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We show how the Fourier transform of a shape in any number of dimensions can be
simplified using Gauss’s law and evaluated explicitly for polygons in two dimensions,
polyhedra in three dimensions, etc. We also show how this combination of Fourier
and Gauss can be related to numerous classical problems in physics and mathemat-
ics. Examples include Fraunhofer diffraction patterns, Porod’s law, the shape from
moments problem, and Davis’s extension of the Motzkin-Schoenberg formula to
polygons in the complex plane. [doi:10.1063/1.3676310]

I. INTRODUCTION

A shape can be defined mathematically in many ways. Here, we consider defining it by a
function that has the value unity inside the shape and zero outside the shape. Only simply connected
orientable1 shapes will be considered. The Fourier transform of a shape defined in this way has
interesting applications and connections to many areas of physics and mathematics. For example,
in physical optics the Fourier transform of the shape of an aperture or opening in an opaque screen
yields the Fraunhofer or far-field diffraction pattern that is generated when light passes through the
aperture.2 In x-ray scattering, the Fourier transform of a volumetric shape in three dimensions reduces
in the appropriate limit to Porod’s law.3 From a probabilistic point of view, the Fourier transform of
a shape properly normalized can be considered as the characteristic function or moment generating
function of the shape. Hence, the Fourier transform of the shape is intimately related to the moments
of the shape and, hence, to the “shape from moments problem,” which has been studied recently
for polygons by Golub, Milanfar, and co-workers4, 5 and is related to the overall problem of pattern
recognition.

We will not discuss the details here, but the Fourier transform of an area bounded by a smooth
curve or a polygon in the plane can also be related to Hopf’s Umlaufsatz,6 Stokes law,7 the isoperi-
metric inequality,8 and Didos’ problem.9 Hopf’s Umlaufsatz states that the tangent vector to a smooth
or piecewise smooth closed orientable simply connected curve in the plane rotates by ± 2π as it goes
completely around the curve. The + / − signs correspond to counterclockwise/clockwise rotation.
This seemingly obvious geometrical fact is rather subtle to prove.6 The isoperimetric inequality is
the statement that the shape which maximizes the area enclosed by a curve of a fixed length is the
circle.8 The problem faced by Dido, Queen of Carthage, was to determine what shape open curve of
a given length encloses the maximum area when its endpoints are connected by a straight line with
an arbitrary length.9

As an aside, the Fourier transform is just one of the many techniques that are used for shape
discrimination.10 This problem is both mathematically interesting, and, given the ubiquity of digital
databases, technologically important. Here, our specific interest is in the relation of the Fourier
transform of a shape to its moments and to the problems mentioned above. This is related to, but
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generally different from, the issues concerned with using Fourier transforms explicitly for shape
discrimination in digital databases and we will not discuss this aspect further.

The paper is organized as follows. In Sec. II, Gauss’s Law is used to rewrite the Fourier
transform of a D-dimensional volume as the surface integral over the D − 1 surface of that volume.
In Sec. II, we show how this surface integral yields the standard form for the area enclosed inside a
smooth curve. We evaluate this integral exactly for polygons in two dimensions which then provides
an explicit relation between the vertices of a polygon and its moments. We also show how the
combination of Fourier and Gauss provides an alternative derivation of a famous result of Davis
concerning the integral of an analytic function over a polygon in the complex plane4, 11 and how
the surface integral can be used to compute Fraunhofer diffraction patterns of arbitrary shaped
apertures. Section III briefly discusses how the solution for two-dimensional polygons appears when
Fourier transforming three-dimensional polyhedrons and how the surface integral form of the Fourier
transform can be used to compute volumes and to derive not only the standard Porod’s law3 for
x-ray scattering from spherical particles but also the extension of this law to anisotropic particles.
This extension has been discussed recently in a series of papers by Ciccariello et al.12 The derivation
presented here is somewhat more direct.

II. FOURIER AND GAUSS

For generality, we begin in D dimensions but will rapidly particularize to two and three
dimensions. Define a shape, in D dimensions, by the function θV (�x), where θV (�x) = 1 for
�x = (x1, x2, · · · , xD) inside V and 0 for �x outside. This is known in certain circles as an indi-
cator function.13 Here, we take xi for i = 1, 2, . . . , D to be Cartesian coordinates. The (normalized)
moments

〈
x p1

1 · · · x pm

D

〉
of the shape are then given by

〈
x p1

1 · · · x pm

D

〉 = 1

v

∫
d D xθV (�x) x p1

1 · · · x pD

D ≡ 1

v

∫
V

d D x x p1
1 · · · x pD

D , (1)

where
∫

V = ∫ θV indicates integration over the shape, v = ∫ d D xθV (�x) is the finite volume of the
shape, and pi = 0, 1, 2, 3, . . . for each i. The symbols V and v are used to distinguish between the
shape itself and its volume as a numerical value. Also the terms “volume” and “surface” are used
generically and should be understood to refer to a D-dimensional submanifold in D dimensions and
to its (D − 1)-dimensional boundary, respectively.

