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Purpose: The authors wish to determine the extent to which the Response Evaluation Criteria in

Solid Tumors (RECIST) and the criteria of the World Health Organization (WHO) can predict

tumor volumes and changes in volume using clinical data.

Methods: The data presented are a reanalysis of data acquired in other studies, including the public

database from the Lung Image Database Consortium (LIDC) and from a study of liver tumors.

Results: The principal result is that a given RECIST diameter predicts volume to a factor of 16 or

10 for the two data sets, respectively, by examining 95% prediction bounds and that changes in

volume are predicted only little better: to within a factor of 7 for the liver data. The WHO criteria

reduce the prediction bounds by a factor of 1.3 in all cases. Also, the RECIST threshold of 10 mm

to measure a nodule corresponds to a transition zone width of a factor of more than 2 in volume for

the nodules in the LIDC database.

Conclusions: While the RECIST diameter is certainly correlated with the volume, and similarly for

changes in these quantities, the use of the diameter introduces additional variation assuming volume

is the quantity of interest. Exactly how much this reduces the statistical power of clinical drug trials

is a key open question for future research. [http://dx.doi.org/10.1118/1.3701791]

Key words: X-ray imaging, RECIST, tumor size, volumetric measurement, LIDC database

I. INTRODUCTION

The principal formal method for determining whether can-

cerous nodules are growing or shrinking is the Response

Evaluation Criteria in Solid Tumors (RECIST).1,2 In the dec-

ade or so since its introduction by a committee of American,

Canadian, and European cancer specialists, the capabilities

of computed tomography (CT) machines has increased con-

siderably, leading to the possibility of widespread adoption

of volumetric methods rather than the 1D RECIST measure.

Indeed, even as the initial 1D RECIST were issued, careful

volume studies of CT phantoms (i.e., reference objects) and

patients were performed indicating the ability to measure

volumes to a few percent.3 In the revision to the RECIST

standard, Eisenhauer et al.2 discussed the alternative of using

the measurement of tumor volume. They cited several stud-

ies in concluding that the RECIST measure was comparable

to the volume standard. However, as our group noted ear-

lier,4 these studies required volume changes to be outside of

the range of �66% to þ73% to be considered significant.

This range was required to match the RECIST criteria of par-

tial response or progressive disease, a �30% or þ20%

change in RECIST diameter, respectively. A required vol-

ume change of about 70% may be too large: for example,

Lee and coworkers5 conclude that a 35.6% decrease in vol-

ume in gastric lesions after 8 weeks is sufficient to determine

pathogenic responders with 100% sensitivity with a 58.8%

specificity.

There is current interest in exploring the question of

RECIST vs 3D techniques,6–9 following a long history of the

question of 1D vs 3D techniques.10 Three-dimensional tech-

niques may be more accurate than RECIST.11 A consensus

statement of the International Cancer Imaging Society12

noted that tumors do not necessarily grow or shrink in a

rounded fashion, so a measurement of the longest diameter

may not necessarily represent the true response. Mantatzis

and coworkers7 found that the assumption of uniform growth

behind the spherical model was only somewhat applicable to

liver tumors. In the case of nasopharyngeal cancers, the

irregular tumor shape led to RECIST diameters being poorly

correlated with volume, although the two-dimensional ana-

logue13 due to the World Health Organization (WHO) was

possibly sufficient.14 The nonspherical growth pattern of ma-

lignant pleural mesothelioma is also a challenge for

RECIST.15 Additionally, studies of early lung cancer tend to

use volumetric methods, if only because the RECIST stand-

ard explicitly excludes nodules under 10 mm, whereas 5 mm

is a more typical minimum diameter for tumors studied for

early lung cancer.16

Recently, our group has considered the relation between

RECIST and volume measurements principally in the con-

text of physical and mathematical ellipsoidal models.4,17,18

Here, we characterize the relationship between RECIST and

volume for the clinical data for a previously published study

on liver tumors19 as well as from the Lung Image Database
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Consortium (LIDC).20 These two data sets are complimen-

tary in which the liver tumors allow us to study the change

in volume and change in RECIST values over time, whereas

the LIDC data give us full descriptions of the nodules which

allow us to reorient nodules before finding the RECIST val-

ues. In this study, we only compare RECIST and WHO val-

ues with volume on a nodule-by-nodule basis and we do not

sum nodules across a scan.

It must be noted that changes in the character of the tu-

mor, e.g., the density or even necrosis cannot be captured by

purely dimensional measurements.15,21 Another interesting

question is the number of tumors which should be measured

to get a representative understanding of the total tumor bur-

den.22 Such issues are beyond the scope of this paper.

