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Abstract

We propose a set of postulates to describe the mechanical interaction between a plane-wave

electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign.

The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz

force law, and a model for absorption-driven mass transfer from the pulse to the medium. These

opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain

algorithm that solves Maxwell’s equations and calculates the instantaneous force densities exerted

by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories

of the slab and system center-of-mass. We show that the postulates are consistent with conservation

of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the

refractive index of the slab is negative or zero. Consistency between the set of postulates and

well-established conservation laws reinforces the Abraham momentum density as the one true

electromagnetic momentum density and enables, for the first time, identification of the correct

form of the electromagnetic mass density distribution and development of an explicit model for

mass transfer due to absorption, for the most general case of a ponderable medium that is both

dispersive and dissipative.
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INTRODUCTION

It is well known that light carries momentum [1] and can transfer momentum to ponder-

able media via radiation pressure [2, 3]. Within the framework of classical electrodynamics,

the momentum of light in a ponderable medium has an electromagnetic component associ-

ated with the electromagnetic fields and a mechanical component associated with the action

of the electromagnetic fields on the constituent atoms of a medium. There is ongoing debate

over the correct form of the electromagnetic momentum in a dielectric medium. In 1908,

Minkowski [4] first proposed an electromagnetic momentum density ~G = ~D× ~B, where ~D is

the electric displacement field and ~B is the magnetic flux density. When a light pulse with

free-space momentum p0 enters into a lossless, non-dispersive dielectric medium of positive

refractive index n, the Minkowski formulation predicts an increase in the electromagnetic

component of the pulse momentum from p0 to np0 [5]. In 1909, Abraham [6] proposed an

alternative electromagnetic momentum density ~G = ( ~E × ~H)/c2, where ~E is the electric

field, ~H is the magnetic field, and c is the speed of light in vacuum. When a light pulse

enters a lossless, non-dispersive, positive-index dielectric medium, the Abraham formulation

predicts a decrease in the electromagnetic component of the pulse momentum from p0 in

vacuum to p0/n in the dielectric [5]. Neither the Minkowski form nor the Abraham form has

been universally accepted as the true electromagnetic momentum density (see Ref. [7] and

the references therein). In addition, several other forms of the electromagnetic momentum

density have since been proposed [8–14], each purporting to be the correct formulation.

Any plausible description for the electromagnetic momentum of light requires that, in a

thermodynamically closed system, momentum be conserved. Classical electromagnetic the-

ory, however, cannot be used to prove the validity of one formulation of the electromagnetic

momentum density over another [7]. Any expression for the electromagnetic momentum

density can be deemed valid so long as a corresponding force equation is chosen such that,

when applied to describe the interaction of light with ponderable media, global momentum

is conserved [7, 15].
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BALAZS THOUGHT EXPERIMENT

Although no electromagnetic momentum density form can be proven based on conserva-

tion of momentum alone, the elegant Balazs thought experiment [16] provides a compelling

case for the derivation of an electromagnetic momentum density in a dielectric based on the

additional postulates of conservation of center-of-mass velocity [17] and invariance of pulse

mass. The experiment consists of a reflection-less, transparent, non-dispersive, massive, and

rigid dielectric slab having positive refractive index n, thickness L, and mass M [Fig. 1].

The slab is initially at rest and has antireflection coatings on its entrance and exit facets.

A plane-wave light pulse of mass m initially propagating in vacuum at c can either move

through the slab or alongside the slab. In the absence of external forces, total momentum

of the system is mc and the center-of-mass of the slab-pulse system moves with uniform ve-

locity mc/(m+M). If the pulse enters the slab, the velocity of the pulse slows down to c/n,

which must be accompanied by a movement of the slab in the direction of pulse propagation

to maintain a constant center-of-mass velocity of the system. When the pulse leaves the slab

and recovers its free-space momentum, the momentum of the slab returns to zero. Analysis

of the slab center-of-mass displacement before and after the pulse has interacted with the

slab, along with the requirement of conservation of system center-of-mass velocity and in-

variance of the pulse mass, implies that the slab acquires a momentum (1−1/n)mc while the

pulse is fully contained in the slab. For global momentum to be conserved, the electromag-

netic momentum of the pulse in the slab must then be mc/n, the only plausible momentum

allowed in the Balazs thought experiment. This momentum is consistent with the Abraham

form of the electromagnetic momentum density when applied to an electromagnetic pulse

completely immersed in a lossless, non-dispersive dielectric slab [6]. Although elegant, one

of the limitations of the thought experiment is that it is based on the analysis of the pulse

before and after interacting with the slab and does not provide information on whether

global momentum is conserved even when the pulse is immersed in the slab. Moreover, the

Balazs thought experiment is applicable only in the highly restrictive case where the slab is

reflection-less and non-dissipative.
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FIG. 1. Formulation of the Balazs thought experiment. Two identical enclosures each contain a

photon of mass m and a non-dispersive, lossless slab of mass M and length L. (a) In enclosure 1,

the photon propagates in a straight line above the slab through only vacuum. (b) In enclosure 2,

the photon propagates in a straight line through both vacuum and the slab.

REVISITING THE BALAZS THOUGHT EXPERIMENT: NON-DISPERSIVE,

POSITIVE-INDEX MEDIA

In our previous work [5], we re-visited the Balazs thought experiment using four pos-

tulates: Maxwell’s equations to describe the propagation of electromagnetic fields, a gen-

eralized form of the Lorentz force law to describe the action of electromagnetic fields on

ponderable media, the Abraham form of the electromagnetic momentum density, and con-

servation of both slab and pulse mass. The postulates were applied to describe, at all times,

an electromagnetic plane-wave pulse traveling through a massive, dissipative, and positive-

index slab of arbitrary complex relative permittivity and permeability. For the limiting case

of a lossless slab, we analytically showed that global momentum and system center-of-mass

velocity are conserved at all times, consistent with two of the starting postulates of the Bal-

azs thought experiment. Invoking an additional mass transfer model to describe absorption,

we numerically treated a number of test cases in which the slab possessed varying degrees

of absorption (both with and without impedance matching to free space), verifying for all

cases that conservation of momentum and center-of-mass velocity still held at all times.
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OPTO-MECHANICAL INTERACTIONS IN DISPERSIVE, DISSIPATIVE, NEGATIVE-

INDEX MEDIA

Materials in which both the real parts of the complex permittivity, εr, and complex

permeability, µ
r
, are positive, such as glass, are known as right-handed materials. A plane

wave propagating in such a material has its electric field vector, magnetic field vector, and

wavevector forming a right-handed triad. This leads to a wavevector and Poynting vector

that are parallel and, as a result, co-linear phase and group velocities. In 1968, Veselago [18]

studied a theoretical medium in which both the real parts of εr and µ
r

are negative. A

plane wave propagating in such a material has its electric field vector, magnetic field vector,

and wavevector forming a left-handed triad (hence called a left-handed medium). This

leads to a wavevector and Poynting vector that are anti-parallel and, as a result, contra-

directional phase and group velocities. Although left-handed materials are not known to

be naturally occurring, they have recently been implemented under the form of artificial

metamaterials [19–22]. The optical properties of these artificial metamaterials (such as

cloaking, lensing, and negative refraction) have received considerable attention, and only

recently has their opto-mechanical properties become an area of interest [13, 18, 23, 24].

