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Abstract- We consider the approximate pointwise control of a 
linear parabolic system with multiple targets. Assuming a 
hierarchy among the objectives, we derive optimality conditions 
for a particular test problem and provide numerical results. 
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1. INTRODUCTION 

Control, Partial 

Optimal control problems constitute an interesting case of 
PDE-based optimization problems. Instances of these types of 
problems abound in application and development of efficient 
numerical methods for the solution of these problems has also 
been the subject of significant recent research (see [3] and [4]). 

Motivated by specific engineering applications, such as 
those arising in optimal well placement in reservoir 
engineering [9], we investigate a means of formulating a class 
of optimal control problems in which the targets can be 
partitioned into categories of increasing relative importance. 
This approach, based on the work of von Stackelberg [8] in an 
economic context, requires that the deviations from the least 
important targets, called the "follower" targets, be decreased 
only after the deviations from the most important targets, called 
the "leader" targets, satisfy prescribed bounds. This type of 
optimal control problem has been termed hierarchical control. 
One way of formulating this type of problem is in terms of 
nested optimization structure in which, in an "inner 
minimization", the follower targets are minimized subject to 
fixed values of certain of the control variables and then an 
"outer minimization" is performed over the remaining control 
variables to obtain optimal leader target satisfaction. The 
resulting accuracy on the follower targets is therefore 
determined by and is subordinate to the optimization over the 
leader targets. 

II. MODEL FORMULATION 

We are concerned with a class of optimal control problems 
in which there are multiple goals that are to be satisfied, i.e., 
a multicriteria control problem, and in which the underlying 
state variables are governed by the parabolic partial 
differential equation with mixed boundary conditions: 
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Yt-Ay=f(x,t)+V(x,t), (X,t)EQ 
y(x,O)=bo(x), XEO 

y(x,t)=b1 (x,t), (X,t)E f\x(O,T) 
dy -(x,t) = b2 (x, t), (X,t)E r2 x(O,T), 
dl] 

where 0 is a bounded open subset of � 2, T > 0 is 

finite, Q = n x (0, T) and r1 U r 2 is the boundary of 0 . 
We assume that the functions in the model are well-behaved, 

i.e., f(X,t)E L2(O,T;0) bo(X)E L\O), and 

b/X,t)E L2(O,T;0) , j = 1, 2 . Here A is a strongly 

elliptic operator and V represents the action of the controls on 
the system. In particular, we consider the case in which there 

are k pointwise controls v1 (t), . . .  , vk (t) located respectively 

at the points a1 (t), . . .  , ak (t) and that for a given choice of 

the controls, 

k 
V(x,t) = I v/t)o(x-a/t)). 

)=1 
Our goal is to formulate and solve an optimization problem 

that results in a selection of controls, including both time
dependent magnitudes and locations that force the solution to 

the above system at time, T to be "close" to a set of targets, 

�, . . .  , I: where each � E L2 (0) while simultaneously 

minimizing a cost functional C (v, a) . In addition, a set of 

restrictions on the location of the sites, a1 (t), . . .  , ak (t) , are 

possible. 

Obviously, it is generally impossible to force all of the 
targets to be satisfied to within some pre-assigned tolerance (in 
fact, it is not always possible to satisfy one target exactly). To 
formulate an optimization problem that can be solved, some 
priority must be established among the set of targets. A variety 
of methods have been proposed for carrying out this task. One 
such formulation is obtained by assigning a set of weights to 
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the targets and minimizing the weighted sum of deviations 
from the targets. This problem can be expressed in the form: 

� Y r 2 min C(V, a) + L..,. _J .b 
(y(x,T)-�(x)) dx 

j=1 2 
subject to: 