Note that 1
v
θV (�x) can be thought of as a probability density for �x to be inside the shape. The

characteristic function or moment generating function φ̄
(

�β
)

is then given by the Fourier transform

of θV (�x) /v, i.e.,

φ̄
(

�β
)

= 1

v

∫
V

d D xθV (�x) ei �β·�x , (2)

with �β · �x =∑D
i=1 βi xi ≡ βi xi . (Unless noted otherwise, the Einstein summation convention,

wherein repeated indices are summed over their appropriate range, will be used throughout the
paper.) The bar on φ is meant to indicate that this is the normalized characteristic function, i.e.,

φ̄ (0) = 1. Below, we will find it convenient to work with the un-normalized function φ
(

�β
)

.

Using the power series representation of exp
[
i �β · �x

]
and the multinomial theorem, it follows

that

φ̄
(

�β
)

= 1

v

∫
V

d Dx
∞∑

n=0

(iβi xi )n

n!

=
∞∑

n=0

i n

n!

∑
p1+p2+···+pD=n

n!

p1!p2! · · · pD!
β

p1
1 · · · β pD

D

〈
x p1

1 · · · x pD

D

〉
. (3)
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This result indicates the simple but direct relation that exists between the Fourier transform of a
shape and its moments

〈
x p1

1 · · · x pD

D

〉
. We have assumed that we can interchange orders of integration

and summation. This is certainly true for all shapes which can be completely enclosed inside a
sphere of finite radius.

We see from this result that if we can compute φ̄
(

�β
)

explicitly, then the moments
〈
x p1

1 · · · x pD

D

〉
follow directly from a Taylor expansion of φ̄

(
�β
)

about �β = 0. An explicit form for φ̄
(

�β
)

can be

found by applying the Gauss law to the Fourier integral. Noting that

ei �β·�x = �∂ ·
( �β

iβ2
ei �β·�x
)

, (4)

with �∂ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xD) ≡ (∂1, ∂2, . . . , ∂D), we get∫
V

d D xei �β·�x =
∫
V

d D x �∂ ·
( �β

iβ2
ei �β·�x
)

=
�β

iβ2
·
∫
∂V

d D−1s
√

g (�s)n̂ (�s) ei �β· �R(�s). (5)

Here ∂V indicates the surface of V with �s = (s1, s2, · · · , sD−1) being coordinates on the surface ∂V.
�R (�s) gives the position in D dimensions of the point on the surface labeled by �s and

g (�s) = ∣∣det
[
gi j (�s)

]∣∣ = ∣∣∣det
[
∂si

�R (�s) · ∂s j
�R (�s)
]∣∣∣ , (6)

where gi j (�s) is the induced metric on ∂V, n̂ (�s) is the local outward normal to the surface ∂V, and
|. . .| indicates the absolute value.14 Below, we show why the square root appears (see (32) and (54)).

Combining (3) and (5) yields

1

v

�β
iβ2

·
∫
∂V

d D−1s
√

g (�s)n̂ (�s) · ei �β· �R(s)

=
∞∑

n=0

i n

n!

∑
p1+p2+···+pm=n

n!

p1!p2! · · · pD!
β

p1
1 · · · β pD

D

〈
x p1

1 · · · x pD

D

〉
. (7)

It will be convenient below to work with the un-normalized form of the characteristic function,

φ
(

�β
)

= vφ̄
(

�β
)

, (8)

and write the un-normalized moments as

Mp1,··· ,pD = v
〈
x p1

1 · · · x pD

D

〉 = ∫ d D xθV (�x) x p1
1 · · · x pD

D . (9)

Before particularizing to two and three dimensions, note that expanding the left-hand side of (7) in

powers of β =
∣∣∣ �β∣∣∣ yields to lowest order a term proportional to 1/iβ. This term must vanish, since

there is no corresponding power of β on the right and we get the result that∫
∂V

d D−1s
√

g (�s)n̂ (�s) = 0, (10)

because β̂ is arbitrary. This can be interpreted as the statement that “the boundary of a boundary is
zero.” This boundary of a boundary principle has been considered to have interesting implications
with respect to the origin of physical laws.15 The next order term yields

β̂ ·
∫
∂V

d D−1s
√

g (�s)n̂ (�s)
(
β̂ · �R (�s)

)
, (11)
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where β̂ = �β/

∣∣∣ �β∣∣∣ . This is the D-dimensional volume v of V. Although this formula looks straight-

forward, it is actually exceedingly complex to calculate the volume of arbitrary shapes in a large
number of dimensions.16

The remainder of the paper considers particular cases in two or three dimensions where φ
(

�β
)

can be computed from the surface integral, either exactly or approximately, and we relate these
results to various “classical” problems in physics and mathematics.

