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Abstract: The tip of a traditional Coordinate Measuring Machine (CMM) probe used for 
measurements of macro-scale artifacts is generally a sphere of excellent geometry. Its 
known diameter (from a prior calibration) and form, along with the known approach 
direction (which is normal to the surface), facilitate probe radius compensation in a 
straightforward manner. Neither of these conditions is valid for micro-scale 
measurements made with a flexible fiber probe on a CMM. This presents two challenges. 
The first involves the calibration of the probe’s true size and shape. The second involves 
developing a method for compensating probe radius and form on measurement data from 
test artifacts. We describe these issues here in the context of an application involving 
three-dimensional measurements on micro-scale features (a conical section of 20° half 
angle and a rounded tip of 38 μm radius) performed with the NIST fiber probe [1].  
 
1. Introduction 
 
Fiber probes are increasingly used for dimensional metrology of micro-scale features on 
CMMs. These delicate probes have slender stems (5 mm to 20 mm long, 10 μm to 100 
μm in diameter) with a ball (50 μm to 200 μm diameter) at the end. Surface contact may 
be detected by different techniques; see [2, 3] for a review of micro probing techniques.  
 
Unlike the probing spheres of a traditional CMM, the geometry of a fiber probe tip is 
difficult to control. Deviations from sphericity of several micrometers are possible on a 
ball of 100 μm diameter, especially if the ball is manufactured as an integral piece with 
the stem. In fact, integrally manufactured probes, particularly those made of glass, have a 
tear drop shape [4], the bottom half of which can be approximated more closely as a 
spheroid or an ellipsoid instead of a hemisphere, as measurements on precision spheres 
using our NIST fiber probe have shown. Such non-spherical form poses a measurement 
and data analysis challenge in terms of both calibrating the probe size/shape and also in 
compensating for probe size/shape from measured data on test artifacts.  
 
There is also another measurement and data analysis challenge associated with fiber 
probe measurements. The flexible stems of fiber probes are free to oscillate in the 
presence of air currents and therefore the actual point of contact of the probe on the 
surface may not be the desired point of contact, see Fig. 1. Because part sizes are small 
and comparable to other dimensions such as probe size and amplitude of oscillation, the 
surface normal at the point of contact may be oriented in a significantly different 
direction than the approach direction. Therefore, even if the probe ball were spherical in 
form, probe radius compensation would involve determination of the direction of surface 
normals at the point of contact (note that the actual point of contact is a known quantity 



while the surface normal is not). With non-spherical probes, the problem of probe 
size/shape compensation becomes a more challenging mathematical problem.  

 
Fig. 1 Probe travel direction is along AO. The theoretical point of contact is at A, but the 
flexible fiber can oscillate due to machine vibrations or air currents and therefore the 
actual point of contact is at B. Because the part size is small and comparable to other 
dimensions such as probe size and amplitude of oscillation, the surface normal at B (OB) 
is significantly different from that at A (OA). 
 
We describe these problems and our solution approach in the context of an application 
involving the measurement of a conical feature with a radiused tip, using our NIST fiber 
probe. The nominal half angle of the cone is 20° and the radius at the tip is about 38 μm. 
The region of interest is the top 130 μm portion of the part, see Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 A photo of the test artifact and the probe.  
 
The principle of operation of the NIST fiber probe has been reported earlier [1] and we 
do not describe it here. The techniques we describe in this paper are not specific to the 
measurement technology; rather they pertain to all types of flexible micro-probes that 
may not have a high quality tip. We describe the calibration and validation of the probe 
tip parameters in Section 2, three dimensional measurement of micro-scale features on 
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the test artifact in Section 3, and summarize our observations and conclusions in Section 
4.  
 
At the outset, we point out that our approach of calibrating the shape of an ellipsoidal tip 
so that the form information may then be used in subsequent measurements, relies on the 
assumption that probe, although flexible, returns to its equilibrium state and that there is 
no change in the tilt of the probe during the period of the measurements. We believe such 
an assumption is reasonable; calibration measurements performed before and after 
measurement of a test artifact have provided identical values for probe tilt parameters 
suggesting negligible tilt in the probe over reasonably short periods of time (two to three 
days).  
 
We also note that the probe is in fact placed within an enclosure, but that enclosure is not 
air tight because the ram of the machine must be free to move so that it can carry the 
probe to the different probing locations. A plastic drape does fall from the ram on to a 
shell around the part, but it not a rigid coupling. This is intentional because a rigid 
coupling between the ram and the table will produce small but sufficient forces that cause 
distortion in the measurement. Therefore, the effect of air currents cannot be completely 
eliminated. 
 
