how to calculate the uncertainties of detection cost functions in terms of standard errors (SE) and 
confidence intervals (CI). 
 
It is hard to compute analytically the covariance term (i.e., the cross term) of correlated probabilities 
of type I error and type II error, the linear combination of which forms the detection cost function in 
SRE. As a result, it is difficult to calculate the variance of such a detection cost function analytically. 
 
In the evaluation and comparison of matching algorithms in biometrics in general and in fingerprint 
technology in particular, the receiver operating characteristic (ROC) analysis is an important 
statistical technique. In the operational ROC analysis, the uncertainties of measures, such as the true 
accept rate and the false accept rate in different circumstances, as well as the equal error rate, etc., 
can be computed using the nonparametric two-sample bootstrap methods based on our extensive 
bootstrap variability studies with large datasets [4-12]. 
 
The two samples are referred to as a set of target scores and a set of non-target scores, and they 
constitute two distributions [4, 9]. An ROC curve is characterized by the relative relationship 
between these two distributions [13, 14]. These two distribution functions are indeed interrelated by 
the algorithm that generates them. In other words, the performance of a matching algorithm is 
affected not only by target matching but also by non-target matching. All statistics of interest in 
ROC analysis and in SRE are influenced under the combined impact of these two samples. 
 
Furthermore, it is known from previous studies that these two distributions 1) usually do not have 
well defined parametric forms; 2) may be considerably different even for the same algorithm; and 3) 
may vary substantially from algorithm to algorithm, which differentiates algorithms in terms of 
matching accuracy [13]. The same variations of distributions were observed in the speaker 
recognition data. An example can be found in Section 2.1. This suggests that the nonparametric 
statistical analysis is appropriate for evaluating speaker recognition data, and the empirical 
distribution is assumed for each of the observed scores. 
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Therefore, in this article, the uncertainties of detection cost functions, in terms of SEs and CIs, are 
also computed using the nonparametric two-sample bootstrap methods. The bootstrap method 
assumes that an independent and identically distributed (i.i.d.) random sample of size n is drawn 
from a population with its own probability distribution. With the i.i.d. assumption, the units of 
nonparametric two-sample bootstrap are scores in the sample. In case of data dependency, the 
bootstrap units are the sets of the sample, into which the sample is regrouped based on data 
dependencies caused by multiple biometric acquisitions [8, 9, 15, 16]. This way can preserve the 
dependencies among the data. However, everything else in the bootstrap method remains intact. It is 
most likely that how to regroup the sample into sets could have impact on the bootstrap results. 
 
An ROC curve can be measured by the area under the ROC curve (AURC) [13, 17-20]. If the 
trapezoidal rule is employed, the AURC is equivalent to the Mann-Whitney statistic formed by 
target and non-target scores. The SE of the Mann-Whitney statistic can be computed analytically and 
utilized as the SE of AURC for i.i.d. data samples. Alternatively, the SE of AURC can be calculated 
using the nonparametric two-sample bootstrap. Using this metric AURC, with the i.i.d. assumption 
for speaker recognition data, the bootstrap results of SEs matched very well with the analytical 
results of SEs using the Mann-Whitney statistic. Thus, the data independency is assumed in this 
article. Nonetheless, our work of taking the data dependency into account is underway. 
 
All similarity scores of the speaker recognition systems are real numbers. While analyzing the data, 
all real numbers were converted into integers. Different systems employ different numbers of digits 
in the integer part. Hence, in order to obtain results as accurate as possible, five decimal places (i.e., 
multiplying 105) or up to seven decimal places (i.e., multiplying 107) were preserved. Notice that if 
the largest integer score is too large, the computation can take too much time. This is because it has 
to go from the highest score down to the threshold provided by a system every time while computing 
thousands of bootstrap replications of the detection cost function. The probability distribution 
functions of similarity scores are all discrete [13]. The characteristic of the speaker data is that only a 
few of similarity scores take the same value [4, 9]. 
 