III. RESULTS IN TWO DIMENSIONS

In this section, we show how (5) and (7) can be used to derive various classical two-dimensional
results in physics and mathematics.

A. Smooth plane curves

For smooth curves in two dimensions, (5) reduces to∫
V

d2xei �β·�x =
�β

iβ2
·
∫
∂V

dsn̂ (s) ei �β· �R(s), (12)

where V is the region enclosed by the curve ∂V given by �R (s) with the parameter s being the
length along the curve. With ds defined as the length of an infinitesimal element of the curve, i.e.,
ds2 = d �R2, it follows that g(s) = 1. The unit tangent vector to the curve at s is given by

t̂ (s) = ∂s �R (s) , (13)

which is automatically normalized since ds =
√

d �R2, i.e.,
∣∣∣∂s �R (s)

∣∣∣ = 1. (Generally we will use a

hat “ˆ” to indicate the vector has been normalized to have unit length. Also we will switch back and
forth between vector and component notation, e.g., between writing û1 and (1, 0).)

We take increasing s to correspond to counterclockwise circulation of the curve so that

n̂ (s) = ε · t̂ (s) = ε · ∂s �R (s) , (14)

where

ε =
[

0 1

−1 0

]
, (15)

and the “ · ” indicates matrix multiplication, i.e.,

ni (s) = εi j n j (s) , (16)

with repeated indices summed over 1,2. Note that ε is the D = 2 version of the totally antisymmetric
tensor, often called the Levi-Civita tensor,17 defined as + 1 for even permutations, of i, j = 1, 2, − 1
for odd permutations, and 0 if i = j.

Substituting (14) into (12) and integrating by parts yields∫
V

d2xei �β·�x = − 1

iβ2

∫
∂V

ds
(

�β · ε · �R (s)
) (

i �β · ∂s �R (s)
)

ei �β· �R(s)

= −
∫
∂V

ds
(
β̂ · ε · �R (s)

) (
β̂ · ∂s �R (s)

)
ei �β· �R(s). (17)

The nominal 1/β pole in (12) has been cancelled and we can set β to zero for arbitrary nonzero

β̂ = �β/

∣∣∣ �β∣∣∣ which gives

v =
∫
V

d2x = −
∫
∂V

ds
(
β̂ · ε · �R (s)

) (
β̂ · ∂s �R (s)

)
. (18)
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Letting β̂ be (1, 0) or (0, 1) with �R (s) = (R1 (s) , R2 (s)) yields

v = −
∫
∂V

ds R2 (s) ∂s R1 (s) =
∫
∂V

ds R1 (s) ∂s R2 (s) . (19)

Averaging the two forms gives

v = 1

2

∫
∂V

ds (R1 (s) ∂s R2 (s) − R2 (s) ∂s R1 (s))

= 1

2

∫
∂V

ds Ri (s) εi j∂s R j (s) . (20)

Both (19) and (20) are standard formulas for the area enclosed by the curve �R (s).18

B. Polygons

A polygon with N sides and N vertices in two dimensions can be defined by its vertices, arranged
in a particular order, �v1, �v2, . . . , �vN with �vi = (x1i , x2i ) . For computational convenience, it is useful
to let �vN+1 = �v1 . We consider only orientable, i.e., none of the edges cross over or intersect one
another, and simply connected polygons. The integral over ∂V in (7) can be evaluated explicitly in
this case with the result

φ
(

�β
)

=
�β

iβ2
·
∫
∂V

d D−1s n̂ (�s) · ei �β· �R(s)

= − 1

β2

N∑
n=1

�β⊥ · (�vn+1 − �vn)
�β · (�vn+1 − �vn)

(
exp
(

i �β · �vn+1

)
− exp

(
i �β · �vn

))
, (21)

where

�β⊥ ≡ �β · ε = (β1, β2) ·
[

0 1
−1 0

]
= (β2,−β1) . (22)

The “ · ” stands for standard matrix vector multiplication. Note that (21) makes sense, even if
�β · (�vn+1 − �vn) vanishes for any given n.

Equating the surface integral to the series expansion in terms of moments gives

∞∑
n=0

i n

n!

n∑
p=0

n!

p! (n − p)!
β

p
1 β

(n−p)
2 Mp,n−p

= − 1

β2

N∑
n=1

�β⊥ · (�vn+1 − �vn)
�β · (�vn+1 − �vn)

(
exp
(

i �β · �vn+1

)
− exp

(
i �β · �vn

))
. (23)

Now expand the right-hand side in powers of β i,

1

β2

N∑
n=1

�β⊥ · (�vn+1 − �vn)
�β · (�vn+1 − �vn)

(
exp
(

i �β · �vn+1

)
− exp

(
i �β · �vn

))

= 1

β2

N∑
n=1

�β⊥ · (�vn+1 − �vn)
�β · (�vn+1 − �vn)

⎛
⎜⎝ ∞∑

m=1

(
i �β · �vn+1

)m
−
(

i �β · �vn

)m

m!