2. Calibration and validation of probe ball parameters 
 
2.1 Setup 
 
The artifacts we used for calibrating and verifying the probe ball parameters are two steel 
master spheres of 3/16 in (4.7625 mm) and 5/16 in (7.9375 mm) nominal diameter. Their 
diameters have been measured using interferometry at NIST to be 4762.42 µm and 
7937.88 µm with an expanded uncertainty of 10 nm (k = 2). With our fiber probe, we 
measured 16 data points per circular trace and 8 circular traces on these spheres at 
elevations of zero through 70º in intervals of 10º. We also measured the pole point on 
each sphere for a total of 129 data points per sphere.  
 
As part of the set-up procedure, we first determine the position of the equatorial plane of 
the calibration sphere in machine coordinates by measuring circular traces at closely 
spaced Z positions. Subsequently, a circular trace at the equator provides an estimate of 
the equatorial radii a and b of the probe ball. We then probe the pole point to get an 
estimate of the polar radius c of the probe ball. These measurements indicated that the 
probe was probably spheroidal in shape with an equatorial radius of approximately 32 µm 
and a polar radius of approximately 36 µm.  
 
Assuming therefore the probe is spheroidal in shape, we positioned the probe at the 
appropriate heights for the two spheres so that the point of contact occurs at the same 
position on the probe for all elevations. This is illustrated in Fig. 3. To measure 
coordinate A on the sphere at an elevation of θ, a spherical probe (as in Fig. 3(a)) has to 
be positioned at C which is at a height of (R+r)sinθ where all relevant variables are 
defined in Fig. 3. If the probe is ellipsoidal and represented by the 
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2.2 Sphere fit 
 
Although we are aware that the probe ball is not spherical in shape, we present diameter 
and form results assuming the probe ball is indeed spherical to highlight the magnitude 
and nature of the errors in such an assumption.  
 
The probe diameter is determined by measuring the probe ball against our calibration 
sphere. An unconstrained least-squares best fit sphere (we determine both sphere center 
and diameter through the fit) to the calibration data yields a probe diameter of 64.44 µm. 
The probe is then used to measure the diameter of a check sphere. A similar fit to 
determine the diameter of the check sphere yields a diameter of 7937.87 µm after 
correcting for probe size. This value is only 10 nm smaller than the calibrated value of 
the check sphere, which is 7937.88 µm. While the error in the diameter is small, the form 
error is large, see Fig. 4. The residuals are larger near the equator and the pole but smaller 
for other elevations near the middle, suggesting that the best-fit sphere has been 
translated along the Z direction, as might be expected when fitting a sphere to a 
spheroidal data set consisting of measurements on the upper hemisphere only. The Z 
center data in fact confirms this; the center appears to be translated along Z by about 3 
µm for both spheres from the experimentally determined equatorial plane position. We 
should note that while the error in the diameter is only 10 nm on the 5/16 in (7.94 mm) 
check sphere [after calibrating the probe ball using the 3/16 in (4.76 mm) calibration 
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Fig. 3(a) Positioning a spherical probe along Z to measure coordinate A at an 
elevation of θ. (b) Positioning an ellipsoidal probe to measure the same 
coordinate A. 
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sphere], simulations reveal that the error is much larger, on the order of 100 nm, for 
smaller sized hemispheres such as those considered in Section 3. 
 
We then constrained the Z positions to the experimentally known values and recalculated 
the least square sphere center and radius for the two spheres. The probe diameter 
obtained from the calibration sphere was 67.66 µm, which is more than 3 µm larger than 
that determined from an unconstrained fit. The diameter of the check sphere was 7937.83 
µm, which is 0.05 µm smaller than the calibrated value. But the residuals are different in 
the case of the constrained fit as seen in Fig. 4 They are negative at low elevations and 
increase with increasing elevation, suggesting that the probe is longer (by about 4 µm) 
along Z than along X and Y.  
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Fig. 4 Residuals from a constrained and unconstrained least-squares best-fit sphere. 
Data was taken at elevation angles ranging from 0°(the equator) to 70°. At each 
elevation, 16 points were taken around a circle. In the case of the constrained fit, the 
center along the Z direction is constrained to the experimentally determined value. 
 
2.3 Ellipsoid fit 
 
We describe the process of fitting an ellipsoid to the measured data in this section. During 
the calibration process, we estimate nine parameters which include six parameters for the 
ellipsoid (three radii and three tilt parameters - a, b, c, α, β, χ), and three for the 
calibration ball (center coordinates - XO, YO, ZO). The radius of the calibration sphere R is 
of course a known quantity. During the validation process, we estimate four unknown 
parameters which are the center of the check sphere (XO, YO, ZO) and its radius R. We 
describe the process of fitting an ellipsoid as part of the calibration procedure next. 
 