The methods are presented in Section 2, including the formulations of discrete distribution functions 
of target and non-target scores, the formulas for computing the probabilities of type I error and type 
II error, the detection cost function in SRE, and the algorithm of the nonparametric two-sample 
bootstrap for calculating SEs. In Section 3 are provided the results regarding measurement 
uncertainties, in terms of SEs and 95% CIs, of the detection cost function involving 12 different 
speaker recognition systems* with the i.i.d. assumption for speaker recognition data while 
performing bootstrap. Conclusions and discussion can be found in Section 4. In the Appendix, the 
SE of AURC is computed analytically using the Mann-Whitney statistic as well as numerically using 
the bootstrap method, and the comparison between these two results is carried out. 
 
2 Methods 
 
                                                 
* Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the products and equipment identified are necessarily the best available for the purpose. 
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2.1 Discrete distribution functions of target and non-target scores 
 

Figure 1 (A): The probability distribution function of non-target scores. (B): The probability distribution function 
of target scores. Both of them were generated by the speaker recognition system DL. Each of them has a stand-
alone peak. 

 
After converting to integer scores as mentioned in Section 1, without loss of generality, for a speaker 
recognition system, the similarity scores are expressed inclusively using the integer score set {s} = 
{smin, smin+1, …, smax}, running consecutively from the lowest score smin to the highest score smax. 
Hence, the target score set is denoted as 

T = { mi  | mi ∈ {s} and i = 1, …, MT} , (1) 
where MT  is the total number of target scores. And the non-target score set is expressed as 

N = { ni  | ni ∈ {s} and i = 1, …, MN} , (2) 
where MN is the total number of non-target scores. 
 
These two sets of similarity scores constitute two discrete probability distribution functions, 
respectively. Let Pi (s), where s ∈ {s} and i ∈ {T, N}, denote the empirical probabilities of the target 
scores and the non-target scores at a score s, respectively. It may very well be that some of them are 
zeroes at some scores in the set {s}. The two distribution functions can be expressed, respectively, as 

Pi = { Pi (s) | ∀ s ∈ {s} and ∑
=

max

min

s

sτ

Pi (τ) = 1 } , i ∈ {T, N} . (3) 

 
The cumulative discrete probability distribution functions of target scores and non-target scores are 
defined in this article to be the probabilities cumulated from the highest score smax down to the 
integer score s, and are expressed as 

Ci = { Ci (s) = ∑
=

maxs

sτ

Pi (τ) | ∀ s ∈ {s} } , i ∈ {T, N} (4) 

where Ci (s), i ∈ {T, N}, are the cumulative probabilities of target scores and non-target scores at a 
score s, respectively. 
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Here is an example regarding the distributions of similarity scores. The probability distribution 
functions of non-target scores and target scores, which were generated by the speaker recognition 
system DL in the core test as specified in Section 1, are depicted in Figure 1 (A) and (B), 
respectively. It was found from the figures that each of these two probability densities has a stand-
alone peak near score zero. While we have not yet determined the cause of the peaks in score for 
system DL, we suspect that it may be the result of the way the system handles anomalous evaluation 
segments. As mentioned in Section 1, it is difficult to do parametric data modeling for such 
distributions. 
 
2.2 Probabilities of type I error and type II error 
 
The probability of type I error at a threshold } s {  ∈t  regarding target scores, denoted by PI (t), is 
cumulated from the lowest score smin. The probability of type II error at a threshold t concerning 
non-target scores, denoted by PII (t), is cumulated from the highest score smax. For discrete 
probability distribution, while computing PI (t) and PII (t) at a threshold t, the probabilities of target 
scores and non-target scores at this threshold t must be taken into account, respectively [21]. 
 
Therefore, at a threshold value } s {  ∈t , the estimators of the probabilities of type I error and type II 
error are expressed, respectively, as 

(t) PÎ  = 1 – CT (t + 1) 
for } s {  ∈t  , (5) 

(t) PII
ˆ = CN (t) 

where CT (smax + 1) = 0 is assumed [4]. Based on Eq. (5), in practice, the estimators (t) PÎ  and (t) PII
ˆ  

can be obtained by moving the score from the highest score smax down to the threshold t one score at 
a time to cumulate the probabilities of target scores and non-target scores, respectively. 
 
2.3 The detection cost function in speaker recognition evaluation 
 
A number of metrics exist for measuring the performance of a speaker recognition system [1, 2]. In 
this article, to demonstrate the computation of measurement uncertainties, the detection cost function 
at a threshold for the primary evaluation of speaker detection performance is employed as the metric 
of interest. Certainly, the same method can be used to compute uncertainties for other metrics in 
SRE. 
 
