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Abstract
Atomic force microscopy (AFM) methods for quantitative measurements of elastic modulus
on stiff (>10 GPa) materials typically require tip–sample contact forces in the range from
hundreds of nanonewtons to a few micronewtons. Such large forces can cause sample damage
and preclude direct measurement of ultrathin films or nanofeatures. Here, we present a contact
resonance spectroscopy AFM technique that utilizes a cantilever’s higher flexural eigenmodes
to enable modulus measurements with contact forces as low as 10 nN, even on stiff materials.
Analysis with a simple analytical beam model of spectra for a compliant cantilever’s fourth
and fifth flexural eigenmodes in contact yielded good agreement with bulk measurements of
modulus on glass samples in the 50–75 GPa range. In contrast, corresponding analysis of the
conventionally used first and second eigenmode spectra gave poor agreement under the
experimental conditions. We used finite element analysis to understand the dynamic contact
response of a cantilever with a physically realistic geometry. Compared to lower eigenmodes,
the results from higher modes are less affected by model parameters such as lateral stiffness
that are either unknown or not considered in the analytical model. Overall, the technique
enables local mechanical characterization of materials previously inaccessible to AFM-based
nanomechanics methods.

S Online supplementary data available from stacks.iop.org/Nano/23/055702/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Originally developed for nanoscale imaging of topography,
the atomic force microscope (AFM) has become a ubiquitous
tool for surface and material property characterizations at the
nanoscale [1, 2]. It was recognized early on that the force and
lateral positioning sensitivity of the instrument could facilitate
local characterization of materials’ mechanical properties,
especially the elastic modulus [3–5]. A particular challenge
in AFM modulus measurements arises when a material’s

∗ Publication of NIST, an agency of the US government, not subject to
copyright.

dimensions are sufficiently small that the stress field induced
by the AFM tip extends through the material to the substrate or
radially out from the contact to an adjacent feature [6]. Then,
the measured stiffness is a convolution of the desired material
beneath the contact, the deeper substrate, and the adjacent
material [7, 8]. One means to address this challenge is to use
lower tip–sample forces (defined here as<25 nN), resulting in
a smaller stress field. Operating at low forces also has benefits
for maintaining a sharp, high-resolution tip, minimizing
sample damage, and characterizing near-surface property
variations. Because of the deflection sensitivity limitations
of the AFM, low-force static or quasistatic sample contact
requires a relatively compliant cantilever. However, compliant
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cantilevers typically lack adequate stiffness sensitivity when
characterizing stiffer materials (defined here as ∼10 GPa
to ∼1 TPa) [5]. Thus, characterization of stiffer materials
has traditionally necessitated stiffer cantilevers and the
correspondingly high forces that accompany them.

To understand the modulus regime that a given cantilever
can probe, it is useful to consider the normalized contact
stiffness α = k/kL, where k is the tip–sample contact stiffness
and kL is the cantilever spring constant. The finite range
of α values accessible by a given cantilever is dictated by
the material properties (e.g., stiffness, adhesion) and the
cantilever sensitivity. When α . 1, several AFM techniques
can provide suitable stiffness sensitivity, the most widely
used of which is force–distance (F–D) spectroscopy [9].
When characterizing stiff materials with F–D spectroscopy,
researchers typically employ cantilevers with spring constants
up to 300 N m−1, resulting in typical maximum forces
between 1 and 10 µN. If a compliant cantilever with kL =

0.2 N m−1 were used to characterize the same class of
materials but at much lower forces, the value of α could easily
reach many hundreds or thousands. For F–D spectroscopy,
such a ratio would result in a sample deformation that was
undetectable relative to the cantilever deflection. Ultimately,
resolving high contact stiffnesses with compliant cantilevers
at low force, where α� 1, demands a new set of measurement
techniques.