⎞
⎟⎠

= 1

β2

∞∑
m=1

N∑
n=1

i

m!
�β⊥ · (�vn+1 − �vn)

m−1∑
p=0

(
i �β · �vn+1

)m−1−p (
i �β · �vn

)p
, (24)
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where β2 = �β2 = βiβi = β2
1 + β2

2 . In the second step, we have used the identity

an − bn = (a − b)
n−1∑
m=0

an−1−mbm . (25)

Substituting (24) into (23) gives

∞∑
n=0

i n

n!

n∑
p=0

n!

p! (n − p)!
β

p
1 β

n−p
2 Mp,n−p

= − 1

β2

∞∑
m=1

N∑
n=1

i

m!
�β⊥ · (�vn+1 − �vn)

m−1∑
p=0

(
i �β · �vn+1

)m−1−p (
i �β · �vn

)p
. (26)

Letting �β = ββ̂ and �β⊥ = ββ̂⊥, we see that the nth term on the left-hand side is proportional to βn,
whereas the mth term on the right is proportional to βm − 2. Hence, considering each side as a power
series in β, the coefficients of the m term on the right must equal the coefficient of n = m − 2 term
on the left. Below we write out the general relation between Ma, b and powers of the vertices. Here,
we begin by considering the first few terms individually.

1. m = 1 term

The m = 1 term on the right of (26) has no corresponding term on the left, and so, we must have

0 = i

β2
�β⊥ ·

N∑
n=1

(�vn+1 − �vn) . (27)

The fact that this should vanish follows from the fact that it scales as 1/β, whereas the left-hand
side remains finite as β → 0 . Also this term is imaginary and the result must be real. And indeed
this term does vanish, trivially, since we have defined �vN+1 = �v1 and the sum of the directed sides,
�vn+1 − �vn , of a closed polygon must vanish. For the case where the boundary ∂V is everywhere
smooth, the form of the dominant term as β → 0 is given by

lim
β→0

�β
iβ2

·
∫
∂V

ds n̂ (s) ei �β· �R(s) → β̂

iβ
·
∫
∂V

ds n̂ (s) ⇒
∫
∂V

ds n̂ (s) = 0. (28)

The last equality follows from the fact that this term must vanish for any (non-zero) �β. The results
in (27) and (28) can be seen as a simple version of the more formal statement that the boundary of a
boundary is zero,15 i.e., the curve which bounds an area in two dimensions has no end points. They
can also be related to Hopf’s Umlaufsatz.6

2. m = 2 term

The m = 2 term on the right of (26) equals the n = 0 term on the left, and so, we have

M00 = − i

2

1

β2

N∑
n=1

�β⊥ · (�vn+1 − �vn)
1∑

p=0

(
i �β · �vn+,1

)1−p (
i �β · �vn

)p

= − i

2

1

β2

N∑
n=1

(
�β⊥ · (�vn+1 − �vn)

) (
i �β · �vn+1 + i �β · �vn

)

= 1

2

N∑
n=1

(
β̂⊥ · (�vn+1 − �vn)

) (
β̂ · (�vn+1 + �vn)

)
. (29)
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But, by definition M0, 0 is the area of the polygon. Defining �ln = �vn+1 − �vn = the vector from vertex
n to vertex n + 1 and �cn = (�vn+1 + �vn) /2 = position of the center of side n, we have

M0,0 = Area =
N∑

n=1

(
β̂⊥ · �ln

) (
β̂ · �cn

)
. (30)

Taking β̂ = (0, 1) gives β̂⊥ = (−1, 0), and so,

Area = −
N∑

n=1

ln,1cn,2. (31)

The geometric interpretation of this is straightforward. Each of the ln, 1cn, 2 terms corresponds to
the area of a four-sided polygon of width |ln, 1| in the x1 direction and mean height |cn, 2| in the x2

direction. If we take all the vertices to lie in the first quadrant, vn, i ≥ 0 for i = 1, 2, then all the cn, 2

are non-negative but the ln, 1 change sign depending on whether �ln points generally in the + x1 or
− x1 direction. If we consider that the n = 1, . . . , N ordering corresponds to following the vertices
in a counterclockwise direction around the polygon, then the positive ln, 1 will generally run along
the bottom sides of the net polygon and the negative ln, 1 will generally run along the top sides of the
net polygon, then the area of the net polygon is the total area of all the four-sided polygons along
the bottom of the net polygon subtracted from the area of the four-sided polygons along the top of
the net polygon.