II. MATERIALS AND METHODS

II.A. Liver data

As described by Heußel and coworkers,19 the liver data

consist of 82 patients with one to five tumors measured at

two times, including 198 tumors at the first time and 180

tumors still present at the second time. The study was con-

ducted retrospectively from CT scans collected in the routine

course of treatments from data collected using one CT

model, namely, a Philips23 Somatom Brilliance 40 run at a

tube voltage of 120 kV, an exposure of 165 mAs, a slice

thickness of 3 mm, and a reconstruction interval of 2 mm.

The data were anonymized before analysis. The primary can-

cer sites and frequencies were hepatocellular (n¼ 36), colon

(n¼ 24), rectum (n¼ 7), pancreas (n¼ 5), and other metasta-

ses (n¼ 10).

The measurements were the RECIST diameter d, the

product of two diameters w according to the criteria of the

WHO, and the volume V as determined by the consensus of

two radiologists. The radiologists used ONCOTREAT software

version 1.2 (Mevis, Bremen).23 After a manual identification

of a lesion, the segmentation was performed automatically.

However, it could be corrected interactively. Lesions at both

time points were available to the radiologists simultaneously.

After the segmentation was finalized, the three values were

determined automatically. The study19 concluded that the

RECIST and WHO criteria are of limited use if volume was

considered the primary parameter characterizing tumor de-

velopment. Our goal in this reanalysis is to construct a pre-

diction interval in which log V is likely to lie for a given

value of log d or log w.

We model the RECIST data with a mixed linear model as

follows. Let dij denote the RECIST value of nodule j in

patient i for either time 1 or time 2. We model dij as

log dij ¼ b0 þ b1 log Vij þ �ij; (1)

with i ¼ 1;…;Npatient and j ¼ 1;…;Nnodule
i . In Eq. (1), b0

and b1 are fixed unknown parameters, Vij is the volume for

nodule j in patient i, and �ij is a random error. All logarithms

are in base 10. The random error, �ij, can be decomposed fur-

ther as

�ij ¼ Pi þ NiðjÞ; (2)

where Pi is the random effect for patient i and NiðjÞ is the ran-

dom effect of nodule j nested within patient i.
The construction of prediction intervals (for predicting

the inverse relationship, i.e., predicting log V given log d)

and confidence intervals for b0 and b1 based on the model

described by Eqs. (1) and (2) is carried out in two ways.

First, we assume that Pi�
iid

Nð0; r2
PÞ independent of

NiðjÞ �
iid

Nð0; r2
NÞ, where Nðl; r2Þ refers to a Gaussian distri-

bution with mean l and variance r2. The notation “iid”

means independent and identically distributed. In this case,

the model parameters can be estimated using residual maxi-

mum likelihood (ReML).24 The prediction intervals for b0

and b1 are constructed using propagation of error and the

normal (Gaussian) distribution. One might argue that a Stu-

dent’s t distribution should be used in place of the normal

distribution; however, the most conservative degrees of free-

dom to use for the Student’s t distribution would be

Npatient � 1 ¼ 81. Since a Student’s t distribution with 81

degrees of freedom is very near the standard normal distribu-

tion, the difference is ignored. When assuming Gaussian ran-

dom effects, there are four parameters to estimate, two

regression coefficients, b0 and b1, and two variance compo-

nents, rP and rN .

The second approach is based on estimating b0 and b1 by

least squares; then, a bootstrap algorithm is used for the con-

struction of confidence and prediction intervals. The bootstrap

algorithm is used to avoid specific distributional assumptions

on Pi and NiðjÞ, and the algorithm is discussed for the more

complex LIDC data. For the liver data, there is insufficient evi-

dence to refute the assumption of a normal distribution for the

random effects. However, for the LIDC data, it is clear that a

normal distribution is inappropriate for at least one of the ran-

dom effects. To be consistent, both approaches are applied to

both data sets. All bootstrap intervals in this paper pertaining

the liver data are constructed from 5000 bootstrap samples.

The change data are modeled in exactly the same way as

the static data. For the change data, the response is

log d
ð21Þ
ij ¼ log d

ð2Þ
ij � log d

ð1Þ
ij , where d

ðtÞ
ij is the RECIST

value for nodule j in patient i at time t¼ 1, 2. For both lung

and liver data, the WHO data are modeled similarly, under

d ! w, with all subscripts and superscripts applied.

The results are given in Sec. III.A.

II.B. Lung data

The LIDC database consists of data from 1018 helical

thoracic scans from 1010 different patients. At the time we

accessed the database in June 2011, a pilot database with

399 scans was available for download.25 In the LIDC study,

every CT scan was read by 4 radiologists drawn from a pool

of 12, first independently (“blinded”) and then a second time

with knowledge of the other three radiologists’ markup

(“unblinded”). The unblinded markup from each of the four

radiologists was made available. Nodules were marked by a

radiologist if the measured diameter was at least 3 mm and if

it was a nodule in the judgment of a given radiologist.