In this work, we examine the mechanical interaction between an electromagnetic pulse and

a left-handed slab having real parts of εr and µ
r

that are both negative. We also examine the

limiting case in which the real parts of εr and µ
r

are both zero, corresponding to a real part of

the refractive index that is zero. To treat the case of a left-handed slab, we model a slab ma-

terial possessing dispersion [25]. The dynamic interaction of an electromagnetic pulse with

a dispersive slab is modeled using a set of postulates that includes Maxwell’s equations, the

Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model

for absorption in which mass is transferred from the pulse to the medium. Application of the

postulates yields calculated quantities where global momentum and center-of-mass velocity

are conserved at all times, regardless of the presence of loss and dispersion in the slab or the

value and sign of the real part of the refractive index. Based on consistency with conserva-

tion of momentum and center-of-mass velocity, we infer that the Abraham electromagnetic

momentum density and a generalized Lorentz force equation describe the electromagnetic

and mechanical components, respectively, of light momentum in ponderable media, in agree-

ment with theoretical arguments describing the interaction of electromagnetic waves with
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materials having arbitrary polarization and magnetization densities [23, 24]. Demonstration

that the Abraham momentum density, along with the aforementioned postulates, is the only

plausible electromagnetic momentum density strengthens its case as the one true electromag-

netic momentum density. Other significant outcomes of this work include the identification

of an expression for the electromagnetic mass density distribution for the most general case

of a dispersive, lossy material of arbitrary handedness and the development of a model for

dynamic transfer of electromagnetic mass to absorbing media. It is also noteworthy that

dispersion, treated here to accommodate materials with negative refractive index, was not

explicitly treated in the original Balazs thought experiment. The thought experiment in-

volved the comparison of the respective final positions of two otherwise indistinguishable

pulses: one having traveled through only vacuum and the other having traveled through

both vacuum and the slab. The assumption of indistinguishability between the two pulses

implicitly precludes the possibility of dispersion.

FORMULATION OF POSTULATES

We first postulate that the propagation of electromagnetic fields is governed by Maxwell’s

equations relating the behavior of ~E, ~H, ~D, and ~B to their sources, which include, in

ponderable media, densities of polarization, ~P , and magnetization, ~M . In the absence of

free charge density and free current density, the electromagnetic fields are related in real,

time-domain notation by the Ampere-Maxwell law

∇× ~H =
∂ ~D

∂t
(1)

and by Faraday’s law

∇× ~E = −∂
~B

∂t
. (2)

The electric displacement field is related to the polarization density via the relation

~D = ε0 ~E + ~P

= ε0 ~E + ~Ps + ~Pd

= ε0 ~E + (ε∞ − 1) ε0 ~E + ~Pd, (3)

where ε0 is the free-space permittivity, ~Ps = (ε∞ − 1)ε0 ~E is the non-dispersive, frequency-

independent component of the polarization density, ~Pd is the dispersive, frequency-dependent
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component of the polarization density, and ε∞ is the positive, static relative permittivity.

Similarly, the magnetic flux density is related to the magnetization density via the relation

~B = µ0
~H + ~M

= µ0
~H + ~Ms + ~Md

= µ0
~H + (µ∞ − 1)µ0

~H + ~Md, (4)

where µ0 is the free-space permeability, ~Ms = (µ∞−1)µ0
~H is the non-dispersive, frequency-

independent component of the magnetization density, ~Md is the dispersive, frequency-

dependent component of the magnetization density, and µ∞ is the positive, static relative

permeability.

Temporal variation in ~P and ~M yield an electric current density ~Je and a magnetic current

density ~Jm given respectively by

~Je =
∂ ~P

∂t

=
∂ ~D

∂t
− ε0

∂ ~E

∂t
(5)

and

~Jm =
∂ ~M

∂t

=
∂ ~B

∂t
− µ0

∂ ~H

∂t
. (6)

Parsing the current densities into non-dispersive and dispersive components, ~Je and ~Jm

can be re-expressed as

~Je = ~Jes + ~Jed

=
∂ ~Ps

∂t
+
∂ ~Pd

∂t

= ε0 (ε∞ − 1)
∂ ~E

∂t
+
∂ ~Pd

∂t
(7)

and

~Jm = ~Jms + ~Jmd

=
∂ ~Ms

∂t
+
∂ ~Md

∂t

= µ0 (µ∞ − 1)
∂ ~H

∂t
+
∂ ~Md

∂t
, (8)
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respectively, where ~Jes = ∂ ~Ps/∂t is the non-dispersive component of the electric current

density, ~Jed is the dispersive component of the electric current density, ~Jms = ∂ ~Ms/∂t is

the non-dispersive component of the magnetic current density, and ~Jmd is the dispersive

component of the magnetic current density.

We model ~Jed and ~Jmd using general first-order differential equations given by [25, 26]

∂ ~Jed
∂t

+ Γe
~Jed = ε0ω

2
pe
~E (9)

and
∂ ~Jmd

∂t
+ Γm

~Jmd = µ0ω
2
pm
~H, (10)

respectively, where ωpe is the electric resonance frequency, ωpm is the magnetic resonance

frequency, Γe is the electric damping factor, and Γm is the magnetic damping factor.

To investigate electromagnetic pulse interaction with a slab, we derive relations for the

frequency-dependent complex permittivity and complex permeability of the slab medium in

terms of the parameters in Eqs. (9) and (10). These relations will then be used to set εr and

µ
r

values over the frequency bandwidth of the pulse. Assuming time-harmonic dependence

of the electric field ~E = Re[ ~Ee−iωt] and magnetic field ~H = Re[ ~He−iωt], where ~E is the

complex electric field, ~H is the complex magnetic field, we re-cast the constitutive relations

from real, time-domain notation [as given in Eqs. (9) and (10)] into complex, frequency-

domain notation. The dispersive components of the complex electric current density, ~Jed,

and the complex magnetic current density, ~Jmd, then become related to ~E and ~H by

~Jed =
ε0ω

2
pe

Γe − iω
~E (11)

and

~Jmd =
µ0ω

2
pm

Γm − iω
~H, (12)

respectively. Ampere-Maxwell’s law in complex, frequency-domain notation is

∇× ~H = −iω ~D. (13)

where ~D is the complex electric displacement field. Re-casting Eqs. (5) and (7) into complex,

frequency-domain notation, we get expressions for the complex electric current density, ~Je,

given by

~Je = −iω ~D + iωε0 ~E (14)
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and

~Je = −iωε0 (ε∞ − 1) ~E + ~Jed, (15)

respectively.