Taking 1/2 the sum of (30) with β̂ = (0, 1) and with β̂ = (1, 0), we find that the area can also
be written as 1

2

∑N
n=1 det [Qn] where the elements of the 2 × 2 matrices Qn are given by Qn, ij =

vn, ivn + 1, j, which is the standard result.19

Finally, (30) also shows that the area of a parallelogram formed by two vectors �ai with i = 1, 2
which therefore has vertices �v1 = �v5 = 0, �v2 = �a1, �v3 = �a1 + �a2, and �v4 = �a2 can be written in the
coordinate independent form as

Area =
√√√√∣∣∣∣∣det

[ �a1 · �a1 �a1 · �a2

�a1 · �a2 �a2 · �a2

]∣∣∣∣∣ = a1,1a2,2 − a1,2a2,1 = det
[
ai, j
]
. (32)

This follows since for the parallelogram, (30) reduces to

Area = (β̂⊥ · �a2
) (

β̂ · �a1
)− (β̂⊥ · �a1

) (
β̂ · �a2

)
= �a1 · ε · �a2

= a1,1a2,2 − a1,2a2,1, (33)

where in the second step we have taken β̂ = â1. Note that this is the same as |�a1 × �a2| with “ × ” the
standard cross product.

3. m = 3 term

The m = 3 term on the right-hand side corresponds to the n = 1 term on the left, and so, after
cancelling i from both sides we have

β̂1 M1,0 + β̂2 M0,1 = 1

3!

N∑
n=1

β̂⊥ · (�vn+1 − �vn)
((

β̂ · �vn+1
)2 + (β̂ · �vn+1

) (
β̂ · �vn

)+ (β̂ · �vn
)2)

. (34)

It follows from the definition of Ma, b that

M1,0 = Area × X1 and M0,1 = Area × X2, (35)

where Xi is the “center of mass” or centroid of the polygon in the i = 1, 2 directions.
For β̂ = (1, 0), β̂⊥ = (0, 1), we have

M1,0 = 1

3!

N∑
n=1

(
vn+1,2 − vn,2

) (
v2

n+1,1 + v2
n,1 + vn+1,1vn,1

)
, (36)
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and for β̂ = (0, 1) , β̂⊥ = (−1, 0) we have

M0,1 = − 1

3!

N∑
n=1

(
vn+1,1 − vn,1

) (
v2

n+1,2 + v2
n,2 + vn+1,2vn,2

)
. (37)

Explicit evaluation of ∫
V

dx1dx2xi , (38)

with i = 1 or 2 by substituting xi = �∂ · (x2
i x̂i/2

)
, with no sum on i, yields the same result as (36)

and (37), respectively.

C. Moments and shapes of polygons

We begin this section by using a version of (5) modified to live in the complex plane to provide
an alternative derivation of the result of Davis which is a generalization from triangles to polygons of
the Motzkin-Schoenberg formula.11 This result is also related to the so-called “shape from moments”
problem which is to find the ordered vertices of a polygon given an appropriate set of the polygon
moments.4, 5 As shown by Milanfar,4 in the complex plane with z = x + iy, the result of Davis can
be written, ∫

V
dxdy∂2

z h (z) = i

2

N∑
n=1

(
z∗

n−1 − z∗
n

zn−1 − zn
− z∗

n − z∗
n+1

zn − zn+1

)
h (zn) . (39)

Here, V is a simply connected orientable polygon with vertices zn = xn + iyn
(
z∗

n = zn − iyn
)
, n =

1, . . . , N, in the complex plane and the function h(z) is analytic (= holomorphic = regular) in the
closure of V. In the sum, we have let z0 = zN and z1 = zN + 1. For the remainder of this section, we
follow the standard notation for variables in the complex plane, i.e., we replace x1with x, x2 with y,
etc.

To write h(z) as a Fourier transform, start with the definition of an analytic function, i.e., that it
can be written as a power series in non-negative powers of z,

h (z) =
∞∑

n=0

anzn. (40)

Now define the function h̃ (β), with β real, by

an =
+∞∫

−∞
dβh̃ (β)

(iβ)n

n!
. (41)

This may seem restrictive, but if we take h̃ (β) to vanish outside |β| ≤ 1, then we can represent h̃ (β)
as

h̃ (β) =
∞∑

n=0

An Pn (β) , (42)

where Pn(β) are Legendre polynomials. With this representation, the complex coefficients An can
be chosen to satisfy (41).