We downloaded 203 patient files using the selection crite-

rion that the slice thickness be no more than 3 mm. We
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found 28 of the 203 files did not contain marked nodules,

and another 4 files may have been internally inconsistent.

The 171 remaining patient files were read with custom-

written code in IDL.23 Using the LIDC rules,20 the markup

was turned into a set of bitmaps for 1252 nodule readings.

(The principal rule is that a nodule is the set of voxels inside,

but not including, the markup; interior regions were

excluded in some cases.) We use the term “nodule reading”

to distinguish this data from “physical nodules,” i.e., the

nodules in a patient.

Because the nodule readings from the same physical nod-

ule are highly correlated, the statistical method we used

required associating nodule readings with physical nodules.

Although this information was known for the LIDC study,20

it was not present in the pilot database. Accordingly, we

reconstructed the information from a knowledge of the posi-

tion and second moments of each nodule reading. The LIDC

database has a single co-ordinate system for all nodules for a

given scan, so the centroid of the bitmap is meaningful

across those nodule readings. We found the 3� 3 covariance

matrix C (also known as the second moment tensor about the

centroid) of each bitmap for each nodule reading. For a

given scan, among those nodule readings which came from

different radiologists, we added their covariance matrices

pairwise and formed the Mahalanobis distance, a positive

definite quantity ZðabÞ given by

ZðabÞ ¼ rðabÞT � C�1 � rðabÞ
� �1=2

; (3)

where rðabÞ ¼ rðaÞ � rðbÞ is the difference between the cent-

roids of nodule readings a and b, and T indicates the trans-

pose is to be taken. The quantity Z is analogous to the “Z-

score” used in statistics but adapted to the anisotropic, 3D

case. We found that there was a bimodal distribution of Z
values with a sharp minimum for Z � 3 as seen in Fig. 1.

We interpreted ZðabÞ � 3 as meaning a and b were two read-

ings from the same physical nodule and the others as two

readings from different physical nodules. To make the for-

mal identification of physical nodules, we formed a graph as

follows: (1) nodule readings are vertexes in the graph; (2)

bidirectional edges were added to the graph whenever the

nodule readings a and b obeyed ZðabÞ � 3, were from the

same scan, and linked readings by two different radiologists.

Under these terms, the 1252 nodule readings formed 511 dis-

connected graphs. Of these 511 disconnected graphs, 509

were complete graphs, indicating that 1, 2, 3, or 4 radiolog-

ists all marked the same physical nodule. (Our implementa-

tion used the graph algorithms of MATHEMATICA.23) Of the

two other cases, in one case one radiologist identified a small

nodule nearby and in the other one radiologist marked a sin-

gle nodule where the other three marked two nodules; these

involved a total of 12 nodule readings, allowing the other

1240 nodule readings to be associated with 509 physical

nodules. Our finding of 2 incomplete identifications of 511

physical nodules is consistent with the LIDC finding of 6

incomplete identifications in 2669 nodules.20 The results pre-

sented in Table I for the proportions of nodules identified by

one to four radiologists are in good agreement with those

from the full LIDC study.

The first task was to derive bitmaps for each nodule from

the markup that represents the nodule readings. These bit-

maps distinguish voxels that are interior from those that are

exterior to a given nodule. The markup for a nodule consists

of closed paths in each voxel plane that describe the bound-

ary of the nodule. Within each plane, the bitmap for a nodule

is generated using the following steps:

1. Create an initial bitmap that identifies voxels that lie on

each markup path. These voxels lie on the boundary of

the nodule.

2. Apply the IDL function LABEL_REGION to this bitmap

to identify connected regions separated by the boundary

voxels.

3. Discard regions that contain known exterior voxels. Any

voxel that is beyond the extent of the markup path coordi-

nates is known to be exterior, and because none of the

markup paths extend to the edge the voxel plane, we can

always find such exterior voxels.

4. Discard all of the boundary voxels identified in the initial

bitmap.

5. Label all remaining voxels as interior to the nodule in the

final bitmap.

The LIDC markup rules allow the possibility of excluded

regions; these regions are identified by the same type of

FIG. 1. Histogram of Z, defined in Eq. (3), a normalized distance between

two nodule readings. The first peak is interpreted as two nodule readings

being associated with the same physical nodule; for the second peak, the

two nodule readings are associated with different physical nodules. The

peaks are well separated. Counts are for intervals of log Z of 0.1.

TABLE I. Proportion of nodules identified by N¼ 1,…, 4 radiologists in the

LIDC database (Ref. 20) and the present subset of the LIDC database. The

two cases in which there was not a 1:1 correspondence between identified

nodules are omitted from our data.