The detection cost function at a threshold t is defined as a weighted sum of probabilities of type I 
error and type II error at the threshold t [1, 2] 
 

CDet (t) = CMiss × PI (t) × PTarget + CFalseAlarm × PII (t) × (1 – PTarget) . (6) 
 
Hence, it is a function of the threshold t. It was required that the thresholds be provided by speaker 
recognition systems in order to make an explicit speaker detection decision for each trial. The 
thresholds can also be determined in other ways. It is a challenging research problem to determine 
appropriate decision thresholds, which is out of the scope of this article. Therefore, the thresholds 
used in this article are those provided by the tested systems. 
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The parameters CMiss and CFalseAlarm are the relative costs of detection errors, and the parameter PTarget 
is the a priori probability of the specified target speaker. For the primary evaluation of speaker 
recognition performance for all speaker detection tests, the parameters CMiss, CFalseAlarm, and PTarget 
were set to be 10, 1, and 0.01, respectively [1, 2]. 
 
2.4 Nonparametric two-sample bootstrap 
 
It is difficult to compute analytically the covariance term of the correlated probabilities of type I 
error PI (t) and type II error PII (t) at a threshold t in Eq. (6), as mentioned in Section 1. Thus, the 
estimates of the uncertainty of the detection cost function at a threshold t in terms of SE and 95% CI 
are computed using the nonparametric two-sample bootstrap [4-9]. The algorithm is as follows. 
 
Algorithm (Nonparametric two-sample bootstrap) 
 
1: for i = 1 to B do 
2:     select MT scores randomly WR from T to form a set {new MT target scores}i 
3:     select MN scores randomly WR from N to form a set {new MN non-target scores}i 

4:     {new MT target scores}i & {new MN non-targe scores}i => statistic iĈ  
5: end for 
6: ))2/1( Q̂),2/( Q̂ ( and ÊS  } B ..., 1,  i | Ĉ { BBBi α−α⇒=  
7: end 
 
where B is the number of two-sample bootstrap replications and WR stands for “with replacement”. 
The original target score set T with MT scores shown in Eq. (1) and the original non-target score set 
N with MN scores shown in Eq. (2) are generated by a speaker recognition system. As shown from 
Step 1 to 5, this algorithm runs B times. In the i-th iteration, MT scores are randomly selected WR 
from the original target score set T to form a new set of MT target scores, MN scores are randomly 
selected WR from the original non-target score set N to form a new set of MN non-target scores, and 
then from these two new sets of similarity scores the i-th bootstrap replication of the estimated 
statistic of interest, i.e., iĈ , is generated. 
 
In the SRE, the estimated statistic of interest iĈ  is the i-th estimator of the detection cost function at 
a given threshold. This estimator can be derived using Eq. (6). In this equation, the estimators of the 
probabilities of type I error and type II error, i.e., (t) PÎ  and (t) PII

ˆ , can be calculated from the two 
new sets of similarity scores using Eq. (5). 
 
Finally, as indicated in Step 6, from the set } B ..., 1,  i |  Ĉ { i = , the estimator of the SE, i.e., the 
sample standard deviation of the B replications BÊS , and the estimators of the α/2 100% and (1 - 
α/2) 100% quantiles of the bootstrap distribution, denoted by )2/( Q̂B α  and )2/1( Q̂B α− , 
respectively, at the significance level α can be calculated [8]. The Definition 2 of quantile in Ref. 
[22] is adopted. That is, the sample quantile is obtained by inverting the empirical distribution 
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function with averaging at discontinuities. Thus, ))2/1( Q̂),2/( Q̂ ( BB α−α  stands for the estimated 
bootstrap (1 - α) 100% CÎ. If 95% CÎ is of interest, then α is set to be 0.05. 
 
The remaining issue is to determine how many iterations this bootstrap algorithm needs to run in 
order to reduce the bootstrap variance and ensure the accuracy of the computation. In other words, 
what is the number of the nonparametric two-sample bootstrap replications? 
 