Substituting (41) into (40), interchanging orders of integration and summation, we get

h (z) =
+1∫

−1

dβh̃ (β)
∞∑

n=0

(iβz)n

n!
=

+1∫
−1

dβh̃ (β) eiβz, (43)

which is the analytic continuation of h (x) =∑∞
n=0 an xn .
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Using the obvious notation (a, b) · (x, y) = ax + by, we now have

∫
V

dxdy∂2
z h (z) = −

+1∫
−1

dβh̃ (β)
∫

V
dxdyβ2eiβz

= i

2

+1∫
−1

dβh̃ (β)
∫

V
dxdy

(
∂x , ∂y

) · β (1,−i) exp [iβ (1, i) · (x, y)]

= 1

2

+1∫
−1

dβh̃ (β)
N∑

n=1

β (1,−i) · ε · ((x, y)n+1 − (x, y)n

)
β (1, i) · ((x, y)n+1 − (x, y)n

)
× (exp

(
iβ (1, i) · (x, y)n+1

)− exp
(
iβ (1, i) · (x, y)n

))

= i

2

+1∫
−1

dβh̃ (β)
N∑

n=1

(
z∗

n − z∗
n−1

zn − zn−1
− z∗

n+1 − z∗
n

zn+1 − zn

)
exp (iβzn)

= i

2

N∑
n=1

(
z∗

n−1 − z∗
n

zn−1 − zn
− z∗

n − z∗
n+1

zn − zn+1

)
h
(
z j
)
. (44)

In the third line, ε is the matrix defined in (15). In the second step, we have used (5), and in the
last step, we have used the definition of h(z) in terms of its Fourier transform. The β’s cancel in
the coefficient of the exponents in line three, and hence, we reproduce the result of Davis that the
integral over a polygon of ∂2

z h (z) is the sum of h(z) evaluated at the vertices of the polygon times
coefficients which depend only on the vertices and not on h(z).

The moments of a polygon obviously contain the polygon shape information. The order of the
vertices is important, as reordering them nominally leads to a polygon with a different shape and/or
can make it nonorientable. For N vertices, there are 2N independent real numbers corresponding
to the �v1, . . . , �vN vertices which define the polygon. Thus, the infinite set of all possible moments
of the polygon must be highly redundant. We will not solve this “shape from moments” problem
here. Milanfar and co-workers4, 5 have shown how to solve for the vertices given a particular set of
complex moments which can be easily computed from (63) by letting h(z) = zk. Here, we merely
present the complete set of relations between all possible moments Ma, b and the vertices (x, y)n of a
polygon that follows from (34).

To derive an explicit relation between the moments and the vertices of an arbitrary orientable
polygon, multiply (32) by β2 = β2

1 + β2
2 and use the fact that the m = 1 term on the right-hand side

vanishes identically. The derivation is facilitated by defining a function θ (···) which vanishes if any
one or more of its arguments are negative and equal 1 otherwise. This function can be used to keep
track of the limits on the sums when the summation indices are redefined so that the powers of β1

and β2 are written as βa
1 βb

2 on both sides of the equation. Then, using the fact that the coefficient
of βa

1 βb
2 on the left must equal the coefficient of βa

1 βb
2 on the right for the same given non-negative

integer values of a and b we find, with �vn = (x1,n, x2,n
)
,

θ (a − 2)
Ma−2,b

(a − 2)!b!
+ θ (b − 2)

Ma,b−2

a! (b − 2)!

= θ (b − 1, a + b − 2)
a∑

q=0

a+b−1−q∑
p=0

(
θ (p + q − a) 1

(a+b)!
(a+b−1−p)!

q!(a+b−1−p−q)!
p!

(a−q)!(p+q−a)!

×∑N
n=1

(
x1,n+1 − x1,n

)
xq

1,n+1xa+b−1−p−q
2,n+1 xa−q

1,n x p+q−a
2,n

)

− θ (a − 1, a + b − 2)
a−1∑
q=0

a+b−1−q∑
p=0

(
θ (p + q + 1 − a) 1

(a+b)!
(a+b−1−p)!

q!(a+b−1−p−q)!
p!

(a−q−1)!(p+q+1−a)!

×∑N
n=1

(
x2,n+1 − x2,n

)
xq

2,n+1xa+b−1−p−q
2,n+1 xa−q−1

1,n x p+q+1−a
2,n

)
.

(45)
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The derivation is straightforward but tedious.

D. Fraunhofer diffraction

Fraunhofer diffraction occurs when the light diffracted from an aperture or opening in an opaque
screen is observed in a plane far from the aperture itself.2 By “far” we mean that the distance between
the opaque screen and the plane of observation, which is by convention taken to be parallel to the
screen, is much larger than the maximum dimension of the aperture. For the case where the opaque
screen lies in the x1x2 plane and the illumination is a unit amplitude plane wave of wavelength λ

incident on the screen from the side opposite the observation plane, the amplitude of the diffracted
light at position xi in the observation plane a distance L away from the screen is given by

A (�x) =
∫

d2x ′θV
(�x ′) exp

[
i

k

L
xi x

′
i

]
=
∫
V

d2x ′ exp

[
i

k

L
xi x

′
i

]
. (46)

Here, θV(xi) = 1 inside the aperture and 0 outside describes the aperture shape and k = 2π /λ. This
is essentially the left-hand side of (5) but with

βi = kxi

L
(47)

and without the normalization factor. The intensity of the diffraction pattern is given by I (�x) =
|A (�x)|2 .