Solving Eqs. (14) and (15) for ~D and then substituting into Eq. (13) yields

∇× ~H = −iωε∞ε0 ~E +
ε0ω

2
pe

Γe − iω
~E

= −iωε0
(
ε∞ −

ω2
pe

ω(ω + iΓe)

)
~E

= −iωε0εr(ω) ~E, (16)

where εr(ω) is the complex, frequency-dependent relative permittivity given by

εr(ω) = ε∞ −
ω2
pe

ω(ω + iΓe)
. (17)

Faraday’s law in complex, frequency-domain notation is

∇× ~E = iω ~B. (18)

where ~B is the complex magnetic flux density. Re-casting Eqs. (6) and (8) into complex,

frequency-domain notation, we get expressions for the complex magnetic current density,

~Jm, given by

~Jm = −iω ~B + iωµ0
~H (19)

and

~Jm = −iωµ0 (µ∞ − 1) ~H + ~Jmd, (20)

respectively.

Solving Eqs. (19) and (20) for ~B and then substituting into Eq. (18) yields

∇× ~E = iωµ∞µ0
~H −

µ0ω
2
pm

Γm − iω
~H

= iωµ0

(
µ∞ −

ω2
pm

ω(ω + iΓm)

)
~H

= iωµ0µr
(ω) ~H, (21)

where µ
r
(ω) is the complex, frequency-dependent relative permeability given by

µ
r
(ω) = µ∞ −

ω2
pm

ω(ω + iΓm)
. (22)
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The complex permittivity and complex permeability given in Eqs. (17) and (22) obey the

Kramers-Kronig relation and satisfy causality [25].

To investigate both right-handed and left-handed materials, we adjust the parameters ε∞,

µ∞, ωpe, ωpm, Γe, and Γm in Eqs. (17) and (22) so that εr and µ
r

can have either positive or

negative real parts. We restrict our treatment to consider cases in which the real parts of εr

and µ
r

are either both positive or both negative, reserving the cases of an electric conductor

( Re[εr] < 0 and Re[µ
r
] > 0) and a magnetic conductor ( Re[εr] > 0 and Re[µ

r
] < 0) for

future study. Once the values of εr and µ
r

are specified, the resulting complex refractive

index is given by [27]

n(ω) = Sign
[

Re[εr(ω)]|µ
r
(ω)|+ Re[µ

r
(ω)]|εr(ω)|

]√
εr(ω)µ

r
(ω), (23)

which typically has a positive real part when Re[εr] > 0 and Re[µ
r
] > 0 and a negative

real part when Re[εr] < 0 and Re[µ
r
] < 0. We restrict our analysis to passive media that

are either non-absorbing ( Im[n] = 0) or absorbing ( Im[n] > 0), not treating the case of

active gain media ( Im[n] < 0). Note that εr(ω) and µ
r
(ω) include the effect of loss through

Γe and Γm, are inherently dispersive, and can generally only achieve negative real values

over a limited frequency range, all consistent with practical limitations of experimentally-

implemented metamaterials.

Here, we postulate that the Abraham momentum density, shown earlier to be valid for

non-dispersive materials [5], also applies to the case of a dispersive material having a real

part of the refractive index that is either positive, negative, or zero. The electromagnetic

momentum density is given at all points in space and time by

~G =
~E × ~H

c2
. (24)

We next consider the mechanical component of light momentum associated with the

action of the electromagnetic fields on the atoms/molecules of a medium. We postu-

late that electromagnetic interaction with ponderable media is mediated via a generalized

Lorentz force law first proposed by Einstein and Laub [28], and then recently studied by

Mansuripur [29, 30]. The corresponding force density is given by

~f = (~P · ∇) ~E + ( ~M · ∇) ~H + ~Je × µ0
~H − ~Jm × ε0 ~E, (25)

which provides a highly symmetric expression for the interaction of electric and magnetic

fields with a material having non-zero polarization and magnetization densities. Here, as in
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our previous work [5], we restrict the treatment to the case of an electromagnetic plane-wave

normally incident onto a flat slab. When Eq. (25) is applied to this geometry, the first two

terms vanish and it simplifies to

~f = ~Je × µ0
~H − ~Jm × ε0 ~E. (26)

We note that Eq. (26) incorporates magnetization by the inclusion of an additional term

involving ~Jm, which differs from the conventional Lorentz force law which incorporates mag-

netization by the addition of (∇ × ~M)/µ0 to ~Je. As noted by Mansuripur [31], the use of

the conventional Lorentz force law for media having non-zero magnetization density leads to

the requirement of inelegant hidden momentum terms [32] to achieve conservation of global

momentum.

We thus postulate that the electromagnetic component of the momentum density is de-

scribed by Eq. (24) and the mechanical component is described by Eq. (25). Together, the

electromagnetic momentum density and the force density can be expressed in the context

of a momentum continuity equation [8, 33, 34]

∇ · ¯̄T +
∂ ~G

∂t
= −~f (27)

where ¯̄T is the stress tensor. The form of the corresponding stress tensor can be derived by

inserting Eqs. (24) and (25) into Eq. (27), yielding

∇ · ¯̄T = −(~P · ∇) ~E − ( ~M · ∇) ~H − ~Je × µ0
~H + ~Jm × ε0 ~E −

∂

∂t

(
~E × ~H

c2

)
. (28)

We use the relation ε0µ0 = 1/c2 and the definitions of the electric and magnetic current

densities given by Eqs. (5) and (6), respectively, and develop the temporal derivative on the

right hand side of Eq. (28) to give

∇ · ¯̄T = −∇(~P ~E + ~M ~H)− ∂ ~P

∂t
× µ0

~H +
∂ ~M

∂t
× ε0 ~E − ε0

∂ ~E

∂t
× µ0

~H + µ0
∂ ~H

∂t
× ε0 ~E. (29)

Substituting Eqs. (3) and (4) into Eq. (29) yields

∇ · ¯̄T = −∇( ~D ~E − ε0 ~E ~E + ~B ~H − µ0
~H ~H)− ∂ ~D

∂t
× µ0

~H +
∂ ~B

∂t
× ε0 ~E. (30)

We invoke the Ampere-Maxwell law and Faraday’s law and use the vector identity ∇( ~A ·
~A)/2 = ~A× (∇× ~A) + ( ~A · ∇) ~A to re-express Eq. (30) as

∇ · ¯̄T = ∇(− ~D ~E − ~B ~H) +
1

2
∇(µ0

~H · ~H) +
1

2
∇(ε0 ~E · ~E). (31)
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The stress tensor can be directly identified from Eq. (31) as [33, 34]

¯̄T = − ~D ~E − ~B ~H +
1

2
(µ0H

2 + ε0E
2) ¯̄I, (32)

where ¯̄I is the identity matrix. The stress tensor given by Eq. (32) uniquely corresponds

to the electromagnetic momentum density given by Eq. (24) and the force density given

by Eq. (25). It should be noted that the momentum continuity equation does not a priori

specify a particular combination of electromagnetic momentum density, force density, and

stress tensor. Other combinations can be postulated which satisfy the momentum continuity

equation, meaning that conservation of momentum alone is not a sufficiently stringent test

to enable identification of a unique electromagnetic momentum density. However, imposing

the simultaneous requirement of conservation of momentum and conservation of center of

mass velocity may enable elimination of certain forms of the electromagnetic momentum

density (and its corresponding force density and stress tensor), which would otherwise satisfy

conservation of momentum. In Appendix A, we will examine the implications of selecting a

Minkowski momentum density and its corresponding force density and stress tensor to study

an electromagnetic plane-wave pulse normally incident onto a slab, showing that although

global momentum is conserved, center of mass velocity is not conserved.

