Fourth Joint Technical Coordinating
Committee on Precast Seismic Structural
Systems, Proceedings. May 16-17, 1994.
Tsukuba, Japan

Beam-to-Column Connections for Precast Concrete Moment-Resisting Frames
by
Geraldine Cheok', William Stone', John Stanton®, Dave Seagren®

Introduction

Precast concrete frame construction is not used extensively in seismic regions of the USA. The UBC [ICBO, 1991]
currently permits only certain specific building systems to be used and a precast frame is not one of them. The
reason is that extensive research on cast-in-place frames has led to the development of reinforcement details that
provide suitable ductility, and these details are now prescribed in the UBC. In most cases, these details cannot be
easily achieved in a purely precast system. The result is that most precast structures can be made to satisty the UBC
only under the guise of an "undefined structural system" which must " ... be shown by technical and test data which
establish the dynamic characteristics and demonstrate the lateral force resistance and energy absorption capacity to
be equivalent to systems listed in Table No. 23-O for equivalent R, values." This requirement makes approval of
a precast frame very difficult. In addition, another UBC requirement calls for "reinforcement resisting earthquake-
induced" forces to conform to ASTM A 706 and A 615 Grades 40 and 60 specifications which excludes prestressing
steel. Since the advantages of precasting and prestressing are interlinked, this provision on prestressing inhibits the
use of precast concrete.

As a result of the lack of research data, an experimental program to examine the behavior of 1/3-scale model precast
concrete beam-column connections subjected to cyclic loads in the inelastic range was initiated at the National
Institute of Standards and Technology in 1987. The objective of the program was to develop guidelines for the
design of an economical precast moment resisting beam-to-column connection. The basic concept used for the
precast connections was the utilization of prestressing steel to connect the precast elements and to provide the
required shear resistance to the applied loads in the absence of corbels and shear keys.

The test program is divided into four phases. Phase I was the exploratory phase in which four monolithic specimens
were tested. Two of these specimens were designed to UBC seismic Zone 2 specifications and two to Zone 4
specifications. The results from these tests serve as reference levels for the precast tests. In addition to the
monolithic tests, two precast connections were tested. These specimens were designed similarly to the monolithic
Zone 4 specimens. The objective of this phase was to determine the viability of the concept. Based on the results
of Phase I, six precast specimens were tested in Phase II. The objective of this phase was to improve the cyclic
energy dissipation characteristics of the precast specimens. Because of stiffness degradation observed in the latter
stages of the tests in the earlier precast specimens, the use of partially bonded post-tensioning steel was studied in
Phase ITII. Two precast specimens were tested in that phase.

Hybrid precast connections were studied in Phase IV. The connections are termed hybrid because they combine the
use of mild or low strength steel and prestressing (PT) steel. The basic premise for this concept is that the mild steel
serves as an energy dissipator while the clamping force necessary to transmit shear forces at the column face is
provided by the prestressing steel. Concern was raised that the shear resistance would not be sufficient to resist the
applied seismic shear loads in addition to gravity loads. To address this concern, simulated gravity loads were
applied to the beams for the Phase IV tests.

Phase IV was divided into two parts, A and B. Phase IV A involved the testing of three basic configurations and
six specimens. The objective of this phase was to test the concept of hybrid connections and to determine the most

! Research Civil Engineer, National Institute of Standards and Technology, Gaithersburg, MD.
2professor, Department of Civil Engineering, University of Washington, Seattle, WA.

3Chief Engineer, Charles Pankow Builders, Ltd,, Altadena, CA.



promising configuration. One of the specimens in Phase IV A which incorporated replaceable mild and PT steels
was tested three times. The results were then used to determine the specimen details for Phase IV B. The primary
variables in this phase were the amount and the type of mild steel. Four hybrid specimens were tested in this phase.

The remainder of this paper will concentrate on test results obtained in Phase IV B. Details from Phases I, II, III
and IV A may be found in NIST reports Cheok and Lew [1990, 1991, 1993] and in Cheok, Stone, and Lew [1993].

Phase IV B: Specimen Details and Test Procedure
The design of the beam-column connections were based on a prototype 12-story moment resisting frame office
structure designed for UBC seismic Zone 4. The floor plan was rectangular with dimensions of 32.92 m x 65.84 m.