We consider two cases, a circular aperture whose solution follows almost trivially from (5) and
a slit whose solution is already implicit in (21).

For a circular aperture of radius R centered at xi = 0, it follows from (5) that

A (�x) =
�β R

iβ2
·

2π∫
0

dϕr̂ (ϕ) exp
[
i �β · Rr̂ (ϕ)

]
, (48)

with r̂ (ϕ) = �x ′/
∣∣�x ′∣∣ . Writing �β · r̂ (ϕ) = β cos

(
ϕ − ϕβ

)
, where ϕβ is the angle �β makes with

respect to the x1-axis and β =
∣∣∣ �β∣∣∣ = k

√
x2 + y2/L , (48) becomes

A (�x) = R

iβ

2π∫
0

dϕ cos
(
ϕ − ϕβ

)
exp
[
iβ R cos

(
ϕ − ϕβ

)]

= R

iβ

−i

β
∂R

2π∫
0

dϕ exp [iβ R cos (ϕ)]

= − R

β2
2π∂R J0 (β R)

= π R2

(
2J1 (β R)

β R

)
. (49)

Here, the Jn(x) are the Bessel functions of the first kind. This is the standard result for a circular
aperture.2

For a slit (rectangular) aperture of width 2ai in the xi direction, centered at xi = 0, we merely
have to substitute �v1 = (a1, a1) , �v2 = (−a1, a2) ,�v3 = (−a1,−a2) , �v4 = (a1,−a2) , and �v5 = �v1



013509-11 Fourier, Gauss, Fraunhofer, Porod J. Math. Phys. 53, 013509 (2012)

into (21) to obtain

A (�x) = − 1

β2

N∑
n=1

�β · ε · (�vn+1 − �vn)
�β · (�vn+1 − �vn)

(
exp
(

i �β · �vn+1

)
− exp

(
i �β · �vn

))

= 1

β2

⎛
⎜⎜⎜⎜⎜⎝

β2

β1
(exp (−ia1β1 + ia2β2) − exp (iβ1a1 + iβ2a2))

− β1

β2
(exp (−ia1β1 − ia2β2) − exp (−iβ1a1 + iβ2a2))

+ β2

β1
(exp (ia1β1 − ia2β2) − exp (−iβ1a1 − iβ2a2))

− β1

β2
(exp (ia1β1 + ia2β2) − exp (+iβ1a1 − iβ2a2))

⎞
⎟⎟⎟⎟⎟⎠

= (2a1) (2a2)
sin (β1a1)

β1a1

sin (β2a2)

β2a2
, (50)

which again is the standard result.2

Fraunhofer diffraction patterns for arbitrary (orientable) polygons can be calculated simply by
substituting the vertex values into (21). It is interesting to compare the patterns generated for a given
set of vertices as the vertices are reordered to make the polygon nonorientable.

IV. RESULTS IN THREE DIMENSIONS

Before discussing Porod’s law, we point out an essentially obvious but useful fact. Since the
faces of a polyhedron are themselves polygons, it follows that applying (5) to a polyhedron reduces
the integral over the volume to a sum of integrals over the areas of polygonal faces and then applying
(32) to the faces themselves reduces the volume integral to a sum of integrals over the edges. These
integrals can of course be evaluated exactly. The only issue is the book-keeping required to keep
proper track of the vertices.

As an example, consider the parallelepiped formed by three vectors �ai , i = 1, 2, 3. It has six
parallelogram faces with positions on the faces �R f (�s) given by

�R1 (�s) = s1â1 + s2â2 �R2 (�s) = s1â2 + s2â3 �R3 (�s) = s1â3 + s2â1

�R4 (�s) = �a3 + �R1 (�s) �R5 (�s) = �a1 + �R2 (�s) �R6 (�s) = �a2 + �R3 (�s) . (51)

The values of si in each case range from 0 to the length of the associated vector, e.g., for f = 3,
s1 = 0 to |�a3| = a3 and s2 = 0 to|�a1| = a1. We assume the vectors are ordered so that �a1 · (�a2 × �a3)
> 0. Expanding the exponent in (5) to first order in β, we find that the volume of V is given by

v = β̂ ·
∫
∂V

d2s
√

g (�s)n̂ (�s)
(
β̂ · �R (�s)

)
. (52)

For the parallelepiped, gf and n̂ f are constant on each face. Using the fact that the normals point in
opposite directions on opposite faces and choosing β̂ = â1 so that â1 · n̂4 (�s) = �a1 · n̂6 (�s) = 0, we
get

v = (â1 · √
g5n̂5
)

a1a2a3. (53)

But
∫

d2s
√

g5 = √
g5a2a3 is the area of face 5 which is a parallelogram formed by �a2 and �a3. As

shown above, it has an area given by |�a2 × �a3| = |â2 × â3| a2a3 and since n̂5 = (â2 × â3) / |â2 × â3|,
we have

√
g5n̂5 = â2 × â3 and, so, for the parallelepiped

v = �a1 · (�a2 × �a3) = det
[
ai, j
] =
√

det
[�ai · �a j

]
. (54)
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A. Porod’s law

Finally, we rederive the anisotropic version of Porod’s law as given in the work of Ciccariello
et al.12 The anisotropic result of course reduces to the isotropic result for spherical particles. Here,
we use the notation �k rather than �β as is more common in this context.