Yt -Ay=f(x,t)+V(x,t), (X,t)E Q 

y(x,O) =bo' X E Q 

y(x,t) = bl(x, t) , (X,t)E rl x(O,T) 
dy -(X,t)=b2(x,t), (X,t)E r2x(0,T) dry 

where the Yj are the respective weights associated with the 

different targets. A second approach is to assign acceptable 
deviations of the state variable from each of the targets and 
express these tolerances as constraints in the optimization 
problem. In this case the problem becomes equation (SO): 

min C(v,a) 
subject to: 

Yt -Ay=f(x,t)+V(x,t), (X,t)E Q 

y(x,O) =bo' X E Q 

y(x,t) = bl (x, t) , (x,t) E rl x(O,T) 
dy -(x,t) = b2(x,t), (X,t)E r2 x(O,T) dry 

i (y(x,T)_�(X))2dx�f3j' j=l, ... ,k. 

In these formulations, additional constraints on the controls 
could be included. Each of these formulations has certain 
drawbacks; in the first case a choice of weights is necessary 
without any a priori indication of how this choice will affect 
the solution; in the latter case it is difficult to specifY the small 
tolerances in such a way as to avoid infeasibilities. 

In this paper we follow the work of von Stackelberg (see 
[11]) and Lions (see [5]) and formulate the problem as a 
hierarchical control problem. This means that we prioritize the 
goals, i.e., specifY a hierarchy of targets. The leading target is 
taken to be the one of the highest priority and the overriding 
task of the control problem is to have the state variable 
approximate this target as accurately as possible at time, 

t = T. Given this highest priority, the deviation from the 
target of next highest priority is minimized subject to the 
satisfaction of this primary goal. Then the deviation from the 
target of the third highest priority is minimized subject to the 
condition that the higher targets are satisfactorily 
approximated, and so on. This hierarchical structure requires a 
partition of the controls and control locations into 
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corresponding hierarchies. In some problems there may be a 
natural correspondence but in other cases some flexibility in 
choosing the controls is available. For this preliminary study 

we presume that there is a single leader target, denoted �,(x) 

and a single target of lower priority called the follower target 

and denotedYF(x)' We also assume that there are two controls 

that we arbitrarily partition into leader and follower controls, 

(vL(t),aL(t)) and (vF(t),aF(t)), respectively. Additional 

follower targets and controls can be added without 
fundamentally affecting the nature of the model. The control 
problem we consider is the nested optimization problems, 
denoted by (IPI): 

minv y C(v, a) + YF r (y(x,T)-YF(x))2dx 
p, 2 .b 

subject to: 

Yt -Ay = f(x,t) + V(x,t), (x,t) E Q, 

y(x,O)=bo(X),XE Q, 

y(x, t) = bl (x, t), (x, t) E rl X (0, T), 
dy -(x,t) = b2 (x,t), (x,t) E r2 x(O,T), dry 

and (IP2): 

min v y C(v,a) + YF r (y(x,T)-YF(x))2dx 
p, 2 .b 

subject to: 

(IPl) 

and (IP): 

mina a C(v,a) 
L, f 

subject to: 

g(a) � ° (IP2) 

where YF and f3 are fixed positive constants, C(v,a) 
represents a general convex cost function depending on the 

controls, and the last inequalities involving g: 9\4 � 9\m 
represent constraints on the locations of the controls. These 
inequalities may be nonlinear and nonconvex; for example, 

ai, (t) and aF (t) might be constrained to be a certain 

minimal distance apart. This problem is interpreted in the 

following manner. The control variables aL, aF and vL are 

held fixed and the inner problem (IPl) is solved to determine 

the optimal choices for V F and y , thus theoretically 
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determining optimality functions V: (a,> , a F , v,J and 

y' (a L , a F , V L) . It is well known that the problem (IP 1) 

has a unique solution for fixed a,>, aF, and VI>' Next, 

these optimality functions are substituted into the 
objective function and the target constraint for the second 

inner problem, (IP2). Then this problem is solved with al> 
and a F held fixed determining another optimality 

function v;JaL,aF). Finally, the outer problem, (OP), now 

having the form 

mina,,Gp C(v;> (al> , aF), V: (ap aF), V;> (aL, aF), ap aF) 

subject to: g(aL, aF) :s:; ° , is solved. 