In our applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes of 
datasets are tens or hundreds of thousands of similarity scores, which are much larger than those in 
some other applications of bootstrap methods, such as medical decision making, etc.. Moreover, in 
our applications, the statistics of interest are mostly probabilities or a weighted sum of probabilities, 
etc. rather than a simple sample mean. And our data samples of similarity scores have no parametric 
model to fit. Therefore, the bootstrap variability was re-studied empirically, and the appropriate 
number of bootstrap replications B for our applications was determined to be 2,000 [4-9, 11]. 
 
3 Results 
 
The estimated uncertainties of the detection cost functions in SRE, in terms of SEs and 95 % CIs, are 
all computed using the algorithm of the nonparametric two-sample bootstrap. In this article, while 
performing bootstrap, the speaker recognition data are assumed to be i.i.d.. With this assumption, the 
bootstrap units are similarity scores in the datasets. Hence, the nonparametric two-sample bootstrap 
algorithm in Section 2.4 can be employed without any modification. 
 

Systems Cost Functions SÊs 95% CÎs 
UJ 0.030810 0.000436 (0.029987, 0.031657) 
EL 0.033668 0.000594 (0.032523, 0.034853) 
BK 0.036482 0.000484 (0.035502, 0.037447) 
DL 0.039645 0.000457 (0.038792, 0.040574) 
LZ 0.052373 0.000694 (0.050977, 0.053707) 
AF 0.066043 0.000436 (0.065190, 0.066864) 
FI 0.093903 0.000233 (0.093445, 0.094345) 
PB 0.103623 0.000789 (0.102058, 0.105197) 
PM 0.110816 0.001025 (0.108707, 0.112812) 
CH 0.144010 0.001150 (0.141677, 0.146164) 
CO 0.146433 0.001155 (0.144172, 0.148688) 
DG 0.328201 0.001650 (0.325022, 0.331460) 

Table 1 The estimated detection cost functions, SÊs, and 95 % CÎs of 12 speaker recognition systems in the core 
test short2-short3 for primary actual decision with the i.i.d. assumption for the datasets. 

 
In Table 1 are shown the estimated detection cost functions, their estimated SÊs, and 95 % CÎs of 12 
speaker recognition systems, named as UJ, EL, etc., with the i.i.d. assumption for the datasets, in the 
core test short2-short3 for primary actual decision [1, 2]. The estimated cost functions were derived 
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using Eq. (6), in which all parameters were set in Section 2.3 and the thresholds were all provided by 
speaker recognition systems. 
 
In Table 1, the speaker recognition systems are listed in the ascending order of the cost function. The 
smaller the detection cost functions, the more accurate the speaker recognition systems. As shown in 
Table 1, generally speaking, the smaller the detection cost functions, the smaller the uncertainties. 
This is consistent with what was observed in previous studies [3, 4, 9-14]. 
 
The estimated 95 % CÎs shown in Table 1 were all calculated using the Definition 2 of quantile as 
indicated in Section 2.4 [22]. The estimated 95 % CÎs could also be computed by multiplying 1.96 
by the estimated SÊ assuming that the distribution of 2,000 bootstrap replications of the detection 
cost function was normal. It is worth pointing out that these two types of 95 % CÎs were matched up 
to the third to fourth decimal place for all 12 systems shown in Table 1. For instance, for system UJ, 
the 95 % CÎ derived from the quantile method was (0.029987, 0.031657) as shown in Table 1, and 
the one with normality assumption was (0.029955, 0.031665). It indicates that the detection cost 
function is normally distributed. 
 

Figure 2 The estimated detection cost functions, and 95 % CÎs of 11 speaker recognition systems in the core test 
short2-short3 for primary actual decision with the i.i.d. assumption for the datasets. 

 
In Figure 2 are depicted the estimated detection cost functions, and their estimated 95 % CÎs of 11 
speaker recognition systems in the core test short2-short3 for primary actual decision with the i.i.d. 
assumption for the speaker recognition datasets. The estimated detection cost function of the speaker 
recognition system DG is 0.328201, which is much larger than all others. In order to show the scales 
of the estimated 95 % CÎ of all other 11 systems, the system DG is not shown in Figure 2. In Figure 
2, it also shows that the estimated 95 % CÎ of system CH overlaps the one of system CO. Such 
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overlaps of 95 % CIs can happen while comparing and evaluating the performances of speaker 
recognition systems. 
 
