
Changes in Federal Information Processing Standard (FIPS) 180-4, Secure Hash
Standard

Quynh Dang

Abstract This paper describes the changes between FIPS 180-3 and FIPS 180-4. FIPS
180-4 specifies two new secure cryptographic hash algorithms: SHA-512/224 and SHA-
512/256; it also includes a method for determining initial value(s) for any future SHA-
512-based hash algorithm(s). FIPS 180-4 also removes a requirement for the execution of
the message length encoding operation.

Keywords FIPS 180, hash algorithm, SHA-512, SHA-512/224, SHA-512/256, hash
function

1. Background Information in FIPS 180-3

Cryptographic hash functions are very critical elements in building security components
for computer systems. They are used in widely-deployed cryptographic applications, such
as digital signature applications [1], Keyed-hash message authentication codes (HMACs)
[2], hash-based key derivation functions [3] and Deterministic Random Bit Generators
[4].

Federal Information Processing Standard (FIPS) 180-3 specified five cryptographic hash
algorithms: SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. Among these five
hash algorithms, there are three “base” algorithms: SHA-1, SHA-256 and SHA-512.
However, only the use of SHA-256 and SHA-512 is discussed further in this paper.

SHA-224 and SHA-384 are based on SHA-256 and SHA-512, respectively, using
different initial values (IVs) and truncating to the left-most 224 or 384 bits of the outputs
from the functions for the final hash values.

Generally, within the same class of cryptographic algorithms, the algorithms with
stronger security have poorer performance than those that provide weaker security. For
example, a 2048-bit key for RSA provides much stronger security than a 1024-bit key
and takes a lot more computation in signing and verifying a message than a 1024-bit key;
this means that 2048-bit RSA has poorer performance than 1024-bit RSA. As another
example, consider the SHA-256 and SHA-512 hash algorithms. SHA-512 is expected to
provide much greater security than SHA-256, and SHA-512 is slower (poorer in
performance) than SHA-256 on many computing platforms.

However, SHA-512 consumes roughly 10-45% fewer clock cycles per byte than SHA-
256 as shown from performance-comparison data for SHA-256 and SHA-512 on many
different 64-bit platforms by [5]. This means that SHA-512 runs roughly 10-80% faster
than SHA-256 and SHA-224 on these 64-bit machines, which are becoming more

prevalent. Also, [6] provides performance comparison data for SHA-256 and SHA-512
on a specific 2010 Intel architecture, the Xeon X5670 processor. The data shows that
SHA-512 consumes roughly 37% fewer clock cycles per byte than SHA-256. Put another
way, SHA-512 is roughly 60% faster (more efficient) than SHA-256 on this machine.

Hash values of 224 and 256 bits are commonly used in many cryptographic applications,
such as digital signature applications. Therefore, alternatives to SHA-224 and SHA-256
with the performance of SHA-512 to generate 224 and 256-bit hash values would be
useful. Clearly, generating 224 and 256-bit hash values faster (than generating them by
using SHA-224 and SHA-256, respectively) is possible when using SHA-512 with an
additional truncation operation at the end; the specification of the truncation method is
provided in NIST SP 800-107 [7].

To improve interoperability in applications or protocols, hash functions with specific
hash value lengths are specified in object identifiers (OIDs). If only the hash function
were identified in the OID, the length of the hash value (including any required
truncation) would be ambiguous. For example, if SHA-512 were identified by its OID
(meaning the length of hash values is 512 bits), but the hash value was intended to be
truncated to 224, 256, or some other number of bits, there would be ambiguity in the
application execution. Of course, this problem could be taken care of by specifying a
specific length for the truncated hash value to be used in the protocol specification.
However, introducing a new parameter into existing protocols would create a lot of
unnecessary complications and incompatibility issues. Even with new
protocols/applications, having a simple design is desirable. Thus, it makes sense to
specify truncated variants of SHA-512 as new hash algorithms with their own OIDs.

Beside the need for new hash algorithms, another issue in FIPS 180-3 that needed to be
dealt with concerned the requirement that the preprocessing, which has two operations:
padding and parsing the message, must be completed before hash computation begins. In
addition to ensuring that the padded message is a multiple of 512 or 1024 bits (depending on
the algorithm), the padding operation strengthens the security of the hash algorithms [8].
Therefore, it was specified as a required operation for the hash algorithms in FIPS 180-3.
However, requiring the preprocessing to be completed before hash computation begins is
unnecessary in implementing the hash algorithms. This mandate limited flexibility for
implementing hash algorithms in many computer network applications where a message
to be hashed could have multiple message blocks, and each message block may be
received at different times. With the mandate, the hashing operation can’t start until all of
the message blocks are received and the preprocessing is completed, which slows down
the application. Limiting algorithm implementation in this manner was unintended.

2. IV Generation Framework for SHA-512-based Hash Algorithms

As discussed above, two new hash algorithms based on SHA-512 are needed as
alternatives to SHA-224 and SHA-256. Therefore, SHA-512/224 and SHA-512/256 were
specified in FIPS 180-4 [9].