We next consider the flow of energy due to the propagation of the electromagnetic fields.

We postulate that the rate of electromagnetic energy flow at all points in space and time is

given by the Poynting vector

~S = ~E × ~H. (33)

The Poynting vector, in conjunction with Maxwell’s equations, can be used to derive the

electromagnetic mass density of the pulse [35], which is needed to calculate the center-of-

mass of the pulse. Applying the divergence theorem to Eq. (33) and using Eqs. (1)–(4), we

get

∫
S

( ~E × ~H) · ~dS =

∫
V

∇ · ( ~E × ~H)dV

=

∫
V

[ ~H · (∇× ~E)− ~E · (∇× ~H)]dV

= −
∫
V

(µ∞µ0
~H · ∂

~H

∂t
+ ~H · ~Jmd + ε∞ε0 ~E ·

∂ ~E

∂t
+ ~E · ~Jed)dV. (34)
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Substituting the constitutive relations given by Eqs. (9) and (10) into Eq. (34) then yields∫
S

( ~E × ~H) · ~dS = −
∫
V

[µ∞µ0
~H · ∂

~H

∂t
+

1

µ0ω2
pm

(
∂ ~Jmd

∂t
+ Γm

~Jmd) · ~Jmd

+ε∞ε0 ~E ·
∂ ~E

∂t
+

1

ε0ω2
pe

(
∂ ~Jed
∂t

+ Γe
~Jed) · ~Jed]dV . (35)

Further developing Eq. (35) and separating the temporal derivative terms in the volume

integral yields [36]∫
S

( ~E × ~H) · ~dS +

∫
V

(
ΓeJ

2
ed

ε0ω2
pe

+
ΓmJ

2
md

µ0ω2
pm

)
dV

= −
∫
V

∂

∂t

(
µ∞µ0H

2

2
+
ε∞ε0E

2

2
+

J2
ed

2ε0ω2
pe

+
J2
md

2µ0ω2
pm

)
dV

= −
∫
V

∂W

∂t
dV, (36)

where the electromagnetic energy density of the electromagnetic fields at all points in space

and time is given by

W =
µ∞µ0H

2

2
+
ε∞ε0E

2

2
+

J2
ed

2ε0ω2
pe

+
J2
md

2µ0ω2
pm

, (37)

which is similar to the energy density formulation derived by Ruppin [35]. This expression

simplifies to the well-known energy density expression for a plane wave in free space when

ε∞ = 1, µ∞ = 1, Jed = 0 and Jmd = 0.

A valid description of electromagnetic pulse interaction with a ponderable slab should

conserve the total mass of the system for all time. For the case of a pulse interacting with a

lossless slab, conservation of total mass is satisfied by fixing the mass of the pulse and the

mass of the slab. For the case of a pulse interacting with a lossy slab, conservation of total

mass for all time requires dynamic and generally non-uniform exchange of mass from the

pulse to the slab. Here, we postulate that the distribution of the pulse mass exchanged to

the slab is based on the mass density distribution of the electromagnetic pulse. Generalizing

the mass density, ρ, proposed for a pulse in a non-dispersive ponderable medium [5], we

postulate that the mass density of the pulse in the present, more-general case of a dispersive

material is given by

ρ =
W

c2
. (38)

We invoke local conservation of mass by implementing an incremental mass transfer model

where, at any moment in time, the mass reduction of the pulse due to absorption in a
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medium is compensated by an identical mass increase of the absorbing medium, distributed

in space according to the instantaneous mass density distribution of the pulse given by

Eqs. (37) and (38). The spatially distributed pulse mass transferred to the lossy slab affects

the center-of-mass of the slab, which, in turn, determines the center-of-mass velocity of the

system. It should be noted that invoking conservation of mass in this manner also ensures

that the total energy of the system is conserved for all time.

METHODOLOGY

We verify the consistency of the complete set of aforementioned postulates with conser-

vation laws for momentum and mass by subjecting them to a number of representative test

cases where a pulse is incident onto a slab. Consistency of our postulates with conserva-

tion of momentum validates the chosen forms of the electromagnetic momentum density and

opto-mechanical force density. Furthermore, consistency with conservation of center-of-mass

velocity validates the chosen model for the spatio-temporal dependence of pulse mass density

and mechanisms for pulse mass transfer to the slab in a dispersive and dissipative medium.

The complete set of assumptions and postulates used in our analysis are summarized in

Table I. The incident electromagnetic pulse consists of a sinusoidal carrier wave oscillating

at a frequency ωc = 6 × 1014 Hz (corresponding to a free-space wavelength λ0 = 500 nm)

and a Gaussian intensity envelope with a temporal full-width-at-half-maximum of 1.5 fs.

A pulse is used, as opposed to a continuous wave, so that the center-of-mass of the elec-

tromagnetic fields are well-defined. The spectral contents of the pulse are centered about

ωc, as depicted in Fig. 2. The pulse propagates along the z-direction and is normally in-

cident onto a flat slab occupying the region 0 < z < L = 750 nm. The slab is composed

of a dispersive dielectric characterized by a complex relative electric permittivity εr and

complex relative magnetic permeability µ
r
, yielding a complex index of refraction given by

Eq. (23). For initial simplicity of presentation, we eliminate the effect of reflection from the

faces of the slab by assuming that the slab is impedance-matched to vacuum, which in our

case can be achieved by setting εr = µ
r

to yield a relative impedance ηr =
√
µ
r
/εr = 1.

From Eq. (23), the assumption of impedance matching also sets εr = µ
r

= n. Impedance

matching is not critical to our conclusions, and in Appendix B, we examine a case in which

the slab material is non-impedance-matched (εr 6= µ
r
) and show that similar results to

14



the impedance-matched cases are obtained. Here, we study five test cases in which the

material parameters are varied such that the slab is either (1) positive index and lossless

[n(ωc) = 1.47 + 0.00i], (2) positive index and lossy [n(ωc) = 1.42 + 0.34i], (3) negative index

and lossless [n(ωc) = −1.53 + 0.00i], (4) negative index and lossy [n(ωc) = −1.53 + 0.34i],

or (5) zero-index and lossless [n(ωc) = 0.00 + 0.00i]. The values for the parameters ε∞,

µ∞, ωpe, ωpm, Γe, and Γm corresponding to the five test cases are summarized in Table II.