4 Conclusions and discussion 
 
Like the applications of ROC analysis in biometrics [4, 9], the uncertainties of the detection cost 
function, in terms of SEs and 95 % CIs, in the 2008 NIST SRE were computed using the 
nonparametric two-sample bootstrap. Such a cost function is defined as a weighted sum of 
probabilities of type I error and type II error. Thus, it is hard to compute its variance analytically. 
 
In this article, the bootstrap method is carried out with the i.i.d. assumption for the speaker 
recognition datasets. Hence, the bootstrap units are similarity scores in the samples rather than sets 
into which the data were regrouped according to the dependencies inside the data. Such an 
assumption is made based on the fact as shown in the Appendix. 
 
Our work is underway to compute the uncertainties of the detection cost functions in SRE using the 
nonparametric two-sample bootstrap method without the i.i.d. assumption, namely, by taking 
account of the data dependency occurred in the speaker recognition datasets. The results of the 
measurement uncertainties derived from different ways will be compared. Indeed, from the 
statistical point of view, the sample should be collected as randomly as possible in test design. 
 
As shown in Section 3, the two types of 95 % CÎs, one was derived from the quantile method and the 
other was computed with the assumption of the normal distribution of detection cost functions, were 
matched up to the third to fourth decimal place for all 12 systems. Moreover, the Shapiro-Wilk 
normality test [23] was conducted on the 2,000 bootstrap replications of the detection cost functions 
for all 12 systems, and it was found that the majority of p-values were greater than 5 %. It indicates 
again that the detection cost function is normally distributed. 
 
As a consequence, the hypothesis testing can be used to evaluate and compare the performances of 
speaker recognition systems [4, 10]. It is a very important statistical approach, especially when the 
95 % CIs of two systems overlap, which can happen as shown in examples in Section 3. 
 
 
 
 
 
 

Appendix – the SE of AURC 
 
As discussed in Section 1, an ROC curve can be characterized by AURC. The SE of AURC for the 
speaker data can be computed in two ways. One is analytical way using the SE of the Mann-Whitney 
statistic for i.i.d. samples; the other is numerical way using nonparametric two-sample bootstrap 
method in which the bootstrap units are scores in the datasets. The two results matched very well. 
Thus, the i.i.d. assumption for the speaker recognition data was made while using the two-sample 
bootstrap method to calculate the uncertainties of the detection cost function. 
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A.1 Analytical computation of SE of AURC 
 
It is assumed that the trapezoidal rule is employed while computing AURC. This method of 
computing AURC is widely used [24]. Then, the AURC is equivalent to the Mann-Whitney statistic 
directly formed from the discrete target and non-target scores. Further, the variance of the Mann-
Whitney statistic can be computed analytically. Thus, it can be utilized as the variance of AURC. All 
related formulas for analytically computing the SE of AURC can be found in the references [13, 17-
20]. For convenience, they are also listed in this Appendix. 
 
A.1.1 Compute AURC 
 
After conversion of similarity scores to integers, the distributions of target scores and non-target 
scores are all discrete. As a result, the ROC curve is no longer a smooth curve. While cumulating 
probabilities of target scores and non-target scores from the highest similarity score, respectively, an 
ROC curve can go horizontally, vertically, inclined toward upper right, or stay where it is for each 
decrement of score, depending on whether PN(s) and/or PT(s) are nonzero or not. Thus, the AURC 
consists of a set of trapezoids, each of which is built by a rectangle and a triangle in general. The 
trapezoid can be reduced to a rectangle, a vertical line, or a point. 
 

Figure 3 A schematic drawing of four points A, B, C, and D along with their coordinates in the FAR-and-TAR 
coordinate system. They form a trapezoid at a score s, and BC is a segment of an ROC curve. 