The story height was 3.96 m. In the design of the prototype structure, the values used in UBC equations 34-1 to
34-3 [ICBO, 1991] were:

vV o= W (UBC Eq. 34-1, [ICBO, 1991])

c - & (UBC Eq. 34-2, [ICBO, 1991])

T = C, (h)"* (UBC Eq. 34-3 [ICBO, 1991])
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The overall dimensions of the model beams were 203 mm (W) x 406 mm (H), and the model column dimensions
were 203 mm x 203 mm. The basic connection details are shown in Figure 1. In all four specimens, the amount
of PT steel was the same (3 - 13 mm diameter strands) and was located at mid-depth of the beam. The PT steel was
partially bonded. In the prototype structure, the steel will be debonded through the column and for a specified
distance on either side of the column and bonded for the remaining distance in the beamn (bonded through mid-span
of the beams). This arrangement delays or prevents yielding of the steel and provides back-up anchorage in the case
of anchorage failure thereby reducing the risk of progressive collapse. Prevention of yielding of the PT steel is
necessary for maintenance of the clamping force.

The beams have troughs cut out of the top and bottom which allow for field placement of mild steel bars into the
ducts located in the beams and columns. The mild steel in two of the specimens consisted of Grade 60 reinforcing
bars and bars made of 304 stainless steel in the remaining two. Type 304 stainless steel was selected because of its
high elongation capacity at fracture, 50%. It also had similar yield strength to a Grade 60 reinforcing bar. The mild
steel bars were fully bonded except for 25 mm on either side of the beam-to-column interface. These short debonded
lengths in the mild steel bars and the use of 304 stainless steel bars were attempts to delay the fracture of the mild



steel bars. This was because it was felt that higher drift levels and greater energy dissipation were possible in the
previous NIST tests if fracture of the mild steel was delayed.

Angles were located at the corners of the beams, top and bottom, at the beam-to-column interface. It was observed
in the Phase IV A tests that the presence of these angles helped to prevent spalling of the beam corners at higher
drift levels.

In addition to the loads applied to the beams, an axial load simulating the gravity load was applied to the columns.
Both the beam and column loads were held constant throughout the tests. The specimens were then subjected to a
loading history that was recommended for use by PRESSS [Priestley, 1992] in their test program. This loading
history is drift based with three cycles at a prescribed drift level followed by an elastic cycle.

Test Results

In general, the Phase IV B specimens showed significant promise as a practical joint detail for seismic regions. They
withstood cyclic loading to approximately 3% story drift before sustaining damage to the energy dissipating
reinforcement (mild steel) while the PT steel remained elastic. This drift value is twice the drift envisioned by the
UBC under maximum credible earthquake conditions, yet the specimens suffered essentially no damage prior to
attaining this value. The hysteresis curves for the Phase IV B specimens are shown in Figures 2 - 5.

Deformed 304 stainless steel reinforcing bars with the same net area as standard Grade 60 reinforcing bars were not
available at the time of the tests reported herein. Stainiess round bars were thus machined with threaded lugs having
outside diameter to net diameter ratios of 1.22 and 1.43, and lug width to thread pitch ratios of 0.4 and 0.19,
respectively. Bars having the former ratios were used in specimen N-P-Z4 and exhibited bond failure between the
stainless steel bar and the grout at a drift level of approximately 2%. In the other three specimens, failure resulted
from the fracture of the mild steel bars. For the second specimen containing stainless steel bars, P-P-Z4, no
significant increase in drift capacity was observed over that obtained using Grade 60 reinforcing bars. Subsequent
tension tests showed that the stainless steel threaded bars broke at a strain of 30% whereas virgin rods broke at 50%
strain. This reduced strain capacity was attributed to stress concentrations in the machined screw thread that was
used in place of rolled-on lug pattern. Further investigations using stainless steel dissipators are warranted.

After failure of the mild steel, the specimens continued to withstand load because the PT was still intact. In one
case, the specimen was tested to 6% drift, or about 4 times the drift corresponding to the UBC maximum credible
earthquake. The definition of failure used for the test program was the displacement at which the resistance was less
than or equal to 80% of the maximum value. The resistance was still about 65% of the maximum value at 6% drift.

After release of the load, the specimen re-centered itself. In the specimens tested to approximately 3.5% drift, the
PT had suffered essentially no loss of the initial prestress, while the residual prestress was approximately 0.1 f, in
the specimen tested to 6% drift. The initial prestress was 0.44 f  in all specimens. The remaining prestress proved
sufficient to prevent any vertical slip at the beam-column interface under simulated gravity load. No slip was
observed in any specimen. Figure 6 shows the typical force in the PT steel for specimens tested to 3.5% - 4.0%
story drift. Figure 7 shows the typical force in the PT steel for the specimen which was tested to 6% story drift.
The yield stress in the PT steel was approximately equal to 0.93 f.