The resulting real and imaginary parts of εr, µr
, and n for all test cases are depicted in

Figs. 2(b), 2(c), and 2(d), respectively. Due to the dispersive nature of the constitutive rela-

tions, it is generally not possible to achieve a zero refractive index over the entire bandwidth

of the pulse. We instead set the constitutive parameters so that the refractive index crosses

zero at a frequency near the peak location of the pulse power spectrum.

The spatio-temporal evolution of the pulse is modeled using one-dimensional finite-

difference time-domain (FDTD) solutions to Eqs. (1) and (2). The simulation space consists

of a one-dimensional array of 17000 pixels, where pixels 1 to 2000 correspond to free-space,

pixels 2001 to 17000 correspond to the slab, and pixels 17001 to 19000 correspond to free-

space. The pixels in the free-space regions each have a size of 2 nm, and the pixels in

the slab region each have a size of 0.05 nm. Perfectly-matched-layer boundary conditions

are used at the two ends of the simulation space to eliminate spurious reflections from

the boundaries. The temporal step size of the simulations is 0.05 nm/(2c) = 8.3 × 10−5 fs,

and the simulations are synchronized such that the time t = 0 coincides with the instant

when the peak of the pulse is located at the front face of the slab. As shown in Fig. 3,

we assume that ~E and ~Je are oriented along the x-direction and ~H and ~Jm are oriented

along the y-direction. The electric field is taken at the cell edge for integer time steps and

the magnetic field is taken at the cell center for half-integer time steps. The electric and

magnetic current densities are located together at the cell centers to achieve the matched

medium conditions numerically. For a spatio-temporal grid with a spatial step size ∆z, a

spatial index i, a temporal step size ∆t, and a temporal index n, we use the compressed no-

tation Ex(i∆z, (n + 1)∆t) = En+1
x (i), Je,x((i + 1/2)∆z, (n + 3/2)∆t) = J

n+3/2
e,x (i + 1/2),

Hy((i + 1/2)∆z, (n + 1/2)∆t) = H
n+1/2
y (i + 1/2), and Jm,y((i + 1/2)∆z, (n + 1)∆t) =
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TABLE I. Assumptions and postulates used in our analysis of electromagnetic pulse interaction

with a slab. The quantities in the equations are defined in the text.

Explicit Force Density and Momentum Density Calculations

Assumptions Postulates

• Slab is impedance-

matched to vacuum

• Slab is rigid and massive

M >> m

• Pulse is a plane wave at

normal incidence

• Two of Maxwell’s equations:

∇ × ~H = ∂ ~D/∂t and ∇ × ~E =

−∂ ~B/∂t

• Generalized Lorentz force law:

~f = ~Je × µ0 ~H − ~Jm × ε0 ~E

• Electromagnetic momentum

density:

~G = ~E × ~H/c2

• Poynting vector: ~S = ~E × ~H

• An incremental mass transfer

model in which the pulse de-

posits mass in the slab with

a distribution corresponding to

the instantaneous mass density

profile of the pulse
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TABLE II. Parameters used in the FDTD simulations for the five test cases.

Test Case ε∞, µ∞ ωpe, ωpm ( rad/s) Γe,Γm ( rad/s) n(ωc)

1 4.00 6× 1015 0 1.47 + 0.00i

2 4.00 6× 1015 5× 1014 1.42 + 0.34i

3 1.00 6× 1015 0 −1.53 + 0.00i

4 1.00 6× 1015 5× 1014 −1.57 + 0.34i

5 2.53 6× 1015 0 0.00 + 0.00i

Jn+1
m,y (i+ 1/2) [25]. The resulting discretized Maxwell’s equations are then given by

Hn+1/2
y (i+ 1/2) = Hn−1/2

y (i+ 1/2)− ∆t

µ0∆z

[
En

x (i+ 1)− En
x (i) + Jn

m,y(i+ 1/2)∆z
]

Jn+1
m,y (i+ 1/2) =

1− 0.5Γm∆t

1 + 0.5Γm∆t
Jn
m,y(i+ 1/2) +

µ0ω
2
pm∆t

1 + 0.5Γm∆t
Hn+1/2

y (i− 1/2)

En+1
x (i) = En

x (i)− ∆t

ε0∆z

[
Hn+1/2

y (i+ 1/2)−Hn+1/2
y (i− 1/2)

]
− 1

2

∆t

ε0

[
Jn+1/2
e,x (i+ 1/2) + Jn+1/2

e,x (i− 1/2)
]

Jn+3/2
e,x (i+ 1/2) =

1− 0.5Γe∆t

1 + 0.5Γe∆t
Jn+1/2
e,x (i+ 1/2)

+
1

2

ε0ω
2
pe∆t

1 + 0.5Γe∆t

[
En+1

x (i) + En+1
x (i+ 1)

]
(39)

RESULTS

We first examine the evolution of the electromagnetic fields of the pulse as it propagates

through dispersive slabs with and without loss. Figures 4(a) and 4(c) display time-sequences

of the FDTD-calculated electric fields for comparative cases in which a pulse is incident

onto dispersive positive-index slabs with and without loss, respectively. The incident pulse

consists of several electric field oscillations and has a width in vacuum comparable to the

width of the slab, which enables the independent observation in time of the interaction of

the leading and falling edges of the pulse with the front and back interfaces of the slab as

well as that of the pulse with the interior of the slab while it is fully contained in the slab.

Both impedance-matched slabs show no reflection from either of the two dielectric-vacuum

interfaces. The pulse transmitted through the lossless slab is elongated and up-chirped
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FIG. 2. (a) Power spectrum of the incident electromagnetic pulse. The complex refractive index

of the slab is set by adjusting ε∞, µ∞, ωpe, ωpm, Γe, and Γm to vary the values of εr and µ
r

over

the bandwidth of the incident pulse. Under the assumption of impedance matching, εr = µ
r

= n.

A positive-index is realized by setting Re[εr] > 0 and Re[µ
r
] > 0 (right-handed material), a

negative-index by setting Re[εr] < 0 and Re[µ
r
] < 0 (left-handed material) and a zero-index by

setting Re[εr] ' 0 and Re[µ
r
] ' 0. The real (solid) and imaginary (dash) parts of εr, µr, and n

for (b) test case 1 (blue) and test case 2 (red), (c) test case 3 and test case 4, and (d) test case 5.

The material parameters corresponding to each of the test cases are summarized in Table II.

relative to the incident pulse due to dispersion in the slab, which causes spectral smearing

of the pulse frequency components in the time domain. The pulse transmitted through the

lossy slab, on the other hand, is significantly attenuated. Corresponding instantaneous force

densities exerted by the pulse onto positive-index slabs without and with loss are depicted

in Figs. 4(b) and 4(d), respectively. As shown in Figs. 5(a) and 5(c), similar trends in

the electric field are observed when the pulse propagates through dispersive negative-index

slabs with and without loss. Dynamic observation of the propagation of the pulse in the

slab reveals backwards propagating phase fronts, as expected in a left-handed material.