To address the force limitations of F–D spectroscopy
when characterizing stiff materials, dynamic AFM techniques
have been developed. In particular, contact resonance (CR)
spectroscopy techniques [10, 11] have proven well suited
for modulus measurements on stiff materials. In contact
resonance spectroscopy, the resonance frequency f c

n of the nth
flexural eigenmode in contact is measured. The increase in f c

n
from the resonance frequency of the corresponding mode in
free space is nonlinearly proportional to the contact stiffness,
with the exact relationship dependent on the cantilever
geometry. With this technique, it is possible to measure the
moduli of stiff materials with sufficient accuracy with the use
of applied forces in the range from hundreds of nanonewtons
to a few micronewtons and ∼10 < α < ∼100 [11]. Although
CR spectroscopy forces are typically much lower than those
exerted in F–D measurements on the same materials, they are
still sufficiently large to cause tip wear or damage [12, 13]
and are too high to measure very thin films without substrate
influence [8].

Contact resonance spectroscopy measurements on stiff
materials typically utilize the first and/or second flexural
eigenmodes of cantilevers with stiffness kL = 40–50 N m−1

[10, 11]. In many AFM techniques, the higher eigenmodes
and higher harmonics of a cantilever are useful to improve
image contrast and sensitivity [14–16]. For CR spectroscopy,
it was recognized early on that subsequently higher
eigenmodes could provide increased frequency contrast as
α is increased [17, 18]. Recently, higher CR eigenmodes
have been used to characterize local mechanical property
variations [19], subsurface nanoparticle dispersion [20], and
nanoscale wear [13]. Such studies demonstrate the potential
of higher eigenmodes in CR spectroscopy, but they do not

validate the accuracy of the results. In this paper, we use
finite element analysis (FEA) to simulate contact resonance
spectroscopy results for various eigenmodes and a range of
values of contact stiffness. The contact resonance frequencies
determined from the FEA simulation are then analyzed with a
simplified analytical model (SAM) to predict values for the
contact stiffness. In this way, we assess the accuracy and
applicability of the SAM for low-force, higher-eigenmode
contact resonance spectroscopy. With insight from the FEA
results, we demonstrate higher-eigenmode measurements on
samples with moduli between 50 and 75 GPa with an applied
force of only 10 nN. Our results show the potential of
higher-eigenmode CR spectroscopy techniques for low-force,
nanomechanical characterization of nanostructured materials
and devices with increased spatial resolution.

2. Feasibility of analytical analysis of
higher-eigenmode CR spectra

Quantitative nanomechanical measurements with CR spec-
troscopy rely on analysis procedures to translate f c

n into
α. Analysis with a model based on Euler–Bernoulli beam
mechanics is most commonly used [11], and this simplified
analytical model (SAM) has been shown to yield accurate
results with data for the lowest-order flexural eigenmode.
However, the ability of the SAM to characterize the dynamics
of an AFM cantilever’s higher flexural eigenmodes is largely
unexplored. Finite element analysis (FEA) allows for verifi-
cation of the SAM while accommodating realistic cantilever
geometry and properties. Compared to an experimental
SAM verification scheme that must make assumptions about
the beam dynamics and contact mechanics, FEA allows
the tip–sample contact to be simplified to a system of
elastic springs. In principle, FEA could be used to directly
calculate the contact stiffness from experimental contact
resonance frequencies [21–23]. However, the variability
amongst different cantilevers would necessitate a unique
model for every cantilever used. For experimentalists who
go through numerous cantilevers over the course of a study,
analytical methods are much more convenient. Thus, we seek
to verify that the SAM adequately describes the dynamics of
higher eigenmodes, particularly for the regime α � 1 used to
characterize stiff materials with compliant cantilevers and low
forces.

2.1. Finite element analysis (FEA) model of a cantilever

The geometry used for the FEA model was based on
a commercially available contact-mode silicon cantilever
(CONT, Nanosensors, Neuchatel, Switzerland). A scanning
electron microscopy (SEM) image of the cantilever is shown
in figure 1(a). Although the shape is nominally rectangular,
the Si etching process introduces some notable deviations
from rectangularity: (1) the cross section of the cantilever
is trapezoidal (not visible), and (2) the end of the cantilever
comes to a triangular point. The FEA model was constructed
to capture both of these deviations. A wireframe schematic of
the FEA model is shown in figure 1(b) with relevant labeled
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Figure 1. (a) Scanning electron micrograph of a contact-mode cantilever. (b) Finite element geometry modeled from the cantilever in (a).
(c) The Euler–Bernoulli (E–B) beam model used to obtain an analytical solution for contact resonance results.