N LIDC Present

1 29.1% 33.4%

2 18.4% 19.4%

3 17.7% 17.3%

4 34.4% 29.8%

Total 2669 509
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closed-path markup. Bitmaps representing these excluded

regions are generated exactly as described above. The final

nodule bitmaps are modified based on the exclusion bitmaps.

The final result is a set of bitmaps for 1252 nodule read-

ings. The nodule reading was considered to be the union of

the included voxels from all of the voxel planes. We made

no attempt to consider partial volume effects or to create a

smooth surface.

The bitmaps were read by a FORTRAN 95 program written

for the present study to determine volume and RECIST val-

ues. The volume of each nodule reading was obtained by

counting the voxels in the bitmap and multiplying by the

volume of each voxel. The RECIST diameter d is defined

relative to a scan axis. To calculate this, we find the projec-

tion of the lesion’s 3D bitmap onto a plane orthogonal to the

scan axis, then take the maximum diameter of this projec-

tion. A second diameter of the projection, orthogonal to the

RECIST diameter, is then derived. The product of the two

diameters is the WHO value w.

Different choices of the scan axis result in different

RECIST values. Rather than use the single scan axis pro-

vided by the measurement, we make the assumption that the

orientation of nodules relative to the scan axis is random.

Then we found many possible RECIST diameters and WHO

values by taking the scan axis to be any of 144, 544, or 2112

directions distributed uniformly throughout a hemisphere.

These particular numbers arise because we obtain a uniform

sampling of the sphere as follows: each eighth of the sphere

is sampled by a triangular array of one quasi-triangular and

several quasi-rectangular regions of equal area bounded by

constant values of the polar coordinates h and /. The projec-

tions are taken at the midpoints of each region. The array is

repeated four times to populate a hemisphere, which is suffi-

cient because each projection represents two points on the

sphere. Given a number of rows in the pattern n, the number

of points selected is 4Tn ¼ 2nðnþ 1Þ, where Tn is a triangu-

lar number. The values 144, 544, and 2112 arise from the

choices n¼ 8, 16, and 32, respectively. We present only the

results for 2112 directions, although the results with fewer

directions are very similar, suggesting that even 144 direc-

tions are adequate for a representative sampling of all

directions.

We present a few representative distributions of the

RECIST diameter for a single tumor in Fig. 2. The distribu-

tions have a great variety, an effect which was predicted

from a model based on the union of ellipsoids.18 By rotating

each individual nodule, we learn about the possible variation

of the RECIST diameter for a given volume much more

quickly than if only one measurement per nodule was

supplied.

The mixed linear model we use for the lung data is similar

to the one for the liver data in Eq. (1) with the exception that

we must account for multiple levels of nesting. The random

effects are for patient, physical nodule, radiologists’ readings

within a physical nodule, and the hypothetical orientation of

a nodule reading. The parameters of the model, which are

“fixed terms” in the language of mixed models, are an inter-

cept in log d and a slope of D log d=D log V. Translated to

the original variables, the equation V � da includes the point

(d, V)¼ (0, 0) as long as a > 0. Let dijk‘ denote the RECIST

value for orientation ‘ of the markup of nodule j by radiolog-

ist k in patient i. We model dijk‘ as

log dijk‘ ¼ b0 þ b1 log Vijk þ �ijk‘; (4)

with i ¼ 1;…;Npatient, j ¼ 1;…;Nnodule
i , k ¼ 1;…;Nreader

ij ,

and ‘ ¼ 1;…;Norientation
ijk . In Eq. (4), b0 and b1 are fixed

unknown parameters, Vijk is the volume for the markup of

nodule j by radiologist k in patient i, and �ijk‘ is a random

error. (Although we use some of the same symbols here as

for the liver model, the association to a given model will be

clear from context.) The random error �ijk‘ can be decom-

posed further since patient differences, nodule shape, the

radiologists’ markup, and the random orientation of the nod-

ule contribute to the error. Specifically,

�ijk‘ ¼ Pi þ NiðjÞ þ RijðkÞ þ Oijkð‘Þ; (5)

where Pi is the random effect of patient i, NiðjÞ is the random

effect of nodule j nested within patient i, RijðkÞ is the random

effect of the markup of nodule j by radiologist k in patient i,
and Oijkð‘Þ is the random effect of orientation ‘ for the

markup of nodule j by radiologist k in patient i. While it

would be more appropriate for the radiologist effects not to

be nested within a patient–nodule combination, radiologists

cannot be uniquely identified across patients, so this is the

best that can be done. As for the liver data, the model for the

WHO two-dimensional product w is the same under the

replacement d ! w, with all subscripts and superscripts

preserved.