One difference in the instantaneous electric field distributions observed here from those
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FIG. 3. Spatio-temporal grid used for the finite-difference time-domain calculations highlighting

the discretization of the electric field, magnetic field, electric current density, and magnetic current

density.

observed in the positive-index cases is a kink in the electric field at the dielectric-vacuum

interface, which arises from the contra-directional phase velocities of the portions of the

electromagnetic pulse in the slab and vacuum (due to the difference in the sign of Re[n]

in the dielectric and vacuum). Corresponding instantaneous force densities exerted by the

pulse onto negative-index slabs without and with loss are depicted in Figs. 5(b) and 5(d),

respectively. As shown in Fig. 6(a), the pulse transmitted through the lossless zero-index

slab is also elongated and up-chirped. Unlike the positive-index and negative-index cases,

however, the spatial oscillations of the pulse within the zero-index slab are not visible due

to short extent of the pulse and the slab relative to the large effective wavelengths of the

electromagnetic wave. The corresponding force density exerted by the pulse is shown in

Fig. 6(b).

Using the electric field, magnetic field, electric current density, and magnetic current

density calculated from the FDTD simulation, the force density, ~f(z, t), exerted by the pulse

onto the slab is calculated using Eq. (26). The instantaneous pressure, ~F (t), is obtained by

integrating the force density over the extent of the slab

~F (t) =

∫ L

0

~f(z, t)dz. (40)

The corresponding momentum-per-unit-area imparted to the slab due to the Lorentz force
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FIG. 4. Time sequence of the FDTD-calculated (a) electric field and (b) force density for a pulse

incident onto a positive-index slab without loss (test case 1). FDTD-calculated (c) electric field and

(d) force density for a pulse incident onto a positive-index slab with loss (test case 2). For clarity,

the curves have been offset such that the horizontal asymptotic value of each curve corresponds to

zero values. The pulse amplitude is normalized such that the total pulse power is 1 W. The slab

has a length L = 750 nm and a mass M = 1 kg. The dashed lines indicate the edges of the slab.

density, ~ps(t), at a particular time t is given by

~ps(t) =

∫ t

−∞

~F (τ)dτ. (41)

In addition to the momentum-per-unit-area imparted to the slab, we can calculate the

momentum-per-unit-area carried by the pulse, ~pp(t). The electric field and magnetic field

calculated from the FDTD simulations are used to determine the electromagnetic momentum

density of the pulse, ~G(z, t), via Eq. (24). The momentum-per-unit-area of the pulse, ~pp(t),

is then obtained by integrating the momentum density of the pulse for all z

~pp(t) =

∫ ∞
−∞

~G(z, t)dz. (42)

Figures 7(a) and 7(b) show the instantaneous pressure and momentum-per-unit-area of
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FIG. 5. Time sequence of the FDTD-calculated (a) electric field and (b) force density for a pulse

incident onto a negative-index slab without loss (test case 1). FDTD-calculated (c) electric field and

(d) force density for a pulse incident onto a negative-index slab with loss (test case 2). For clarity,

the curves have been offset such that the horizontal asymptotic value of each curve corresponds to

zero values. The pulse amplitude is normalized such that the total pulse power is 1 W. The dashed

lines indicate the edges of the slab.

the pulse and the slab as the pulse traverses a dispersive positive-index, lossless slab. The

pulse pushes on the slab when it enters, exerts successive positive and negative pressure

alternating about zero when it is immersed in the slab, and pulls on the slab when it exits.

The action of the pulse on the slab causes the slab momentum to increase from zero, plateau

at a positive value, and then return to zero. As expected, use of the Abraham momentum

density yields a decrease in the pulse momentum as the pulse moves from vacuum into the

positive-index dielectric. The small fluctuations in the pulse momentum while the pulse is

in the slab is due to dispersion of the slab. Changes in the pulse momentum are perfectly

compensated by changes in the slab momentum, resulting in an always-constant total system

momentum. When the pulse is incident onto the lossy positive-index slab, the pulse pushes
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FIG. 6. Time sequence of the FDTD-calculated (a) electric field and (b) force density for a pulse

incident onto a zero-index slab without loss (test case 5). For clarity, the curves have been offset

such that the horizontal asymptotic value of each curve corresponds to zero electric field. The

pulse amplitude is normalized such that the total pulse power is 1 W. The dotted lines indicate

the edges of the slab.

on the slab upon entry and, due to absorption in the slab, exerts rapidly diminishing pressure

after entry into the slab [Fig. 7(c)]. Absorption of the pulse in the slab means that the pulse

cannot boost its momentum upon exit from the back of the slab. As a result, the slab gains

and keeps all the initial momentum carried by the pulse [Fig. 7(d)]. As in the case of a

lossless slab, the total system momentum is conserved at all times.

Changing the electromagnetic response of the slab from right-handed (positive-index) to

left-handed (negative-index) does not significantly change how the pulse interacts with the

slab. Like the case for the lossless positive-index slab, the pulse incident onto a lossless

negative-index slab pushes upon entry and pulls upon exit [Fig. 8(a)], resulting in a slab

momentum that initially increases from zero and then returns to zero [Fig. 8(b)]. The

pulse momentum remains positive throughout its interaction with the slab. The positive

electromagnetic momentum observed here also contradicts previous predictions of negative

electromagnetic momentum in left-handed media [13]. The pulse momentum decreases from

its initial value to a smaller, positive value and then returns back to its initial value upon

exiting the slab. The total momentum of the system is always conserved. When loss

is introduced to the negative index slab, the pulse simply pushes on the slab [Fig. 8(c)],

transferring all its momentum to the slab in a way that still conserves the total momentum
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FIG. 7. (a) Instantaneous force-per-unit-area and (b) momentum-per-unit-area of the slab (red),

pulse (blue), and system (black) for the case of a positive-index, lossless slab (test case 1). (c)

Instantaneous force-per-unit-area and (d) momentum-per-unit-area of the slab (red), pulse (blue),

and system (black) for the case of a positive-index, lossy slab (test case 2).

of the system [Fig. 8(d)].

A pulse traversing through a zero-index slab exerts oscillatory pressure throughout its

interaction with the slab, with amplitudes exceeding those observed in the positive- and

negative-index cases [Fig. 9(a)]. The large-amplitude pressure oscillations arise because the

spatial periodicity of the carrier wave in the slab is elongated so that the fields are nearly

constant over the extent of the pulse. The near-constant fields more efficiently exert force

density on the slab, resulting in the large fluctuations in the pressure. When the pulse is

fully immersed in the slab, the slab momentum hovers between approximately 60 % to 100 %

and the pulse momentum between approximately 0 % to 40 % of the initial incident pulse

momentum [Fig. 9(b)]. It should be noted that the magnitude of the pulse momentum in

the slab is always less than the initial pulse momentum in vacuum.