Note that the cost function can be thought of as a 
regularization term in the inner problems, i.e., a term that is 
used to guarantee the existence of a solution. However, it also 
has a role as a general objective function to be minimized to 
the extent possible. In this model, we have optimized the 

variables (a L' a F) outside the optimization with respect to 

the other control variables and the state variables in order to 
facilitate the solution of the problem. As noted above, in 
applications the constraints on these variables can be nonlinear 
and nonconvex and if included in the inner optimization 
problems would make these problems difficult to solve and 
negate the advantages of the hierarchical structure. 

The theory underlying the hierarchical control problem 
defined by the pair of problems (IP1) and (IP2) has been 
studied by Lions [5], albeit for a different underlying PDE and 
with boundary controls. Lions shows that a solution exists/or 

every positive fJ although in general the target cannot be met 

exactly ( fJ = ° ); i.e., the problem is approximately 

controllable. These existence proofs for the solutions to the 
inner pair of optimization problems given by Lions are not 
constructive and hence provide no blueprint as to how to 
obtain numerical solutions. One natural approach is to use a 
variational method to obtain the optimality conditions for the 
innermost problem (IP1) and use these equations as 
constraints when solving (IP2). In the following we establish 
the optimality conditions for solving (IP1) and then discuss 
how to approach (IP2). 

We assume that 

(1) 

that A is the Laplacian operator �, and that the boundary 
conditions are of the Dirichlet type. Extensions to more 
general parabolic systems are straightforward in concept (but 
may require significantly more effort to obtain numerical 
solutions). Thus our PDE has the form 

978-1-4577-1460-3/11/$26.00 ©2011 IEEE 

Yt -Ay = !(x,t)+vL(t)8(x-a,>(t))+vF(t)8(x-aF(t)), 
(X,t)E Q  (2) 

y(x,O) = bo(x), XE Q, (3) 

y(x,t) = bj(x,t), (X,t)E rx(O,T), (4) 

where r is the boundary of Q . 

Proposition 1. 

Let aL,aF and vL be fixed. If vF and y are optimal for 

(IPl) then there exists a dual function 

p(x,t) E L2(0,T;Q) satistying the PDE 

Pt +�p = 0, (X,t)E Q 
p(x,T) = - rF(y(x,T)-YF(x)), XE Q 

p(x,t) = 0, (X,t)E rx(O,T), 
and vF is given by 

VF(t)= p(aF(t),t). 

(5) 

(6) 

(7) 

(8) 

Proof: If vF and yare optimal for (IPl) then the variational 

equality for the objective function is 

r vF(t);; (t)dt+ rF l (y(x,T)-YF(x))z(x,T)dx=O 
(9) 

--- 2 --... 2 for all admissible vF E L (O,T) and Z E L (O,T;Q) . If 

V F and Z satisty 

-" A _ 
Zt-�z=vF(t)8(x-aF(t)), (X,t)E Q  (10) 

Z (x,t) = 0, XE Q, (11) 

Z (x,t) = 0, (X,t)E rx(O,T) (12) 

then they are admissible. 

Multiplying (10) by p(x,t) , integrating over Q and 

applying Green's theorem gives 

1 (Pt + �p );(t)dxdt + 1 (p(x, T);(x, T) 

-p(x, O)z(x, O))dx 

+ r (p(x,t) dz (x,t) _ 

dp (x,t);(x,t))dxdt .lrx(O,T) d17 d17 
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= L ;:: (t)J(x- aF(t))p(x,t)dxdt 

d 

(13) 

where - represents the normal derivative. Using (5)-(7) and 
dry 

(10)-(12) this equation becomes 

-YF l (y(x,T)-YF(x));(x,T)dx 

= vF (t) p(aF (t),t)dt. (14) 