Crack widths in the Phase IV B specimens were also extremely small. The widest crack in any of the specimens
was | mm and most were in the range of 0.1 to 0.2 mm. A crack this narrow is barely visible. All cracks closed
when the load was removed. The good cracking behavior was attributed to the presence of the unbonded post-
tensioning and the well-anchored transverse reinforcement system. A truss model shows that the loads are
transmitted through the beam by a single strut. It suggests that, at least for carriage of shear, ties are unnecessary,
although they are still required for confinement at the ends of the beams.



The two monolithic specimens that were constructed and tested for reference purposes achieved story drifts of 3.4%
and 3.7%. They sustained extensive crushing, diagonal cracking of the concrete, yielding of the ties, and were
beyond repair. In contrast, the hybrid specimens suffered minor crushing of concrete near the armor angles at the
top and bottom of the beams and spalling of the cover concrete around the mild steel bars in the column. The energy
dissipated per cycle by the hybrid specimens was greater than that dissipated by the monolithic specimensup to 1.5%
story drift. Comparison beyond this point is difficult due to the very different numbers of cycles to failure for each
specimen. The hybrid specimens withstood 38 to 57 cvcles, whereas the monolithic specimens withstood only 8.

These comparisons suggest that the hybrid specimens performed as well as, or better than, the monolithic specimens
according to measures of drift capacity, strength deterioration, stiffness degradation, residual drift, cracking, damage
to the concrete, and integrity of the transverse steel. In energy dissipation, the comparison is unclear. However, the
hybrid specimens outperformed the monolithic ones up to a drift value implied by the UBC for the maximum
credible earthquake and after that, they still continued to dissipate energy. It is worth noting that recent research
[e.g. Priestley and Tao, 1993] suggests that, while some energy dissipation is important, the marginal benefits at
higher drift levels are questionable, because the displacements of the structure are influenced more strongly by the
individual earthquake characteristicsthan by the quantity of energy dissipated and by the change in the period of the
structure due to the loss of stiffness.

Summary and Conclusions

A total of 22 1/3-scale model precast beam-column connections were tested. Four of these specimens were
monolithic connections, the results of which served as a basis of comparison. The connections were subjected to
reversed cyclic inelastic loadings. Post-tensioning was used to connect the precast elements and mild steel was used
as energy dissipators. The variables included type of PT steel, location of PT steel, bonding of the PT steel, use of
PT steel alone, combined use of PT and mild steels, and the amount of mild steel.

The hybrid connection has been shown to be a viable candidate for a moment resisting precast frame. It provides
a way of connecting the precast members for transferring the large forces needed in severe seismic zones and takes
advantage of the best features of prestressed construction and combines them with the energy dissipation of a
conventional reinforced concrete structure. The use of the two separate steels, mild and PT, is essential: the PT
steel, kept in the elastic range, provides the clamping force for shear resistance and the mild steel dissipates energy
by yielding.

The present code regulations which prevent the use of high strength steel in seismic systems and require a precast
concrete system to emulate a monolithic one are inappropriate. While emulation is clearly one option, it ignores the
beneficial characteristics of precast concrete construction.

Both elastic and inelastic dynamic analyses are currently being conducted at NIST. The work includes subjecting
model buildings with varying story heights to a suite of design earthquakes. The hysteretic characteristics of the
connections in the building models are characterized by 7 parameters determined from an identification process of
the experimental results. The ratio of the inelastic to yield displacement is approximately equal to the R, factor used
in the UBC. Based on statistical analyses of the results of this parametric study, suitable values of R, factors for
precast connections will be determined.
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Figure 1. Basic Connection Details for Phase IV B Specimens.
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Figure 2. Hysteresis Curves for M-P-Z4.
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Figure 4. Hysteresis Curves for O-P-Z4.
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Figure 5. Hysteresis Curves for P-P-Z4.

67

45

67

45

(%) peo

() peo1



Load (kN)

Load (kN)

200.0 45.0
E 10f
- 35 4.0 % Drift
T 08f
[ 3.0
146.0 = 328 &
F 25 2
F 2.0 ;
- -’
119.0 . 13 26.8
- 1.0
92.0 s g?{“lllj 20 7
02 035
650 1 L 1 1 (| 1 1 ) 1 1 Il 4 It 14_6
0 500 1000 1500 2000 2500
SCAN
Figure 6. Typical Force in PT Steel in Specimen O-P-Z4.
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Figure 7. Typical Force in PT Steel in Specimen N-P-Z4.