Table 1. Dimensions of the FEA cantilever model. Unless indicated
otherwise, values are given in micrometers (µm).

Label L L1 Lend w1 w2 t htip ϕ

Value 439.5 419.0 32.9 45.8 52.9 1.8 6.0 11◦

dimensions. The AFM tip of height htip was modeled as a
truncated pyramid to eliminate the extremely small element
size and large stresses that would exist if the tip were modeled
as nanoscopically sharp. Values for each dimension were
extracted from the SEM micrograph and are summarized in
table 1.

The cantilever was modeled in Autodesk Inventor (San
Rafael, CA, USA) and then imported into Ansys Workbench
(Canonsburg, PA, USA). The system was automeshed with
level 3 refinement, resulting in 27 258 nodes and 12 940
SOLID187 elements. The SOLID187 element is a 10-node,
3D element with quadratic displacement behavior. The
silicon cantilever was modeled as anisotropically elastic, with
crystallographic orientations as indicated in figure 1(b). The
rotated elastic constants were Young’s moduli Ex = Ez =

169.7 GPa, Ey = 130.4 GPa, Poisson’s ratios νxy = νzy =

0.362, νyz = νyx = 0.278, νxz = νzx = 0.061, and shear moduli
Gxy = Gyz = 80 GPa, Gzx = 51 GPa [23]. The density ρ was
set to 2330 kg m−3, and the cantilever was rigidly clamped
at the back surface. As shown in figure 1(b), the tip–sample
contact was modeled by two perpendicular linear springs that
represent the normal and lateral stiffnesses of the contact. The
normal spring was angled ϕ = 11◦ from the horizontal (y)
axis to account for the included approach angle of a typical
experimental AFM cantilever holder. In a real material, the
stiffness of the lateral spring klat depends on Poisson’s ratio
ν. Because the value of ν is not generally known, klat was set
to a fraction λ = klat/kFEA. The normalized lateral stiffness
λ was set to either 0.65 or 1.0 to bracket the range of lateral
forces that are expected for real materials with ν between 0.0
and 0.5 [24].

The free resonance frequencies f 0
n and contact resonance

frequencies f c
n were determined from a modal analysis of the

system. The free vibrations of the cantilever were determined
by temporarily suppressing the contact springs. The free
resonance frequencies f 0

n of the first six eigenmodes deter-
mined in this way were [f 0

1 , f 0
2 , f 0

3 , f 0
4 , f 0

5 , f 0
6 ] = [12.44 kHz,

77.79 kHz, 217.4 kHz, 425.1 kHz, 701.3 kHz, 1045 kHz].
Because the FEA model is intended to be representative
of the generic class of cantilevers, rather than identical to
one specific cantilever, additional dimensional refinement
was not performed to match the FEA and experimental
frequencies. The values of f c

n were determined by assigning
prescribed values of kFEA and klat to the respective springs
and performing the modal analysis. For comparison with the
SAM approach described below, kFEA was normalized by the
spring constant kL, and the ratio αFEA = kFEA/kL was varied
from 5× 10−5 to 5× 104. The spring constant kL of the FEA
cantilever was determined by applying a static load F = 1 nN
in the y-axis direction to the truncated surface of the tip.
The deflection d of the loaded surface was calculated so that
kL = 0.16 N m−1 could be determined from kL = 1F/1d.

2.2. Simplified analytical model (SAM) of a cantilever

A number of analytical models have been used to
describe cantilever vibrations in CR spectroscopy, including
point-mass models and beam-based models of varying
complexity [11, 25, 26]. Of the beam-based models, analytical
Euler–Bernoulli expressions have been most widely used.
The simplest case is for a spring-coupled distributed-mass
beam, parallel to the surface, with a tip of negligible height at
the beam’s end. More complex beam models include lateral
effects, damping in the contact, tilt of the cantilever, finite
tip height, and variable tip position. However, such models
require a significant number of additional parameters, many of
which are not easily determined. As a result, many researchers
performing CR spectroscopy have adopted the model shown
in figure 1(c), henceforth referred to as the simplified
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analytical model (SAM), as a suitable compromise [10, 11].
This model considers a cantilever parallel to the sample
surface with a spring-coupled contact located at a variable
position γ = L1/L along the cantilever. The inclusion of
variable tip position is expected to more closely describe the
physical behavior of a real cantilever compared to the simpler
form with γ = 1 [27].