Calibration 
 
The process of determining the nine unknown parameters from the measured data 
involves solving a nested non-linear problem with the outer loop formulated as a non-
linear least squares problem and the inner loop formulated as a simultaneous system of 
non-linear equations. Fig. 5(a) shows a schematic of the calibration process. Note that the 
probe ball, in addition to being ellipsoidal, may also be tilted.  



 
During each iteration of the outer loop, we center the ellipsoid on each of the measured 
data points and compute the shortest distance between the ellipsoid and the sphere. This 
collection of shortest distances, the residuals, are determined by solving a simultaneous 
set of non-linear equations as described next. These residuals are then used to refine the 
estimates of the nine unknown parameters using a nonlinear least squares minimization 
method such as the Levenberg-Marquardt or the Gauss-Newton algorithm [5,6]. 
 
The purpose of the inner loop, as mentioned earlier, is to determine the shortest distance 
between the ellipsoid and the sphere when the ellipsoid is centered on any given data 
point. The current estimates of the nine parameters (assumed to be XO, YO, ZO, a, b, c, α, 
β, χ) are used in this calculation.  
 
The data is first translated so that the current estimate for the center of the calibration 
sphere is the origin. The data is subsequently rotated by the current estimates of the tilt 
angles so that the polar radius of the probe ball is along the Z axis. Then, let the center of 
the ellipsoid be at (XC, YC, ZC), which is the ith measured data point (which has now been 
translated and rotated as described above). The locus of measured points is shown by the 
grey line in the figure (before rotation in Fig. 5(a) and after rotation in Fig. 5(b)). 
 
The objective then is to determine the shortest distance between the ellipsoid and the 
sphere. Let the point on the ellipsoid closest to the sphere be (XB, YB, ZB) shown as point 
B in Fig. 5(b), and let the distance between this point and the sphere be t (t is the shortest 
distance between the sphere and the ellipsoid). Then,  
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where ( )ˆ,ˆ,ˆ kji are the unit vectors along X, Y, and Z directions. The gradient is normal to 
the surface of the probe. When the probe is in contact with the sphere, it is also normal to 
the surface of the sphere, along the radius (direction of OA in Fig. 5). Knowing this 
direction allows us to project out the components of (R+t) along the three axes.  Then, the 
following three equations can be obtained from the geometry in 



Fig. 5(b). 
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Eq. 1, 3, 4, and 5 form a system of four nonlinear equations in four unknowns that can be 
solved using any of the several known iterative techniques [7] to determine both the 
shortest distance and the coordinate of the point on the ellipsoid closest to the sphere. 
 
Validation 

 
The unknown parameters in the validation process are the center of the sphere (XO, YO, 
ZO) and its radius R. The six parameters of the ellipsoid (a, b, c, α, β, χ) are already 
known. The data is translated so that the current estimate of the center of the sphere is the 
origin. The data is subsequently rotated so that the ellipsoid is vertical. The inner loop 
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Fig. 5(a) Measurement of a calibration sphere with a tilted ellipsoidal probe. (b) 
Finding the shortest distance by first translating the center of the sphere to the origin 
and subsequently rotating the data so that the ellipsoid is vertical.



involves solving Eqs. 1, 3, 4, and 5 to determine the shortest distance between the sphere 
and the ellipsoid. These residuals are then used to refine the estimates of the unknown 
parameters using a nonlinear least squares minimization method [5,6]. 
 
2.4 Results from calibration and validation measurements 
 
The calibration process indicated that the probe was indeed ellipsoidal. The equatorial 
radii a, b were 32.73 µm and 32.58 µm respectively, while the polar radius c was 36.18 
µm. The ellipsoid was also tilted by a small amount with the three tilt angles α, β, χ 
being 3.9º, -0.2º, and 12.9º respectively. Note that χ is simply a rotation about the Z axis. 
The diameter of the validation sphere was determined to be 7937.89 µm from the 
ellipsoid fit. This value is only 10 nm larger than the calibrated diameter of the sphere. 
 