FIG. 2. Probability distributions of RECIST diameter are given for four nod-

ule readings taken from four different patients. The probability distribution

assumes a scan axis is picked from a uniform random distribution on the

unit sphere. Smoothing is performed (Ref. 29). The selected nodules all

have a volume between 750 and 1250 mm3 with an anisotropy parameter

between 0.9 and 1.1. These distributions are representative of the large vari-

ety of those linking the RECIST diameter and volume.
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As with the liver data, two approaches to inference are

considered. The first approach assumes Pi�
iid

Nð0; r2
PÞ,

NiðjÞ �
iid

Nð0; r2
NÞ, RkðijÞ �

iid
Nð0; r2

RÞ, and OlðijkÞ �
iid

Nð0; r2
OÞ,

with all effects independent of each other. Again, ReML is

used for parameter estimation, and the standard normal dis-

tribution is used to construct confidence intervals for b0 and

b1. To construct prediction intervals for log V at a given

log d, both propagation of error and the standard normal dis-

tribution are leveraged. When assuming Gaussian random

effects, there are six parameters to estimate including two

regression coefficients, b0 and b1, and four variance compo-

nents, rP; rN; rR, and rO.

For the LIDC data, the distribution of Oijkð‘Þ can be carefully

examined since for each (patient, nodule, reader) triple, there

are 2112 observations of the orientation effect. We illustrate a

few of those distributions in Fig. 2. Although we have selected

nodules with similar volumes which are relatively large and

chosen from cases with relatively isotropic voxels, there is still

a huge variation in the individual distributions, some of which

are far from normally distributed. Such results are consistent

with results from mathematical tumor models.18

In light of this, and for the purpose of comparison, a sec-

ond approach to inference is considered. For the second

approach, the regression coefficients b0 and b1 are estimated

via least squares, and confidence and prediction intervals are

constructed using a bootstrap algorithm. The bootstrap algo-

rithm is based on resampling residuals and retains the correla-

tion structure of the nested random effects that comprise �ijk‘,

so it retains the correlation structure of the data too. To gener-

ate a single bootstrap sample of residuals, the patients are first

sampled with replacement. Then, for any sampled patient, say

i0, all nodules in patient i0 are sampled with replacement.

Then, for any sampled nodule, say j0, in patient i0, radiolog-

ists are sampled with replacement. Last, for any sampled radi-

ologist markup, say k0, of nodule j0 in patient i0, orientations

are sampled with replacement. This is repeated until we have

1240� 2112 ¼ 2 618 880 resampled residuals. The confi-

dence intervals for b0 and b1 are percentile intervals26 and the

prediction intervals for log V are similar to those in Ref. 27.

Any bootstrap intervals in this paper pertaining to the LIDC

data are based on 3000 bootstrap samples.

To evaluate our bootstrap method, we used the following

cross-validation procedure for the LIDC data. First, the over-

all data set is split into training and validation data sets. The

validation data set is made of all observations from 20 ran-

domly selected patients. The training data set consists of the

remaining observations. The bootstrap procedure was then

applied to the training data set to form 95% point-wise pre-

diction bounds for log V, and the proportion of the validation

data set that falls within the bounds is calculated. If approxi-

mately 95% of the validation data set lies within the bounds,

the bootstrap procedure can be considered appropriate. The

requirement of approximately 95%, instead of exactly 95%,

is for two reasons. First, the validation data set is only a sam-

ple of patients, so the proportion of the validation data set

that falls within the bounds is subject to sampling variability.

Second, the prediction bounds are point-wise bounds, not si-

multaneous bounds. We found 93% in a cross-validation

study fell within the 95% prediction intervals for the lung

data. Similar cross-validation procedures were performed

with the liver data where 98% of the static validation data

set and 98% of the change validation data set fell within the

bounds. The cross-validation studies show that the bootstrap

prediction intervals for log V at least approximately maintain

their stated confidence level, 95%. For the WHO data (either

LIDC or liver), and no cross-validation was performed.

Results are given in Sec. III.B.

III. RESULTS

III.A. Liver data

We may assess the effect of change over time using the

liver data because each liver tumor (also called malignoma)

was read at two times19 (called here 1 and 2). There are 198

tumors in this data set, of which 18 were not visible on the

second reading, and of the remainder, the RECIST diameter

decreased by at least 30% for 14 tumors, the RECIST diame-

ter increased by at least 20% for 41 tumors, and the balance

of 125 tumors had moderate change. (These values are very

similar to the RECIST categories of complete response, par-

tial response, progressive disease, and stable response,

although our categories refer to changes in individual

tumors, without summation as called for in RECIST.2) Our

statistical model for this data is described in Sec. II.A.

The results of the Gaussian random effects approach to

inference are shown in Table II. The minimum width of the

TABLE II. For the Gaussian random effects model, statistical parameters characterizing differences of the prediction bounds of the log V and the corresponding

ratios of the prediction bounds in the volume shown in Figs. 3, 4, 6, and 8–10. The columns “min” and “max” represent the range of 95% prediction interval

for these quantities which vary slowly with log d or log w or the 95% confidence interval, as appropriate. The columns labeled “point” are point estimates of

b0 or b1.