For the system in figure 1(c), the free flexural resonance
frequency f 0

n of the nth flexural eigenmode is given by

f 0
n (cBL)2 = (x0

nL)
2
= 4π f 0

n
L2

b

√
3ρ
E
, (1)

where cBL is a cantilever parameter, and ρ, E and b
are the cantilever’s density, Young’s modulus, and width,
respectively. The scaled wavenumber x0

nL can also be
determined from the nth root of

1+ cos x0
nL cosh x0

nL = 0. (2)

The solutions to equation (2) for the first seven eigen-
modes are [x0

1L, x0
2L, x0

3L, x0
4L, x0

5L, x0
6L, x0

7L] = [1.8751,
4.6941, 7.8548, 10.996, 14.1372, 17.2788, 20.420 36]. When
the cantilever is brought in contact with the sample, the
normalized contact stiffness αSAM is given by

αSAM =
kSAM

kL
=

2
3
(xnLγ )3

(1+ cos xnL cosh xnL)

D
, (3)

where kSAM is the stiffness of the normal spring, xnL =

x0
nL
√

f c
n

f 0
n

, and D is given by

D = [sin xnL(1− γ ) cosh xnL(1− γ )

− cos xnLγ sinh xnLγ ][1− cos xnLγ cosh xnLγ ]

− [sin xnLγ cosh xnLγ − cos xnLγ sinh xnLγ ]

× [1+ cos xnL(1− γ ) cosh xnL(1− γ )]. (4)

Thus by measuring f 0
n and f c

n and having a value of γ ,
we can find αSAM. Although γ could be measured empirically
with a microscope, this approach does not necessarily provide
the most accurate value for analysis (see supplementary
information figure S1 available at stacks.iop.org/Nano/23/
055702/mmedia). Instead, it is common practice to use
a ‘mode-equivalence’ (sometimes called mode-crossing)
approach, in which we solve equations (1)–(4) for two
adjacent eigenmodes (e.g., mode pairs {1, 2} or {2, 3}), then
simultaneously solve for values of αSAM and γ that are
consistent for the mode pair [17].

The SAM analysis procedure was used to calculate
values for the contact stiffness αSAM from the finite element
results for f 0

n and f c
n . Comparison of the values of αSAM

calculated from the analytical model with the values αFEA
originally imposed in the finite element model allows us to
directly assess the ability of the simple SAM to describe the
cantilever’s behavior. In particular, it allows us to evaluate
the accuracy of the SAM when using higher eigenmodes
to measure contacts orders of magnitude stiffer than the
cantilever spring constant kL. The above SAM analysis
was also used in the experimental validation experiments
described in section 3 below.

2.3. Comparison of SAM analysis and FEA

Figures 2(a)–(e) show the relation between the contact
resonance frequency f c

n and normalized contact stiffness α
determined by FEA and SAM analysis for the first five
flexural eigenmodes. Each plot in figure 2 shows SAM results
for a slightly different value of tip position γ that ranges
from 0.982 to 0.990. These values were obtained by the
mode-equivalence technique described in section 2.2 with
modes pairs {n, n+1} (for 1 ≤ n ≤ 4) or {n, n−1} (for n = 5).
The values of γ were obtained at the values of α indicated by
the green circle in each plot. The values were chosen in the
regime where the FEA frequency results first begin to level
off after their initial increase. For both analysis techniques, all
modes contain a region at relatively low values of α (e.g., α .
0.1 for n = 1 or α . 50 for n = 5) where changes in contact
stiffness have little effect on resonance frequency. At higher
values of α, a regime exists where changes in contact stiffness
affect f c

n significantly. Above this region (e.g., α & 100 for
n = 1 or α & 4000 for n = 5), the SAM results indicate that
the frequency plateaus and becomes insensitive to changes
in α. However, the more realistic FEA results demonstrate
a distinct secondary regime, where increases in α produce
increases in f c

n .
The discrepancy between FEA and SAM results in

the high-α regime useful for low-force CR spectroscopy is
primarily attributed to the absence of a lateral spring in the
SAM and its presence in the FEA model. CR spectroscopy
experiments do not independently measure the lateral spring
constant, making it difficult for an experimentalist to assign it
a precise value. By comparing the results in figures 2(a)–(e)
for λ = 0.65 and 1.0, the effect of the value of λ (and hence
the value of Poisson’s ratio) can be examined. Figure 2(f)
summarizes these effects by plotting the difference δf between
the FEA contact resonance frequencies for λ = 0.65 and 1.0.
δf is defined as