 
Without loss of generality, a trapezoid is shown in Figure 3. In the FAR (false accept rate)-and-TAR 
(true accept rate) coordinate system, at a score s ∈ {s}, by including zero-frequency scores, a 
trapezoid is constructed by four points: A (CN (s + 1), 0), B (CN (s + 1), CT (s + 1)), C (CN (s), CT 
(s)), and D (CN (s), 0), in clockwise direction, assuming CN (smax + 1) = CT (smax + 1) = 0. This 
boundary condition corresponds to the origin of the FAR-and-TAR coordinate system, and will be 
applied throughout the following discussion. The lengths (CN (s) − CN (s + 1)) (i.e., PN (s)) and (CT 
(s) − CT (s + 1)) (i.e., PT (s)) form a triangle, and the lengths (CN (s) − CN (s + 1)) (i.e., PN (s)) and 

CT (s + 1) (i.e., ∑
+=

max

1

s

sτ

 PT (τ)) create a rectangle. Therefore, the estimated AURC can be calculated as, 
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Â = ∑
=

min

max

s

ss

 trapezoid (s) 

    = ∑
=

min

max

s

ss

 triangle (s) + ∑
=

min

max

s

ss

 rectangle (s) 

    = ∑
=

min

max

s

ss

 PN (s) × [ 
2
1  × PT (s) + ∑

+=

max

1

s

sτ

 PT (τ) ] 

 
(7) 

 
Note that the summation runs consecutively in the descending order from smax to smin, including 

zero-frequency scores, and ∑
+=

max

1max

s

sτ

 = 0 is assumed according to the above boundary condition. This 

notation will be applied throughout the following discussion. 
 
A.1.2 Relate AURC to the Mann-Whitney statistic 
 
In order to relate AURC to the Mann-Whitney statistic, the order relations among similarity scores 
are established as follows. All the MN scores in the non-target score set N in Eq. (2) are compared 
with all the MT scores in the target score set T in Eq. (1). It counts 1, ½, or zero depending whether a 
non-target score sN is less than, equal to, or greater than a target score sT. This rule can be expressed 
as 

                             1    if sN < sT 
R (sT, sN) =          ½    if sN = sT 
                             0    if sN > sT 

 
(8) 

 
After converting probabilities of target and non-target scores in Eq. (7) back to frequencies and by 
including zero-frequency scores, the first term in Eq. (7) shows the total number of score pairs in 
which the non-target score is equal to the target score, weighted by ½ and divided by MTMN. And 
the second term in Eq. (7) represents the total number of score pairs in which the non-target score is 
less than the target score, weighted by 1 and divided by MTMN. This term is the so called “the 
number of inversions” in a sequence formed by non-target and target scores. 
 
Finally, the estimated AURC can be re-written as 

Â = 
NTMM

1  × ∑
=

T

T

M

1s
∑
=

N

N

M

1s

 R (sT, sN) (9) 

Except for the coefficient, this is exactly the Mann-Whitney statistic formed by the target and non-
target scores. As a consequence, the variance of AURC can be obtained by computing the variance 
of the Mann-Whitney statistic. 
 
A.1.3 Compute SE of AURC 
 
The variance of the Mann-Whitney statistic can be computed analytically and it is utilized as the 
variance of AURC. To do so, two more cumulative probability distribution functions are required. 
One is 
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QT = { QT (s) = ∑
+=

max

1

s

sτ

 PT (τ) | ∀ s ∈ {s} } . (10) 

The other one is 

QN = { QN (s) = ∑
−

=

1

min

s

sτ

 PN (τ) | ∀ s ∈ {s} } (11) 

where another boundary condition ∑
−

=

1min

min

s

sτ

 = 0 is assumed. Note that the cumulation of probabilities is 

taken place from smax down to s + 1 with respect to target scores in Eq. (10), and from smin up to s – 1 
on non-target scores in Eq. (11). 
 
The probability BTTN, that two randomly chosen target matches will obtain higher similarity scores 
than one randomly chosen non-target match, can be written as 

BTTN = ∑
=

max

min

s

ss
 PN (s) × [QT

2 (s) + QT (s) × PT (s) + 
3
1  × PT

2 (s) ] (12) 

And the probability BNNT, that one randomly chosen target match will get higher similarity score 
than two randomly chosen non-target matches, can be expressed as 

BNNT = ∑
=

max

min

s

ss
 PT(s) × [QN

2 (s) + QN (s) × PN (s) + 
3
1  × PN

2 (s) ] (13) 

Finally, the analytical estimator of SE of AURC can be computed as 

(A) ÊS A  = square root { 
NTMM

1  × [ Â (1 – Â) + (MT – 1) (BTTN - Â2) 

                                                                        + (MN – 1) (BNNT - Â2) ] } 
(14) 

 
A.2 Bootstrap computation of SE of AURC 
 
The estimated SÊ of AURC can also be calculated using the nonparametric two-sample bootstrap 
method. When the dataset is assumed to be i.i.d., the bootstrap units are scores in the dataset rather 
than sets of the sample into which the sample data are regrouped according to data dependencies. 
 