The residuals from the best-fit ellipsoid are shown for both the calibration and the check 
sphere in Fig. 6. The residuals are within ±0.2 µm for the two spheres at most 
measurement locations and they agree fairly well from sphere to sphere. In a few 
instances though, the residuals from sphere to sphere are different by as much as 0.2 µm. 
This could possibly be due to dirt on the surface. It is also possible that the point of 
contact on the probe for the two spheres is not identical; this could possibly explain the 
observed discrepancy in the form from sphere to sphere if the probe ball suffered from 
large form changes over short distances.  
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Fig. 6 Residuals from a best-fit ellipsoid for the calibration and check spheres. 
 
As an interesting aside, in Fig. 7 we show experimental confirmation of the claim made 
in Section 1 about flexible fibers being free to oscillate leading to points of contact that 
are not the intended point of contact. Fig. 7(a) shows data obtained on the equatorial 
plane of the 3/16 in sphere over several runs. Fig. 7(b) shows the spread in the data at one 
azimuthal position alone. It can be seen that the fiber makes contact over a fairly large 
region along the circumference spanning 12 µm along X and 6 µm along Y.  
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 7(a) Several runs of data on the equatorial plane of the 3/16 in (4.7625 mm) sphere. 
(b) Spread in the data at one azimuthal position alone. 
 
2.5 Uncertainty considerations 

 
We have performed some Monte Carlo simulations (MCS) that provide an estimate of the 
uncertainty in the probe parameters and also the uncertainty in the diameter of the check 
sphere determined using the ellipsoid fit method. 
 
Assuming the standard uncertainty in determining a coordinate in space is 50 nm 
(somewhat larger than the described in [1] due to small changes in the optical setup and 
reduced averaging) for the calibration sphere, MCS yields a standard uncertainty of 14 
nm for the equatorial radii a and b, 62 nm for the polar radius c, 0.29º for the tilt angles α 
and β, and 1.29º for the tilt angle χ. These uncertainties in combination with the 50 nm 
standard uncertainty in determining a coordinate of the check sphere, in turn, translate 
into a standard uncertainty of 32 nm in the diameter of the check sphere. Considering 
other sources of uncertainty described in [1], we estimate the combined standard 
uncertainty in diameter of the check sphere to be 35 nm (k = 1).  
 
It should be noted that the probe is free to oscillate due to air currents, and therefore the 
point of contact on the probe ball for the two spheres may be considerably different from 
the intended position. If the probe ball form suffers large deviations over short regions on 
its surface, this will contribute substantially to the uncertainty. We have not developed a 
comprehensive uncertainty budget yet, but it appears that diameter measurements with an 
expanded uncertainty of 100 nm (k = 2) is feasible with ellipsoidal probes. 
 
3 Three dimensional measurements on a test artifact 
 
3.1 Description 
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In this section, we describe measurements performed on a conical artifact with our 
ellipsoidal probe. The artifact has a rounded tip with a nominal 38 µm radius. The half 
angle of the cone is nominally 20º. We performed circular traces at 12 heights, with 16 
sampling points per trace, as shown in Fig. 8. The circular traces from Z = -89 µm to Z = 
11 µm are on the conical section of the part, while the remaining six traces are on the 
hemisphere. We also measured the pole point for a total of 193 data points. The origin of 
the measured data is set as the center of the hemisphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Conical artifact with a rounded tip of 38 µm nominal radius. Half angle of the 
cone is nominally 20º. 
 
3.2 Cone-hemisphere fit 
 
From the measured data, we attempt to determine the following seven unknown 
parameters of the cone-hemisphere geometry: the tilt angles of the cone α, β about the X 
and Y axes respectively, the half angle θ of the cone, and the center (Xo, Yo, Zo) and 
radius R of the hemisphere.  
 
Note that a cone in space is defined by six parameters which include: three parameters to 
define the coordinate of the apex, one parameter for the half angle of the cone, and two 
parameters for the direction cosines of the axis (the third direction cosine can be 
determined from the other two because the sum of the squared values of the directions 
cosines is unity). The additional parameter required to define the hemisphere is its radius. 
Because it is tangential to the cone, the radius automatically places the center of the 
hemisphere at a fixed point along the axis. 
 
As described before, we structure the problem in a nested nonlinear manner with the 
outer loop formulated as a nonlinear least squares problem and the inner loop as a set of 
four nonlinear equations in four unknowns. For each iteration of the outer loop, we 
determine the residue (the shortest distance between the probe and the cone-hemisphere 
artifact) for each measured data point. These residuals are then used to refine the current 
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estimates of the seven unknown parameters using non-linear least squares minimization 
techniques such as the Levenberg-Marquardt algorithm.  
 
In order to determine the residuals, we have to determine the shortest distance between 
the probe and the cone-hemisphere artifact. If the measured data belongs to the 
hemispherical tip, the residuals can be determined as described in Section 2.3. If the 
measured data belongs to the conical surface, a separate procedure is required which is 
described in this section.  
 