δf (αFEA, λ) =
f c
n (αFEA, λ = 1.0)− f c

n (αFEA, λ = 0.65)
f c
n (αFEA, λ = 1.0)

. (5)

The smaller δf is, the less overall uncertainty there will
be in the calculation of α. It can be seen from figure 2(f)
that δf is as large as 2% for n = 1 for 500 < α < 2000
(the range of interest here), but always less than 0.5% for
n = 5 over the same range. Although it might seem that in
both cases the values of δf are small, they can correspond to
large differences in the calculated values of α (e.g., for n = 1
and f c

1 = 58.9 kHz, α (λ = 0.65) is 40% larger than α (λ =
1.00)). In general, the point beyond which lateral stiffness
significantly affects the f c

n versus α relation is shifted to higher
values of α for increasing eigenmode n. This behavior is
attributed to the increased dynamic spring constant [15, 28]
of the higher eigenmodes compared to the lower eigenmodes
and the corresponding lessening of the effective ratio klat/kL.
Thus, with use of higher eigenmodes, sufficiently accurate
values of α in the high-α regime can be obtained without
precise knowledge of λ. Furthermore, comparison of the SAM
and FEA results shows that despite the complete omission
of the lateral spring and cantilever tilt for the SAM, the
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Figure 2. (a)–(e) Frequency versus normalized contact stiffness α from FEA model and SAM analysis for the first five flexural
eigenmodes. FEA results (symbols) are shown for two values of the lateral-to-normal contact stiffness ratio λ. The green circles indicate the
values of contact stiffness used to calculate the mode-equivalence tip position γ for the SAM. In each plot, the superimposed grayscale
image shows the FEA results for the cantilever eigenmode shape for α = 1000. (f) Normalized frequency difference δf for FEA results at
the two values of λ at a given normal spring stiffness.

SAM analysis of higher eigenmodes still agrees well with the
numerical FEA solution in the high-α regime of interest.

Figure 3 summarizes the ability of the SAM analysis
to reproduce the FEA results. Here, the tip position γ was
determined by the mode-equivalence method for each contact
stiffness value. Figure 3 shows the range of contact stiffness α
over which the SAM and FEA results differ by less than 10%,
representing the useful stiffness range of the SAM analysis
for a given mode pair {n, n + 1}. At lower contact stiffness
values, the SAM results for mode pairs {1, 2} and {2, 3} show

better agreement with FEA than the results for the higher
mode pairs {3, 4} and {4, 5}. For the regime of high α under
consideration here, the SAM and FEA results show much
better agreement for the higher mode pairs. The results from
mode pair {4, 5} show less than 10% error between SAM
and FEA results when 8 < αFEA < 3600. In contrast, the
SAM results with mode pair {1, 2} show greater than 10%
error compared to FEA results when αFEA > 275, and the
error continually increases with increased stiffness. For each
mode pair, the agreement between SAM and FEA drops off
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Figure 3. The bars indicate the stiffness regime over which the
FEA and SAM results differ by less than 10% for the frequency
versus stiffness relation.

rapidly when αFEA exceeds a certain value. The breakdown in
the SAM’s accuracy is indicated by increasingly unphysical
values of γ with increased αFEA. Still higher values of αFEA
lead to negative values of αSAM, a clear indication that the
SAM is outside its useful stiffness range.

2.4. Eigenmode selection for SAM analysis in referencing
measurements

Above we characterized the ability of the SAM to reproduce
absolute values of α. Now we consider the referencing
approach used in most CR spectroscopy experiments to
date. If α is measured on both a reference material of
known modulus and a material of unknown modulus, the
unknown modulus can be calculated with only general
assumptions about the tip shape [29]. Because the result
depends on the ratio α(unknown)/α(ref), the SAM need
not accurately determine the absolute contact stiffness, as
long as it correctly calculates the relative change in contact
stiffness. In figures 4 and 5, we consider the case where
αFEA(unknown)/αFEA(ref) = 1.25 (indicated by the red
dashed line in figure 4). Assuming a hemispherical tip,
this corresponds to a ratio of indentation modulus M of
M(unknown)/M(ref) ≥ 1.4, a relatively large difference.