Equation (8) follows immediately from the last equation 
and the Euler equation, (9). Using these necessary conditions 
the second inner problem (IP2) can now be written 

subject to: 

Yt -Ay = !(x,t)+vL(t)J(x-aL(t)) 

+ p(x,t))J(x-aF(t)), (X,t)E Q 

y(x,O) = bo (x), X E n, 

y(x,t)= b](x,t), (X,t)E rx(O,T), 

Pt+l1p=O, (X,t)E Q 

p(x,T)=-YF(y(x,T)-YF(x)), XE n, 
p(x,t) = 0, (X,t)E rx(O,T), 

1 (y(x,T)-�>(X))2dx ::;; fJ, 

with a L and aF fixed. 

At this stage there are several possible approaches. One 
approach would be to incorporate the control variables 

a(t) directly into the problem (so in effect (IP2) becomes 

(OP» and solve the resulting problem. However, this approach 
severely restricts the numerical methods that we can apply 
since the state variable occurs in a nonlinear inequality 
constraint. For example, a reduced variable approach could not 
be employed. Another approach would be to obtain the 
optimality conditions for this problem (as was done for (IPl» 
and then use these conditions in the formulation of the outer 
problem. If we take this approach then we are forced to include 
complementary slackness conditions as part of the necessary 
conditions which is an added nonlinear difficulty. Both of 
these methods also suffer from the fact that an a priori choice 

of fJ is required. 
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As a result of these complications, we have chosen, 
following to include the leader target goal as a penalty term in 
the objective function. That is, we reformulate (IP2) as 

+ �> 1 (y(x,T)-�(x)idx 

subject to: 

Yt -Ay = !(x,t)+vL(t)J(x-aL(t)) 

+ p(x,t))J(x-aF(t)), (X,t)E Q 

y(x,O) = bo(x), XE n, 

y(x,t) = b] (x,t), (x,t) E rx(O,T), 

Pt +i'1p = 0, (X,t)E Q 

p(x,T)=-YF(y(x,T)-YF(x)), XE n, 
p(x,t) = 0, (X,t)E rx(O,T), 

where is a specified constant. By choosing YL sufficiently large 

we can, in theory, force the deviation from the leader target to 

be less than fJ although such a solution will not, in general, be 

the solution to the original problem (IP2). 

We now derive the optimality conditions for this 
reformulated problem. 

Proposition 2. 

Let a L and a F be fixed. If V L' Y and p are optimal for the 

problem (IP3) given above, then there exist functions P(x, t) 
and Y(x, t) in L2 (0, T; n) satisfying 

� +AY = 0, (X,t)E Q (15) 

Y(X,T)=-YFP(x,T)-YL(y(x,T)-�(x)), XE n, 
(16) 

Y(X,t)=O, (X,t)E rx(O,T) (17) 

� -AP=-J(x-aF)(p(x,t)-Y(x,t)), (X,t)E Q 
(18) 

P(x,O)=O, XE n, (19) 

P(x,t)=O, (X,t)E rx(O,T), (20) 

and vL is given by 
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Proof: If VL' yand p are optimal for the problem (IP3) then 

the variation equation 

r (V,> (t)v,>(t)+ p(aF(t),t)PcaF(t),t))dt + 

� 1 (y(x,T)-�>(x));(x,T)dx=O (22) 

must be satisfied for every admissible (v,>,z,p), i.e., for 

every (vpz,p) satisfying 

"" '" ...-... /'.. 