Log Ratio b̂0 b̂1

Organ Method Type Min Max Min Max Min Point Max Min Point Max

Lung RECIST Static 1.226 1.227 16.81 16.86 0.16 0.17 0.19 0.317 0.321 0.325

Liver RECIST Static 1.024 1.057 10.56 11.39 0.01 0.07 0.14 0.332 0.350 0.368

Liver RECIST Change 0.881 0.884 7.56 7.65 0.00 0.01 0.02 0.270 0.297 0.324

Lung WHO Static 1.136 1.136 13.66 13.69 0.09 0.12 0.15 0.666 0.672 0.679

Liver WHO Static 0.930 0.960 8.50 9.12 �0.18 �0.06 0.06 0.684 0.718 0.751

Liver WHO Change 0.774 0.791 5.95 6.18 �0.01 0.01 0.04 0.589 0.634 0.691
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bounds for predicting log V at time 1 is 1.024, and the mini-

mum width of the bounds for the change data is 0.881. Thus,

when the random effects are assumed to be Gaussian, knowl-

edge of d yields knowledge of V to within a factor of 10.56,

and knowledge of the ratio d2=d1 yields knowledge of V2=V1

to within a factor of 7.56.

The results of the bootstrap approach to inference are

shown in Table III, when all of the liver data is used to create

interval estimates (i.e., no cross-validation). The minimum

width of the bounds for log V vs log d for time 1 is 1.0, and

the minimum width of the bounds for the change data is 0.8.

Hence, knowledge of d yields knowledge of V to within a

factor of 10, and knowledge of the ratio d2=d1 yields knowl-

edge of V2=V1 to within a factor of 7. The point-wise predic-

tion intervals for log V and log V2 � log V1 using both the

Gaussian random effects and bootstrap approach are

depicted graphically in Figs. 3 and 4, respectively.

Whereas 198 tumors at time 1 were available for Fig. 3,

only the 180 tumors visible at both times were plotted in

Fig. 4. The fact that the prediction intervals for the change

data are only a little smaller than that of the static data sug-

gests the correlation of nodule shape from one time to

another is weak. In particular, if nodules changed their vol-

ume by preserving some nodule-dependent arbitrary shape

and orientation, knowledge of ratio d2=d1 would determinis-

tically yield knowledge of V2=V1; we do not observe this.

III.B. Lung data

In Fig. 5, we show the distributions of volumes for nod-

ules identified by different numbers of radiologists. It is not

surprising that larger nodules are more consistently identified

than smaller ones. However, the size ranges have broad

overlap, suggesting that size is not the only factor that the

radiologists in the LIDC study considered when determining

if a nodule-candidate was judged to be a nodule. As empha-

sized in Ref. 19, during the unblinded reading phase, each

radiologist was aware of the marks of the others and nothing

was overlooked.

The prediction intervals given for many values of log d
by solid lines in Fig. 6 were calculated using the Gaussian

random effects approach. The differences between the upper

TABLE III. For the bootstrap algorithm, statistical parameters characterizing differences of the prediction bounds of the log V and the corresponding ratios of

the prediction bounds in the volume for the fit parameters of Figs. 3, 4, 6, and 8–10. The columns min and max represent the range of 95% prediction interval

for these quantities which vary slowly with log d or log w or the 95% confidence interval, as appropriate. The columns labeled point are point estimates of b0

or b1.

Log Ratio b̂0 b̂1

Organ Method Type Min Max Min Max Min Point Max Min Point Max

Lung RECIST Static 1.2 1.3 16 20 0.19 0.22 0.26 0.29 0.30 0.31

Liver RECIST Static 1.0 1.1 10 13 �0.01 0.06 0.13 0.34 0.35 0.36

Liver RECIST Change 0.8 1.0 6 10 0.00 0.01 0.02 0.28 0.30 0.35

Lung WHO Static 1.1 1.2 13 16 0.17 0.24 0.32 0.59 0.62 0.64

Liver WHO Static 0.9 1.1 8 13 �0.22 �0.10 0.03 0.69 0.73 0.76

Liver WHO Change 0.7 0.8 5 6 0.00 0.02 0.04 0.60 0.65 0.70

FIG. 3. Fit and 95% prediction intervals for the volume from the RECIST di-

ameter for liver data for two models.

FIG. 4. Fit and 95% prediction intervals for proportional volume from the

proportional change in the RECIST diameter for liver data for two models.
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and lower bounds are all between 1.226 and 1.227, as seen

in Table II. This means that given the RECIST diameter d,

the volume V is known within a 95% prediction interval

spanning factor of 16.81 or more. The 95% confidence inter-

vals for the fixed effect parameters b0 and b1 are [0.16, 0.19]

and [0.317, 0.325], respectively.