Figure 4 shows the ability of the SAM to describe a
change in contact stiffness relative to the reference contact
stiffness αFEA(ref). The figure shows the value of relative
contact stiffness calculated by the SAM for the same
1.25× relative change in contact stiffness, but for three
different values of αFEA(ref). The SAM results are calculated
for mode pairs {1, 2} through {5, 6}. Similarly to figure 3,
γ has been recalculated for each contact stiffness and mode
pair. The lowest value, αFEA(ref) = 50, is representative
of the experimental conditions that might exist when a
relatively stiff cantilever (kL = 40–50 N m−1) is used to
measure a stiff material. The highest value, αFEA(ref) = 1250,
is more representative of the normalized stiffness regime
under consideration here for low-force measurements of stiff

materials with compliant cantilevers. For αFEA(ref) = 50,
SAM analysis calculates a ratio αSAM/αSAM(ref) between
1.23 and 1.26 for different eigenmode pairs, in all cases
showing good agreement with the value αFEA/αFEA(ref) =
1.25 that was imposed in the FEA model. For αFEA(ref) =
250, the agreement between the SAM and FEA results is
poorer for mode pair {1, 2} (αSAM/αSAM(ref) = 1.17), but is
still very good for higher mode pairs. For the high-stiffness
case with αFEA(ref) = 1250, the agreement between the SAM
and FEA results depends considerably on the mode pair, with
αSAM/αSAM(ref) ranging from 0.92 for n = {1, 2} to 1.25 for
n = {4, 5}, the best case.

In addition to accuracy of the analysis model, the
accuracy of the experimental results also depends on a good
signal-to-noise ratio. Therefore it is desirable to maximize
the CR frequency shift between measurements on different
materials. Figure 5 shows the frequency shift 1f between the
unknown and reference materials predicted by FEA for the
conditions in figure 4. Comparing figure 5 for the different
reference contact stiffnesses, the maximum values of 1f are
seen to occur for n = 2, n = 4, and n = 6 for αFEA(ref) = 50,
αFEA(ref) = 250, and αFEA(ref) = 1250, respectively. For
αFEA(ref) = 50, too low for characterization of stiff materials
with a compliant cantilever, 1f ranges from 690 Hz for
n = 6 to 7.5 kHz for n = 2. In this case (αFEA(ref) = 50),
the various mode pairs yield similarly accurate values for
αSAM/αSAM(ref). Therefore it would be most beneficial to
use the mode pair {2, 3}, because these two modes exhibit
the highest frequency shifts. For αFEA(ref) = 1250, within
our experimental range of interest, 1f ranges from 680 Hz
for n = 1 to 34 kHz for n = 6. Here the higher eigenmodes
show both greater frequency shifts and improved accuracy for
SAM analysis, thus limiting the usefulness of the lower modes
altogether.

Figures 4 and 5 show the importance of proper mode
selection for SAM analysis of CR spectroscopy experiments
with α � 1. In the high-stiffness regime, the SAM analysis
not only matches the FEA results more closely for modes
n = 4–6 than for lower modes, but these modes also provide
significantly larger frequency shifts. By examining these
results and additional ones for αFEA/αFEA(ref) = 2 (see
supplementary information figure S2 available at stacks.
iop.org/Nano/23/055702/mmedia), we can develop some
guidelines for mode selection in CR experiments with SAM
analysis. First, by avoiding the mode(s) with the lowest
frequency contrast, one can also avoid the mode(s) for
which SAM analysis yields the poorest agreement with FEA.
Second, choosing the mode pair with the highest frequency
shifts is expected to provide the most accurate (or nearly
most accurate) results as well as the highest signal-to-noise
ratio. Overall, analysis of frequency shift data for a number
of eigenmodes seems to provide a simple means of choosing
the modes most likely to provide SAM results consistent with
FEA values.
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Figure 4. Results from SAM analysis and FEA for relative measurements in which the contact stiffness α of the unknown material is
1.25× larger than that of the reference material. When αSAM/αSAM(ref) = 1.25, the SAM analysis results match those from FEA. Results
are shown for λ = 1.0. The red dashed line indicates the value αFEA/αFEA(ref) = 1.25 imposed in the finite element model.