To distinguish SHA-512/224 and SHA-512/256 from SHA-512 and SHA-384 (the
previously-approved, truncated SHA-512-based hash function), two new initial values
(IVs) are needed. FIPS 180-4 specifies a standard method to determine the IVs for SHA-
512/224 and SHA-512/256, as well as any other possible SHA-512-based hash
algorithms that may be approved in the future. The method is described below.

Let SHA-512/t be the general name for a t-bit hash function based on SHA-512 whose
output is truncated to t bits, where t is any positive integer such that t < 512, and t is not
384 (since SHA-384 is already a SHA-512-based hash algorithm).

Denote H(0)′ to be the initial value (IV) of SHA-512 as specified in Section 5.3.5 of FIPS
180-4.

Denote H(0) to be the IV for SHA-512/t.

Denote H(0)′′ to be an IV used during the generation of SHA-512/t.

Denote Hi

(0)′′to be the ith 64-bit word of H(0) ′′, where i is defined from 0 to 7, counting
from left to right. H0

(0) ′′ is the left-most 64-bit word of H(0) ′′.

H(0)′′is computed as follows:

For i = 0 to 7

{
Hi

(0)′′ = Hi
(0)′ ⊕ a5a5a5a5a5a5a5a5(in hex).

}

H(0) = SHA-512 (“SHA-512/t”) using H(0)′′ as the IV, where t is the specific truncation
value: an integer without any leading zero. For example, t is 192, but not 0192.

As an example, for SHA-512/256, H(0) = SHA-512 (“SHA-512/256”), where “SHA-
512/256” is an 11-byte ASCII character string that is equivalent to 53 48 41 2D 35 31 32
2F 32 35 36 (in hexadecimal).

NIST has verified that the method above will generate a different IV for each valid value
of t. The idea of using the compression function of a family of hash algorithms to
generate a unique IV for each specific hash algorithm (with specific hash output length)
has been used in the specification of Skein: a final candidate in the SHA-3 hash algorithm
design competition [10].

The IV, H(0)′′, used in the execution of SHA-512 in the above method is different from
SHA-512’s IV to avoid the property that the IV of a new SHA-512/t is an output from
another hash algorithm (SHA-512, in this case). This property does not seem to have any

security issue. However, it also does not seem to be a good or desired property for any
new hash algorithm. Therefore, H(0)′′ was constructed to avoid this property.

IVs for SHA-512/224 and SHA-512/256 are defined in FIPS 180-4.

3. Hash Outputs of SHA-512/224 and SHA-512/256

After hashing a whole message, H(0) now becomes H(N) (see FIPS 180-4 for details),
which is 512 bits long; the output hash values of SHA-512/224 and SHA-512/256 are the
224 and 256 left most bits of H(N), respectively.

4. Removal of the requirement for a message length encoding operation

As discussed above, the requirement for preprocessing before hash value computation
begins creates inefficiency and inflexibility. FIPS 180-4 removes the preprocessing
requirement. Without the requirement, the first message block or any other message
block except the last block (which can be a partial block) can be hashed (processed) as
soon as it is received. The padding operation can be performed when the last (full or
partial) block is received, because the length of the message can be determined at this
point. After the padding is completed, the final computations needed to generate the hash
value can be performed.

5. Conclusion

Specifying SHA-512/224 and SHA-512/256 in FIPS 180-4 provides alternatives to SHA-
224 and SHA-256. SHA-512/224 and SHA-512/256 are roughly 30-100% faster than
SHA-224 and SHA-256 on computing platforms optimized for 64-bit computing
operations, which are becoming major computing platforms for high volume
computational devices, such as banking servers. By specifying the method in FIPS 180-4
for determining IV(s), any SHA-512-based hash algorithm that may be approved in the
future will be able to be quickly specified. Removing the requirement for the message
encoding operation before hash computation begins will allow flexibility in implementing
hash algorithms that may speed up application execution.

References

1. Federal Information Processing Standard (FIPS) 186-3, Digital Signature

Standard (DSS), National Institute of Standards and Technology, June 2009.

2. Federal Information Processing Standard (FIPS) 198-1, The Keyed-Hash Message

Authentication Code (HMAC), National Institute of Standards and Technology,
July 2008.

3. NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography, March 2007.

4. NIST SP 800-90A, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators, (Draft) May 2011.

5. http://bench.cr.yp.to/xweb-hash/long-sha256.html

6. Shay Gueron, Simon Johnson and Jesse Walker, SHA-512/256, 2011 Eighth

International Conference on Information Technology: New Generation.

7. NIST SP 800-107, Recommendation for Applications Using Approved Hash

Algorithms, February 2009.

8. I. Damgård, A Design Principle for Hash Functions. In Advances in Cryptology -
CRYPTO '89 Proceedings, Lecture Notes in Computer Science Vol. 435, G.
Brassard, ed, Springer-Verlag, 1989, pp. 416-427.

9. Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard,

National Institute of Standards and Technology, Date?.

10. http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html

http://bench.cr.yp.to/xweb-hash/long-sha256.html
http://en.wikipedia.org/wiki/Ivan_Damg%C3%A5rd