The prediction intervals, given for many values of log d
by dashed lines in Fig. 6, were calculated using the bootstrap

approach, and they vary little in width as log V changes. The

interval widths, i.e., the difference between the upper and

lower bounds, are all between 1.2 and 1.3. This means that

given the RECIST diameter d, the volume V is known within

a 95% prediction interval spanning factor of 16 or more.

This is consistent with the Gaussian random effects

approach. The point estimates and 95% confidence intervals

for b0 and b1 are 0.22 and 0.30 and [0.19, 0.26] and [0.29,

0.31], respectively.

Similar results were presented earlier by Reeves and co-

workers.28 In particular, they give an example that a 10 mm

RECIST value corresponds to volume with sphere diameter

of 4.16–11.48 mm with 95% confidence. In our terms, this

represents a prediction interval which is a factor of

ð11:48=4:16Þ3 ¼ 21 wide, which is not far from our result.

One variable which does not appear in our mixed linear

model is the voxel anisotropy. All of the LIDC data were

isotropic in the scan plane, but the ratio of the voxels along

the scan axis to the in-plane length, called here the anisot-

ropy parameter, ranged from 0.68 to 5.30. To understand the

importance of anisotropy, we binned the data into two

groups, one with a value less than 2 and the balance in the

other group. These represent roughly isotropic voxels and

prolate voxels. (Highly oblate voxels do not appear in our

sample.) When the ratio is less than 2, the 95% confidence

interval for b0 is [0.11, 0.17], and the 95% confidence inter-

val for b1 is [0.30, 0.32]. When the ratio is greater than or

equal to 2, the 95% confidence interval for b0 is [0.19, 0.26],

and the 95% confidence interval for b1 is [0.31, 0.34]. The

confidence intervals for the intercept do not overlap, which

implies that there is evidence that ratio has an effect. For ani-

sotropies less than 2, the difference of the upper and lower

prediction bounds ranges from 0.94 to 1.03 which represents

a prediction interval spanning a factor of 8.7 to 10.7 for vol-

ume. The corresponding figures for the group with larger

anisotropies are 0.84, 0.94, 6.9, and 8.7. These values are

somewhat smaller than the corresponding values in

Table III. Hence, the range of anisotropies of the voxels

which is present in the lung data, but not the liver data, could

account for the larger prediction bounds seen in the lung

case, as opposed to some difference in the distribution of

nodule shapes. Accounting for voxel anisotropy may narrow

the prediction intervals for the volume somewhat, but con-

sidering the distributions of Fig. 2, the effect of voxel anisot-

ropy is likely dominated by the effects of nodule shape and

orientation.

The RECIST standard indicates a nodule may be meas-

ured only if its diameter is 10 mm or more.2 In Fig. 7, we

show the proportion of RECIST diameters of at least 10 mm

as a function of the nodule volume under the assumption that

the nodule would have been just as likely to have grown

with a different orientation. The S-shaped curve illustrates

that as the volume of the nodule increases, the chance of a

nodule exceeding the threshold increases; moreover, the

greatest slope of the S-curve occurs just as a growing sphere

would cross the threshold. The feature we wish to emphasize

is that the S-curve is quite wide. For example, whereas a

nodule with a volume of 270 mm3 has on average a 25%

chance of being measurable under RECIST, a nodule well

FIG. 6. Fit and 95% prediction intervals for the volume from the RECIST di-

ameter for rotated lung nodule readings for two models, shown with a repre-

sentative sample of 1–2 orientations per nodule (0.1% of total available).

FIG. 5. The distribution of the volume of a physical nodule as a function of

the number of radiologists identifying physical nodule as such. (Each vol-

ume is found as a harmonic mean.) The middle line in the box represents the

median. The top and bottom of the box represent the interquartile range

(IQR). The dashed lines (“whiskers”) extend to the final data points that lie

no more than 1.5 times the IQR beyond the box. All points not encompassed

by the whiskers are plotted as points.
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over twice as large at 670 mm3 has on average a 75% chance

of being classified as measurable, depending on the orienta-

tion of the nodule relative to the scan axis.

III.C. Both liver and lung data

Considering the corresponding quantities for log V vs

log w, where w is the WHO bidimensional product, leads to

similar results as shown in Figs. 8–10, with the various pa-

rameters reported in Tables II and III. We find that log w
leads to prediction bounds which are smaller by 0.1 unit in

the logarithm or a factor of 1.3, which is a relatively modest

improvement. This is true regardless of whether the Gaus-

sian random effects or the bootstrap approach is considered.

For the LIDC data, the correlation coefficient between

RECIST and volume is 0.87. For the liver data at time 1, the

correlation coefficient between RECIST and volume is 0.94.