Figure 5. Frequency shift 1f from FEA for the 1.25× change in contact stiffness from figure 4.

3. Application of the SAM to evaluate experimental
higher-eigenmode CR spectra

3.1. Experimental setup

To demonstrate the viability of low-force, higher-eigenmode
CR spectroscopy and to test our hypothesis about the
relation between frequency shift and accuracy of SAM
analysis, experiments were performed on fused silica glass
(FSG) and 7070 lithia potash borosilicate glass (7070)
(Corning Incorporated, Corning, NY) samples. Based on
previous pulse-echo ultrasonic measurements, the values
of the indentation moduli M were taken to be MFSG =

74.9 GPa and M7070 = 52.4 GPa for the FSG and 7070
samples, respectively. Prior to measurement, the samples were
cleaned with isopropanol, rinsed with water, and dried with
compressed air.

CR spectra were acquired on an MFP-3D atomic force
microscope (Asylum Research, Santa Barbara, CA) with a
specialized high-frequency, heavily damped cantilever holder
to excite the cantilever resonances. A CONT cantilever,
similar to that which the FEA model was based on, was glued
directly to the cantilever holder with fast-setting epoxy to
suppress vibrational coupling at the base. From the MFP-3D’s
built-in thermal calibration [30], the cantilever spring constant
was found to be kL = (0.11± 0.02) N m−1.

The free and contact resonance frequencies of the first
seven flexural eigenmodes of the cantilever were determined
by direct actuation of the cantilever holder. For both free
and contact conditions, spectra of the cantilever vibration
amplitude versus excitation frequency were obtained from
1 kHz to 1.5 MHz at as low a drive amplitude as possible
to ensure linear behavior while still resolving the peaks.
It was necessary to adjust the position of the laser on the
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cantilever between the free and contact measurements in order
to resolve the maximum number of peaks. On each of the two
glasses, five contact spectra were acquired with a cantilever
deflection of 94 nm, corresponding to an applied force Fapp =

(10± 2) nN. After acquisition of each spectrum, an adhesion
force measurement was made to confirm that the adhesion
force (typically 2–3 nN) was small compared to the applied
force and similar for the two samples. Measurements were
alternated between the two materials to reduce possible bias
due to tip wear [29].

Comparison of modulus measurements from CR spec-
troscopy to those from bulk techniques was made with a
referencing approach [29] where 7070 was the reference
sample and FSG was the unknown sample. Values for the
normalized contact stiffness αSAM were determined for each
adjacent mode pair {n, n ± 1}. Assuming sphere–plane
Hertzian contact [6], the elastic modulus was determined from
measurements of α on the two samples at the same applied
force by

α(unknown)
α(ref)

=
αFSG

α7070
=

(
ER

FSG

ER
7070

)2/3

. (6)

Here ER is the reduced tip–sample modulus given by

1
ER =

1
Mtip
+

1
Msample

. (7)

The indentation modulus Mtip = 165 GPa was assumed
for the [100] silicon tip. Because the contact stiffness values
occur in equation (6) as a ratio, it is not necessary to determine
their absolute values independently, for instance from the tip
radius and the precise applied force. For the FSG and 7070
samples, we predict a contact stiffness ratio αFSG/α7070 =

1.19.

3.2. Experimental results

Figure 6 shows representative spectra measured with the tip
in free space (out of contact) and in contact with the two
glasses. In free space, the lowest seven eigenmodes (with the
exception of the third eigenmode) could be measured. The
third mode was later measured by making small adjustments
to the laser position (results not shown). In contact on either
sample, the contact resonance frequencies were higher than
those of the same mode for the tip in free space. For the first
eigenmode, it was difficult to differentiate between the two
glasses. However, for the higher modes, measurements on the
FSG sample showed consistently higher frequencies than the
7070 sample. The results for the frequency shift 1f between
the two samples for a given eigenmode are summarized in
figure 7(a). The value of 1f was only ∼32 Hz for n = 1,
increased to almost 15 kHz for n = 5, and then decreased for
modes 6 and 7.