With such an assumption, the algorithm of the nonparametric two-sample bootstrap shown in 
Section 2.4 can be employed. In Step 4 of the algorithm, after randomly resampling WR the two 
original score sets T and N, the i-th bootstrap replication of the estimated AÛRC, i.e., iĈ  = AÛRCi, 
can be calculated from the two new sets of target scores and non-target scores using Eq. (7). 
 
After B iterations, these B bootstrap replications of the estimated AÛRC constitute a bootstrap 
distribution. Finally, the bootstrap estimator of SE of AURC denoted by (A) ÊS B  is obtained from 
such a bootstrap distribution, as indicated in Step 6 of the algorithm. 
 
A.3 Comparisons between analytical results and bootstrap results 
 
While comparing the two estimators of SE of AURC, a relative error η is employed and defined as 
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η = | (A) ÊS B  - (A) ÊS A  | / (A) ÊS A  × 100 % (15) 
where (A) ÊS A  is the analytical estimator of SE of AURC computed using Eq. (14), and (A) ÊS B  is 
the bootstrap estimator calculated in Section A.2. 
 

Systems AÛRC (A) ÊS A  (A) ÊS B  Relative Errors (%) 
UJ 0.986781 0.000376 0.000367 2.64 
DL 0.979069 0.000491 0.000489 0.37 
BK 0.979061 0.000542 0.000545 0.62 
EL 0.978651 0.000635 0.000642 1.12 
LZ 0.965603 0.000734 0.000747 1.83 
AF 0.904570 0.001284 0.001304 1.50 
PM 0.904184 0.001162 0.001139 1.96 
CH 0.901069 0.001133 0.001141 0.69 
DG 0.892396 0.001245 0.001212 2.66 
CO 0.857253 0.001532 0.001495 2.40 
FI 0.856774 0.001445 0.001538 6.41 
PB 0.800933 0.001860 0.001888 1.51 

Table 2 The estimated AÛRCs, analytical SÊA (A)s, bootstrap SÊB (A)s with the i.i.d. assumption, and the relative 
errors of 12 speaker recognition systems. 

 

Figure 4 The scatter plot of the estimated bootstrap SÊB (A)s with the i.i.d. assumption versus the estimated 
analytical SÊA (A)s along with the best-fit straight line, the slope of which is close to 1 and the intercept of which is 
close to zero. 
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In Table 2 are listed the estimated AÛRCs, the analytical estimators (A) ÊS A , the bootstrap 
estimators (A) ÊS B  with the i.i.d. assumption, and the relative errors η of 12 speaker recognition 
systems, named as UJ, DL, etc.. These 12 systems were randomly selected from those who 
participated in the core test short2-short3. 
 
The analytical result of SE of AURC derived from the target and non-target scores of any speaker 
recognition system is unique. Thus, it could be treated as a reference. However, the bootstrap result 
of SE of AURC for a system is stochastic. In other words, the result fluctuates for different runs. 
Nonetheless, the bootstrap results with the i.i.d. assumption shown in Table 2 for different systems 
were obtained by a random run, respectively. 
 
All relative errors that quantify the difference, except for one that is 6.41 % for system FI, are not 
larger than 2.66 %. Including this outlier, the median of the relative errors is 1.67 % and the mean is 
1.98 %. Excluding this outlier, the median is 1.51 % and the mean is 1.57 %. All these relative errors 
are quite small. In other words, the two results matched very well. This is also evidenced by the 
scatter plot of the estimated bootstrap SÊB (A)s with the i.i.d. assumption versus the estimated 
analytical SÊA (A)s along with the best-fit straight line, the slope of which is close to 1 and the 
intercept of which is close to zero, as shown in Figure 4. 
 
Therefore, the speaker recognition system data were assumed to be i.i.d.. Our work of computing the 
uncertainties of the detection cost functions in speaker recognition evaluation by taking account of 
data dependency is underway. 
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