We next consider the center-of-mass displacements of the pulse, the slab, and the entire
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FIG. 8. (a) Instantaneous force-per-unit-area and (b) momentum-per-unit-area of the slab (red),

pulse (blue), and system (black) for the case of a negative-index, lossless slab (test case 3). (c)

Instantaneous force-per-unit-area and (d) momentum-per-unit-area of the slab (red), pulse (blue),

and system (black) for the case of a negative-index, lossy slab (test case 4).

system when the pulse interacts with the slab. Using the FDTD-calculated field quantities,

the mass density of the pulse, ρ(z, t), is calculated from Eq. (38). For a pulse that is uniform

over a cross-sectional area, A = 1 m2, the mass of the pulse at any time is

m(t) = A

∫ ∞
−∞

ρ(z, t)dz. (43)

The center-of-mass of the pulse is then given by

zp(t) =
A
∫∞
−∞ ρ(z, t)zdz

m(t)
. (44)

In general, a pulse incident onto a slab will cause regions of compression and rarefaction,

which propagate across the slab at a speed less than c. We simplify our analysis by treating

the limiting case where the slab is sufficiently rigid and massive such that elastic interactions

between adjacent molecules may be ignored. We examine the center-of-mass of the slab,

which can be displaced by both the momentum-per-unit-area ps(t) applied by the pulse and
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FIG. 9. (a) Instantaneous force-per-unit-area and (b) momentum-per-unit-area of the slab (red),

pulse (blue), and system (black) for the case of a zero-index, lossless slab (test case 5).

the slab mass distribution shift due to absorption of the pulse in the slab. We define m0

and M0 to be the initial mass of the pulse and the slab, respectively, before the pulse has

entered the slab. Conservation of mass is imposed in the simulations by maintaining a fixed

total system mass

m0 +M0 = m(t) +M(t) (45)

where M(t) is the time-dependent mass of the slab. Absorption of the pulse in the slab is

modeled by incrementally transferring mass from the pulse to the slab over the course of

the simulation. At each time step of the simulation, the incremental decrease in the mass of

the pulse ∆m(t+ ∆t) = m(t)−m(t+ ∆t) is distributed over the instantaneous normalized

mass density profile of the pulse to yield an absorbed mass density over the time increment

∆t

ρa(z, t+ ∆t) = ∆m(t+ ∆t)
ρ(z, t+ ∆t)

m(t+ ∆t)
. (46)

The absorbed mass density over the time increment ∆t is added to the slab mass density at

the previous time step, ρs(z, t), to yield an updated slab mass density at t+ ∆t given by

ρs(z, t+ ∆t) = ρs(z, t) + ρa(z, t+ ∆t) (47)

where M(t+ ∆t) =
∫∞
−∞ ρs(z, t+ ∆t)dz. At a given moment in time, the slab center-of-mass

displacement is calculated from

zs(t) =
A
∫ t

−∞ ps(τ)dτ + A
∫∞
−∞ ρs(z, t)(z − L/2)dz

M(t)
, (48)
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where the first and second terms in the numerator of Eq. (48) describe the shift in the

center-of-mass of the slab due to momentum transfer from the pulse to the slab and mass

transfer from the pulse to the slab, respectively. Based on the pulse and slab center-of-mass

displacements, we calculate the center-of-mass displacement of the total system using

zsys(t) =
m(t)zp(t) +M(t)zs(t)

M(t) +m(t)
. (49)

As shown in Fig. 10, a pulse incident on a slab causes a forward displacement of the

slab, regardless of the refractive index of the slab. Similar center-of-mass trajectories are

observed for the lossless positive-index, negative-index, and zero-index cases, where the slab

center-of-mass displacements are initially zero, increase linearly while the pulse propagates

through the slab, and settle at a constant positive value after the pulse exits. When the

pulse is absorbed in either the positive-index or negative-index lossy slabs, the slab center-

of-mass displacement ramps up from zero and, due to complete transfer of the incident pulse

momentum to the slab, linearly increases indefinitely.

FIG. 10. Slab center-of-mass displacement for a pulse incident onto a slab for all five test cases

studied.

Based on the slab and pulse center-of-mass displacements, we calculate the system center-

of-mass displacement. As seen in Fig. 11, the system center-of-mass displacement for a pulse

incident onto a slab, for all values of complex refractive index, increases linearly for all time,

meaning that the system center-of-mass velocity is always conserved. The same holds true

in the absence of impedance matching. In Appendix B, we perform similar analysis for a
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FIG. 11. System center-of-mass displacement for a pulse incident onto a slab for all five test cases

studied.

test case consisting of a non-impedance-matched slab that is also dispersive, negative-index,

and lossy, and show that momentum and system center-of-mass velocity are conserved.

Thus, within the limits of the rigid and massive slab assumption, the postulates we have

constructed to describe the behavior and interaction of electromagnetic fields in ponderable

media are consistent with conservation of center-of-mass velocity.

CONCLUSION

In conclusion, we have proposed a set of postulates to describe the mechanical interac-

tion between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a

refractive index of arbitrary sign as a result of being left- or right-handed. The postulates

include the Abraham electromagnetic momentum density, a generalized Lorentz force law,

and a dynamic model for absorption-driven mass transfer from the pulse to the slab medium.

These opto-mechanical mechanisms are incorporated into one-dimensional, finite-difference

time-domain algorithm solving Maxwell’s equations. The consistency of the postulates with

conservation laws of momentum and mass was verified through a series of test cases where

the complex refractive index of the slab spans a wide range of values. Consistency with con-

servation of momentum for all explored test cases validates the Abraham electromagnetic

momentum density and the generalized Lorentz force law, while consistency with conser-
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vation of center-of-mass velocity validates the proposed model for pulse mass density and

dynamic mechanism for mass transfer from the pulse to the dissipative, dispersive medium.

APPENDIX A: APPLICATION OF THE MINKOWSKI MOMENTUM DENSITY

AND ITS ASSOCIATED FORCE DENSITY TO DESCRIBE OPTO-MECHANICAL

INTERACTIONS

FIG. 12. Time sequence of the FDTD-calculated (a) electric field and (b) force density for a pulse

incident onto an impedance-matched, non-dispersive, positive-index slab without loss. The force

density is calculated using the form of the force density given by Eq. (54), which corresponds to

the Minkowski momentum density. For clarity, the curves have been offset such that the horizontal

asymptotic value of each curve corresponds to a zero quantity. The pulse amplitude is normalized

such that the total pulse power is 1 W. The slab has a length L = 750 nm and a mass M = 1 kg.

The dotted lines indicate the edges of the slab.