The intensity I
(
�k
)

= I
(
kk̂
)

of light of wavelength λ = 2π/

∣∣∣�k∣∣∣ = 2π/k scattered off a particle

defined by the shape function θV (�x) in the direction k̂ = k̂out − k̂in , where k̂in
(
k̂out
)

is the direction
of propagation of incident(scattered) light, is

I
(
�k
)

∼
∣∣∣∣
∫

d D x exp
[
i �k · �x

]
θV (�x)

∣∣∣∣
2

. (55)

To be general, for now, we start in D dimensions. Porod’s law12 follows from this in the case where
the magnitude of the scattering wave vector k is large, i.e., λ is small, and so, Porod’s law is often
associated with x-ray scattering.

To obtain Porod’s law, use (5) and evaluate the integral over ∂V in the limit of large k by using
the method of steepest descents which assumes that the dominant contribution to the integral comes
from the regions around the stationary phase points of the exponential, i.e., from positions �s = �σ ,
such that

�∂s

(
�k · �R (�s)

)∣∣∣
�s=�σ

= k�∂s

(
k̂ · �R (�s)

)∣∣∣
�s=�σ

= 0, (56)

and that the other factors in the integrand,
√

g (�s)n̂ (�s) in this case, are slowly varying.20 Here,
�∂s = (∂s1 , ∂s2 , · · ·

)
is the gradient with respect to the surface coordinates si. For an arbitrary shape,

there will generally be multiple points where the phase is stationary. For simplicity, consider a single
solution �σ . The argument of the exponential in the integrand can be approximated by

i �k · �R (�s) = ik

(
k̂ · �R (�σ ) + 1

2

(
∂σi ∂σ j k̂ · �R (�σ )

)
(si − σi )

(
s j − σ j

))
(57)

to second order in �s − �σ . Substituting into (5) then gives∫
V

d D x exp
[
i �k · �x

]

� exp
[
ikk̂ · �R (�σ )

] k̂

ik
·
∫

d D−1s
√

g (�s)n̂ (�s) exp

[
ik

2

(
∂σi ∂σ j k̂ · �R (�σ )

)
(si − σi )

(
s j − σ j

)]

� exp
[
ikk̂ · �R (�σ )

]( k̂

ik
· n̂ (�σ )

) √
g (�σ )π (D−1)/2√

det
[
− ik

2 ∂σi ∂σ j k̂ · �R (�σ )
] . (58)

Under the assumption that
√

g (�s)n̂ (�s) is slowly varying compared to the exponential
√

g (�s)n̂ (�s)
can be replaced with

√
g (�σ )n̂ (�σ ) and moved outside the integral. Under the assumption that the

dominant contribution comes from the region around �s = �σ , the integration range can be extended
to ± ∞, thus yielding a standard Gaussian integral which reduces to the result shown above. The
determinant in the denominator is taken over the i, j indices.

Using the fact that det
[
− ik

2 ∂σi ∂σ j k̂ · �R (�σ )
]

= k D−1 det
[
− i

2∂σi ∂σ j k̂ · �R (�σ )
]
, we get∫

V
d D x exp

[
i �k · �x

]
∼ 1

k

1

k(D−1)/2
= 1

k(D+1)/2
, (59)

and so,

I
(
�k
)

∼ 1

k D+1
. (60)

Thus in three dimensions, I (�k) scales as 1/k4 for large k. This is the standard isotropic statement of
Porod’s law.3 But, as pointed out by Ciccariello, det [∂σi ∂σ j k̂ · �R (�σ )] is proportional to the Gaussian
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curvature (in three dimensions) of the surface ∂V and is the appropriate prefactor. In general, for an
arbitrary shaped particle, there will be multiple stationary phase points, i.e., �σ1, �σ2, . . . which must
be summed over to get the complete amplitude. There are also issues with positive and negative
curvatures which must be carefully considered as well as how to handle cases where the curvature
vanishes.12 The 1/k3 dependence predicted for two dimensions, with the relevant prefactor, has
recently been reported.21

V. CONCLUSION

We have shown how a simple idea, that of combining Gauss’s law with the Fourier transform,
provides alternative solutions and/or derivations of many different classical results in physics and
mathematics. No doubt there are many other problems and proofs to which this idea can be applied.
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