Zt -�z = vF(t)8(x-aF(t)) +p(x,t)8(x-aF(t)), 

(X,t)E Q 

z(x,O)=O, XE Q, 

z(x,t)=O, (X,t)E rx(O,T), 
� � 

Pt -Ap = 0, (X,t)E Q 
� A 
p(x,T)=-rFz(x,T), XE Q, 
� 

p(x,t) = 0, (X,t)E rx(O,T), 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Multiplying (23) by Y(x,t) and (26) by P(x,t) , 

integrating over Q, and applying Green's theorem we obtain 

1 (�+AY);(x,t)dxdt 

and 

+ 1 (Y(x, T);(x, T) -Y(x, O);(x, O))dx 

1 dz dY A 
+ (Y(x,t)-(x,t)--(x,t)z(x,t))dxdt x(O,T) dry dry 

� 

+ p(aF (t),t)8(x -aF (t))Y(x,t)dx, dt 

1(� +M)p(t)dxdt 

+ 1 (P(x,T)p(x,T)-P(x,O)p(x,O))dx 
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(29) 

� 

1 
d p dP � 

+ (P(x,t)-(x,t)--(x,t)p(x,t))dxdt=o x(O,T) dry dry 
(30) 

Using the various POE's and boundary conditions for the 
functions in (29) and (30) we arrive at 

-rF 1P(x,T);(x,T)dx 

- rL 1 (y(x,T) -�> (x));(x,T)dx 

= r (�(t)Y(a,>(t),t)+ p(aF (t),t)Y(aF (t),t))dt. (31) 

and 

- r (p(aF(t),t) -Y(aF (t),t))p(aF (t), t)dt + 

1 P(x,T)p(x,T)dx = 0 (32) 

Using (27) and rearranging terms in (32) yields 

rF Ip(x,T);(x,T)dx 

= r p(aF(t),t)(p(aF(t),t)-Y(aF(t),t))dt. (33) 

Substituting this last equation into (31) yields (22). 

With this derivation the formulated optimization problem 
(OP) becomes 

1 rT 
minaL ,aF

2
1 (p(aF(t),t)2 +Y(aL(t),t)2)dt 

+ �> 1 (y(x,T)-1'r(X))2dx 

subject to: equations (2)-(7) and (15)-(21) 

g(a)�O. 
The relative sizes of the constants rL and rF affect how 

accurately the different targets can be approximated. In order 

to approximate the leader target as accurately as possible, rL 
must be made large. However, the effect of increasing its size 

is influenced by the size of rF' Thus, as in the first 

formulation of this section, (SO), with a single objective 

function incorporating both targets, the magnitudes of rF and 

r,> required to achieve the desired target deviations must be 

determined by experimentation. Our preliminary numerical 
studies have suggested that if both targets are in the objective 
function and both constants are large, then there can be 
difficulties in achieving convergence to the optimal solution. It 
should be emphasized that in order to provide useful results the 
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optimal control generated by the model must be 
implementable, e.g., wildly oscillating optimal controls are 
undesirable. Our studies to date have indicated that the controls 
achieved in the hierarchical formulation are better-behaved 
than those from (SD) for large values of the parameters. Both 
of these conjectures need further testing and, if possible, 
theoretical grounding. It is clear that this formulation of the 
problem is fundamentally different from other models. As is 
weJl-documented in the finite-dimensional cases of bilevel 
programming [7], an optimal solution to a bilevel optimization 
problem need not be a Pareto optimal solution in the sense of 
multiobjective optimization and there is no reason to assume 
that this is not the case here. Also, the inclusion of the follower 

control sites aF as part of the outer optimization, rather than 

the inner optimization problem, may seem inconsistent. In 
formulating the problem in this manner, we were again 
motivated by an effort to make the problem tractable; 
complicated (and possibly nonconvex) inequality constraints in 
the control locations would seriously degrade the ability to 
express concisely the necessary conditions for the inner 
problem. All of these points speak to the difficulty in 
formulating state equations and in solving large scale 
multicriteria optimization problems. The results presented here 
represent an initial effort in this direction. 