We examine the implications of selecting the Minkowski momentum density and its asso-

ciated force density, in addition to the postulates of Maxwell’s equations [Eqs. (1) and (2)],

the Poynting theorem [Eq. (33)], and the electromagnetic mass density [Eq. (37)], to describe

an electromagnetic plane-wave pulse normally incident from free-space onto a flat slab. The

Minkowski momentum density is given by [4]

~G = ~D × ~B. (50)

To derive the corresponding force density, we use the form of the stress tensor associated
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FIG. 13. (a) Instantaneous force density, (b) momentum-per-unit-area, (c) slab center-of-mass

displacement, and (d) system center-of-mass displacement calculated for a pulse incident onto a

lossless, non-dispersive, non-impedance-matched slab having a positive refractive index, using the

Minkowski momentum density given by Eq. (50) and the force density given by Eq. (54).

with the Minkowski momentum density, given by [33, 34]

¯̄T = − ~D ~E − ~B ~H +
1

2
( ~E · ~D + ~H · ~B) ¯̄I. (51)

Substitution of Eqs. (50) and (51) into the momentum continuity equation given by Eq. (27)

yields

~f = − ∂

∂t
( ~D × ~B) +∇( ~D ~E + ~B ~H)− 1

2
∇( ~E · ~D + ~H · ~B). (52)

Invoking the Ampere-Maxwell law and Faraday’s law, Eq. (52) can be re-written as

~f =
1

2
[− ~E × (∇× ~D) + ~D × (∇× ~E)− ( ~E · ∇) ~D + ( ~D · ∇) ~E

− ~H × (∇× ~B) + ~B × (∇× ~H)− ( ~H · ∇) ~B + ( ~B · ∇) ~H]. (53)

When Eq. (53) is applied to the case of an electromagnetic plane-wave normally incident

onto a flat slab, it simplifies to

~f =
1

2
[− ~E × (∇× ~D) + ~D × (∇× ~E)− ~H × (∇× ~B) + ~B × (∇× ~H)]. (54)
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We apply the set of postulates to describe an electromagnetic pulse incident onto a lossless,

impedance-matched, non-dispersive slab characterized by the parameters ε∞ = 3 and µ∞ =

3. Figures 12(a) and 12(b) show time sequences of the electric field and force density,

respectively, as the pulse propagates through the slab. The force density exerted by the pulse

is highly localized at the front and back surfaces of the slab, in contrast to the spatially-

distributed force density distributions calculated using Eq. (26). As shown in Fig. 13(a),

the pulse initially exerts a pull on the slab upon entry and then exerts a push of equivalent

magnitude upon exit. As expected, application of the Minkowski form of the momentum

density results in a pulse momentum-per-unit-area that increases as the pulse enters the

slab from vacuum, as shown in Fig. 13(b). Changes in the pulse momentum-per-unit-

area are compensated by equal and opposite changes in the slab momentum-per-unit-area,

resulting in a global momentum that is conserved for all time. Due to the negative and then

positive momentum exerted by the pulse, the slab center-of-mass displacement is initially

zero, decreases linearly as the pulse enters and travels through the slab, and then remains at

a fixed negative value after the pulse exits, as shown in Fig. 13(c). As shown in Fig. 13(d),

the system center-of-mass displacement initially increases before the pulse enters the slab,

then decreases while the pulse is in the slab, and finally increases again after the pulse leaves

the slab. Notably, the system center-of-mass velocity is not conserved. The combination of

the Minkowski momentum density [Eq. (50)] and its corresponding force density [Eq. (53)]

has therefore been shown to satisfy global conservation of momentum, but, for the test case

studied here, has been also shown to violate conservation of center-of-mass velocity.

APPENDIX B: ELECTROMAGNETIC PULSE INCIDENT ONTO A NON-IMPEDANCE-

MATCHED, DISPERSIVE, DISSIPATIVE SLAB

Here, we apply our postulates to examine the case where an electromagnetic pulse is

incident from free space onto a slab that is not impedance-matched. The parameters of the

slab are selected to be ε∞ = 1, µ∞ = 1, ωpe = 5.2 × 1015 rad/s, ωpm = 6.7 × 1015 rad/s,

Γe = 5.0 × 1014 rad/s, and Γm = 1.0 × 1014 rad/s. Over the bandwidth of the incident

pulse, the selected parameters describe a material that is non-impedance-matched (εr 6= µ
r
),

dissipative ( Im[εr], Im[µ
r
] > 0), and has real part of the refractive index that is negative

( Re[εr], Re[µ
r
] < 0). Figure 14(a) shows a time sequence of the electric field as the pulse
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FIG. 14. Time sequence of the FDTD-calculated (a) electric field and (b) force density for a pulse

incident onto a non-impedance-matched, negative-index slab with loss. For clarity, the curves have

been offset such that the horizontal asymptotic value of each curve corresponds to zero values.

The pulse amplitude is normalized such that the total pulse power is 1 W. The slab has a length

L = 750 nm and a mass M = 1 kg. The dotted lines indicate the edges of the slab.

is incident from free space onto the slab. Contrary to the other cases studied, a portion

of the incident pulse reflects from the front face of the slab. A kink in the electric field

at the interface between the free space and slab arises from the contra-directional phase

velocities of the components of the pulse in free space and slab regions. The portion of

the pulse that transmits through the front face of the slab is attenuated as it propagates

through the slab, resulting in a weak transmitted pulse through the back of the slab. The

force density exerted by the pulse is shown in Fig. 14(b). As shown in Fig. 15(a), the

pulse pushes on the slab, with the greatest pressure exerted when the incident pulse initially

interacts with the front face of the slab. The pulse momentum-per-unit-area is initially

positive and then becomes negative after reflecting from the slab, as shown in Fig. 15(b).

The negative momentum-per-unit-area arises because the incident pulse is split into reflected

and transmitted components carrying momentum in the backward and forward directions,

respectively. In this case, the negative momentum carried by the reflected pulse component

exceeds the positive momentum carried by the transmitted component, resulting in a net

negative momentum-per-unit-area. The slab momentum-per-unit-area increases from zero

to a positive value exceeding the initial positive momentum-per-unit-area carried by the

incident pulse. As a result, the total system momentum-per-unit-area is always conserved.
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FIG. 15. (a) Instantaneous force density, (b) momentum-per-unit-area, (c) slab center-of-mass

displacement, and (d) system center-of-mass displacement calculated for a pulse incident onto a

dissipative, dispersive, non-impedance-matched slab having a negative real part of its refractive

index.

As shown in Fig. 15(c), the slab center-of-mass displacement is initially zero and, due to

the momentum imparted by the pulse onto the slab, linearly increases indefinitely. Despite

reflection from the slab, Fig. 15(d) shows that the system center-of-mass displacement is

always linear, meaning that the system center-of-mass velocity is always conserved. Thus,

even in the absence of simplifying impedance-matching assumptions, Maxwell’s equations,

the Abraham momentum density, a generalized Lorentz force law, the Poynting theorem,

and the mass transfer model provide a complete description of pulse interaction with a

ponderable slab that is consistent with both conservation of global momentum and center-

of-mass velocity.
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