Figure 7(b) shows the contact stiffness ratio αFSG/α7070
for the two glasses calculated with the SAM with the mode-
equivalence method. The dashed line indicates the expected
ratio αFSG/α7070 = 1.19 determined from equation (6). The
resonance frequencies for mode 1 were higher than the SAM

Figure 6. Experimental frequency spectra for a cantilever with
kL = (0.11± 0.02) N m−1 and an applied force of (10± 2) nN. The
top and middle graphs show contact resonance spectra for the first
seven flexural eigenmodes for fused silica glass (FSG) and 7070
glass, respectively. The bottom graph shows the free resonance
spectra of the cantilever (tip out of contact).

could accommodate due to its lack of a lateral spring. As
a result, physically unrealistic (negative) contact stiffness
values were obtained by SAM analysis of mode 1 frequencies.
Thus, the results for mode pair {1, 2} were also negative and
therefore discarded. We obtained αFSG/α7070 = 1.02 ± 0.11
for mode pair {2, 3}. Although the ratio correctly indicated
that FSG is stiffer than 7070, the difference was much less
than expected from the bulk results, and the measurement
uncertainty was very large. SAM results from mode pair {4, 5}
yielded a contact stiffness ratio αFSG/α7070 = 1.17 ± 0.03,
showing the best agreement with the predicted value of 1.19.
Mode pair {4, 5} not only provided the most accurate results
in terms of agreement with bulk measurements, but it was
also the mode pair with the highest frequency shifts (1f 4,5 =

11.6 kHz). This is consistent with the accuracy/sensitivity
guidelines proposed in section 2.4. These measurements
demonstrate the power of higher-eigenmode CR spectroscopy
to quantitatively probe elastic nanomechanical properties of
stiff inorganic materials (M = 50–75 GPa) at low applied
forces (∼10 nN).

4. Conclusions

We have shown how the use of higher-order flexural
eigenmodes (n > 2) in contact resonance spectroscopy
enables AFM nanomechanical characterization of stiff
materials with compliant cantilevers at reduced applied forces.
The use of higher-order eigenmodes considerably enhances
the frequency contrast on stiff materials compared to the
more conventionally used lower eigenmodes (n = 1 or
2). Finite element analysis revealed that when analyzing
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Figure 7. (a) Experimental contact resonance frequency shift 1f between fused silica glass and 7070 glass versus flexural eigenmode
number n. (b) Contact stiffness ratio αFSG/α7070 versus mode pair {n, n+ 1} calculated from the experimental frequencies with SAM
analysis. The dashed line indicates the value αFSG/α7070 = 1.19 expected from bulk measurements. The result for mode pair {1, 2} gave
negative contact stiffness and was omitted.

higher-eigenmode results for large contact stiffnesses, the
effect of unknown experimental parameters, such as lateral
contact stiffness, on the calculated contact stiffness was
considerably reduced. By comparison with results from finite
element analysis (FEA), we demonstrated that a simplified
analytical model (SAM) can yield sufficiently accurate values
of contact stiffness that are orders of magnitude larger
than the cantilever’s spring constant. However, the SAM
analysis reproduced the FEA results within acceptable limits
(difference < 10%) only over a specific contact stiffness
regime that depended on the specific eigenmode. The FEA
results suggest that the optimal eigenmodes for SAM analysis
conveniently correspond to the eigenmodes that produce the
largest frequency shifts between the materials of interest.
More advanced models that consider lateral stiffness and tilt
might extend the stiffness regime that can be analyzed to
yield sufficiently accurate results for a particular mode pair.
However, even using these advanced analytical models, we
could not determine parameter values that provided good
agreement with the FEA results for all modes and all values
of α. Insight gained from the FEA results allowed us to
demonstrate accurate modulus measurements on stiff samples
with an applied force of only 10 nN through use of the
fourth and fifth eigenmodes of a cantilever 400 times more
compliant than those typically used in CR spectroscopy.
The ability to characterize nanomechanical properties of stiff
materials at such low forces will be of significant benefit
in the characterization of ultrathin films and nanostructures,
where measurements with higher force techniques are heavily
affected by substrate and boundary effects.
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