We observe that hierarchical control might profitably be 
used to formulate a multitude of important scientific 
applications. For example, in the area of oil reservoir 
simulation [10] one can formulate optimal well placement 
problems as hierarchical control problems where desired weJl 
productions might form mandatory (or leader) targets while 
revenue or efficiency based goals are a secondary (follower) 
targets. Cryobiology applications employ complicated cell 
freezing models that can be controlled in a similar hierarchical 
way where temperatures form leader targets and desired 
concentrations form follower targets. Remote manipulator 
systems, like those employed by space-craft, are required to 
solve optimal control problems rapidly. In some instances, 
these systems must accomplish a goal while maintaining 
prescribed distances from other pieces of machinery. One 
could formulate a class of hierarchical control in which leader 
targets include primary objectives and foJlower targets 
maintain minimal separation from sensitive machinery 
whenever possible. 

III. PREP ARE YOUR PAPER BEFORE STYLING 

The problem addressed is that of the preceding section with 

the domain n taken to be the unit square with the boundary 
conditions chosen to be zero. Moreover, we have assumed that 
the control sites are not functions of t but constant. These 
simplifications don't prohibit us from making preliminary 
assessments about the prospects for this type of formulation. 

We had several goals for these preliminary numerical 
experiments. First we wanted to determine the possibility of 
efficiently solving the problem in its hierarchical formulation. 
Second, we wanted to determine how sensitive the solutions 

were to different choices of the constants YL and YF and to 

compare these results with those obtained by solving the 
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problem with a single objective function containing a 
weighted sum of the target discrepancies. Finally, we wanted 
to ascertain if we could solve a problem with nonconvex 
constraints on the control locations. We begin by describing 

the time discretization. Let NT be the number of time steps 

and NTl1t = T . We denote the estimate of y at the nth 

time step by yn 
where n = 

1. . . NT . If N x denotes the 

number of spatial steps in the Xl and in the x2 directions, the 

spatial step is denoted by h with N xh = 
1. The discrete 

approximation to y is 

y(nl1t, ih, jh) � y�j" 

We foJlow the two-step implicit scheme for parabolic 
problems 

ay (( 1)) 
1 

(3 n+l 4 n n-l) - n+ At �- y .  - y . +y . .  
at 211t t,J t,J t,J 

Experience with this time discretization has led us to use it on 
stiff problems when we need to integrate to large values of 

T (see [6]). In such cases, the fact that it assures unconditional 
stability and produces an accuracy to second order in time 
amply justifies the storage costs. 

At each time step we must solve an eJliptic problem to 

obtain y�;l. The domain is so simple that we use the very 

common finite-element triangulation of n consisting of 

bisected squares. The space of polynomials of degree ::; 1 is 

used to form a finite dimensional approximation to L2 (n) 
and Hl (n) . More sophisticated schemes are certainly 

available for both linear and nonlinear parabolic equations. 

Figure 1. The leader target 
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Figure 2. The follower target 

For testing, this simple numerical scheme is both adequate 
and appropriate. Specific applications may require more 
specialized discretizations. Two target states, are used to test 
the performance of this formulation. We choose one specific 
pair of test shapes that illustrates behavior seen in most of our 
numerical experiments. The leader target shape is a smooth 
function and the follower is a pyramid (Figures I and 2). 
Specifically, the target functions are 

The optimization problem that arose from our formulation 

was solved using a sequential quadratic programming (SQP) 

algorithm. The specifics of the algorithm are contained in [1] 

and a theoretical analysis that can be found in [2]. Our 

problem formulation worked well with our numerical 

optimization algorithm. In numerical results not presented 

here we solved problems with values of y as large as l.e16 

and 

1 . 2,---�---�--�---�--__, 

0 .2 0.4 0.6 
x 

Figure 3. State variables. 

0.8 
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values approaching machine precision. In Figure 3 the dotted 

and dashed profiles respectively denote leader and follower 

target profiles along the line. The solid lines are the state 

variable y at time T = 1 along the line x2 = 1/2 . 

Clearly both the leader and follower targets were 

approximately attained. In Figure 4 the leader and 

follower controls, vL (t) and vF (t) are shown for 

t E (0,1], by solid and dashed lines respectively. 
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