For the liver data, the correlation coefficient between the

RECIST difference and volume difference is 0.86. Note that

all of the correlation coefficients are statistically significantly

different from zero no matter which the inference approach

is used since none of the 95% confidence intervals for b1

contain zero.

Under the assumption that nodules grow by increasing

their volume without changing the distribution of their

shapes, we would expect d � V1=3. In Figs. 3, 4, and 6, we

observe power law dependencies b̂1 in Tables II and III. All

of the RECIST cases are in reasonable agreement with the

scaling prediction of 1
3
. Similarly, we expect w � V2=3, since

w has the dimensions of area. These values, shown graphi-

cally in Figs. 8–10, are given numerically in Tables II and

III as the WHO cases. Again, reasonable agreement with the

scaling prediction of 2
3

is found in all cases. The lack of a

scaling rule for individual nodules discussed earlier does not

lead to a lack of scaling for their distributions.

IV. DISCUSSION

We used two statistical methods both based on the same

mixed model but making different assumptions about the

random effects to obtain our results. In the case of the liver

data, the confidence intervals for b0 and b1 overlap, and all

of the prediction intervals are nearly identical. So our con-

clusions are the same for both methods. In the case of the

lung data, which had a more complicated data structure and

likely more highly correlated observations, the results of the

two methods are in marginal disagreement for the values of

slopes and intercepts for both RECIST and WHO data.

FIG. 7. Proportion of orientations above threshold for lung nodules with a

given volume and a fit line. The dashed line at V ¼ 103p=6 mm3 represents

the threshold for the spherical case. The fit is done using the LOGIT func-

tional form
exp½�14:422þ5:495ðlog10ðVÞÞ�

1þexp½�14:422þ5:495ðlog10ðVÞÞ�
.

FIG. 8. Fit and 95% prediction intervals for volume from the WHO diameter

product for liver data for two models.

FIG. 9. Fit and 95% confidence limits for the prediction of proportionate

change in volume from the change in the WHO diameter product for liver

data for two models.
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For the lung data, where the two inference methods

slightly disagree about the fixed slope and intercept, one

may wish to choose the best of the two methods. However, a

best method (between the two considered) does not seem

apparent for two reasons. First, the bootstrap procedure uses

ordinary least squares to estimate the fixed slope and inter-

cept. It is known that when the observed data contain corre-

lations, the ordinary least squares estimates may be biased,

which is undesirable. Second, assuming that Oijkð‘Þ follows a

Gaussian distribution when it clearly does not (see Fig. 2) is

undesirable, and it can also affect the estimates of fixed slope

and intercept. To see this more clearly, consider that the like-

lihood used by ReML is built from the Gaussian assump-

tions, and that likelihood is maximized to obtain estimates of

the variance components. Those estimated variance compo-

nents are then fed into an expression to get estimates of the

fixed slope and intercept. Incorrectly assuming Gaussian ran-

dom effects can affect the estimate of the fixed slope and

intercept through the following chain: the Gaussian assump-

tions affect the shape of the likelihood which in turn affects

the estimates of the variance components which finally affect

the estimate of the fixed slope and intercept. Thus, neither

approach is ideal, but they both provide a practical solution

to a difficult problem.

Interestingly, however, the ratios of the upper and lower

bounds of the prediction interval is nearly the same for both

the Gaussian and bootstrap approach. This ratio is the key

point of interest; although one might like to know exactly

how RECIST and volume are related, our result that there is

an order of magnitude of variation holds for both approaches.

V. CONCLUSIONS

The RECIST diameter, like the WHO bidimensional

product introduced earlier, is used as a practical proxy for

volume in studies of the changes of nodule size. While the

RECIST diameter and the WHO value are certainly corre-

lated with the volume, and similarly for changes in these

quantities, the use of the RECIST diameter introduces addi-

tional variation assuming volume is the quantity of interest.

In this study, using clinical data, the RECIST diameter deter-

mines volume to within a prediction interval which spans an

order of magnitude and changes in diameter determine

changes in volume only slightly better. The WHO bidimen-

sional product provides only a modest improvement of a fac-

tor of 1.3 in the prediction of volumes.

The range of nodule volumes from those that would be

almost certainly omitted by the RECIST 10 mm threshold to

those that almost certainly would be included spans an order

of magnitude. Comparisons of RECIST and volumetrics in

the literature do not, to our knowledge, address the question

of additional variation due to the random nature of the selec-

tion procedure. Although it is implicit that the largest lesions

should be followed for growth, RECIST does not necessarily

find these lesions, assuming largest means largest in volume.

Exactly how much the use of RECIST rather than volu-

metrics reduces the statistical power of clinical drug trials8 is

a key open question for future research.
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