The three tilt and three radii parameters of the ellipsoid are already known from the 
calibration on a master sphere, see Section 2.3. To determine the shortest distance 
between an ellipsoid and the cone, we require the current estimates of the seven unknown 
parameters of the cone-hemisphere geometry; let these be Xo, Yo, Zo, R, α, β, and θ. Fig. 
9(a) shows the probe centered on the ith measured data point, given by C. In Fig. 9(a), the 
probe is shown to be oriented along the vertical direction; because the probe tilt 
parameters are a known quantity, the entire data is first rotated so the probe is vertically 
oriented. 
 
Given the probe is centered on measured data point C (XC, YC, ZC), the objective then is to 
determine the coordinate (XB, YB, ZB) of the point B that is closest to the cone and the 
shortest distance t given by AB in Fig. 9(a). We formulate the problem as a system of four 
nonlinear equations in four unknowns that can be solved using known iterative 
techniques [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9(a) Determining the shortest distance between the ellipsoid and the tilted con-
hemisphere geometry. (b) Rotating the cone-hemisphere geometry so that it is vertical. 
 
The ellipsoid in Fig. 9(a) can be described by 
 

1)()()(
2

2

2

2

2

2

=
−

+
−

+
−

c
ZZ

b
YY

a
XX CBCBCB       (6) 

 
The gradient at B (which is along the direction of vector BM, perpendicular to the 
surfaces of the cone and the probe) is given by 
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The following three equations can be obtained from the geometry in Fig. 9(a) 
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where (XM,YM,ZM) is the coordinate of M. If the coordinate of M can be expressed in 
terms of the unknown parameters (XB, YB, ZB, t), the system of four equations given by 
Eqs. 6, 8, 9, and 10, can be solved as a simultaneous system of four nonlinear equations 
in four unknowns. Expressing the coordinate of M in terms of the unknowns can be 
accomplished fairly easily by some simple coordinate system rotations as described next.  
 
Let the data set be rotated (using current estimates of the tilt angles for the cone-
hemisphere artifact) so that the cone-hemisphere artifact is oriented along the vertical 
direction. Therefore, point C is now represented by C' in the new frame and its coordinate 
is given by 
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where Rx and Ry are the rotation matrices based on current estimates of the tilt angles α 
and β respectively, and the superscript T refers to the transpose of the array. Note that the 
coordinate of point C is a known quantity (it is a measured data point). The rotation 
matrices are also known (from the current estimates for the tilt angles) and therefore the 
coordinate of C' is a known quantity. The coordinate of the unknown point B is related to 
the point B' in the rotated frame through the following: 
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The distance AB in Fig. 9(a) is the shortest distance t, and is unchanged due to rotation. 
Therefore A'B' = AB = t.  
 
From the geometry in Fig. 9(b), OM' is given by 
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The coordinate of point M' in terms of the unknown parameters t and ZB' is therefore  
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obtained from the coordinate of M' as  
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The distance M'B' is given by 
 

tOMRBM ++= θsin'''         (15) 
 
Thus, we have expressed the coordinate of M and the distance MB in terms of the 
unknown parameters (XB, YB, ZB, t). Eqs. 6, 8, 9, and 10 can therefore be solved to 
determine the residue t for any given data point C.  
 
3.4 Results 
 
We initially analyzed the cone and hemisphere data independently to assess the form of 
each portion separately. The residuals of the data collected on the conical surface from a 
least squares best fit cone are shown in Fig. 10. The cone appears to be three-lobed but 
the magnitude of the form is not too large (less than 1 µm). The residuals of the data 
collected on the hemispherical surface from a least squares best fit sphere are shown in 
Fig. 10 as well. The lobing error is not as pronounced on the hemisphere. There appears 
to be a large form error, with the trace at 20º being larger than nominal by at least 0.5 µm. 
 
In addition to the form error, our least squares fit indicated that the hemisphere and cone 
were shifted in space. We estimated this shift as follows. As mentioned earlier, we first 
determined the center and radius of the hemisphere through least-squares best fit to the 
data acquired from the hemisphere. Let this radius be r. Then, we fit a least-squares best 
fit cone to the data acquired on the conical surface. We determined the position along the 
axis on the cone where a hemisphere of radius r can be centered so that it will be tangent 
to the cone. For the ideal geometry, this point on the cone will coincide with the center of 
the hemisphere as determined from its best-fit. In the case of our example, the center of 
the hemisphere was away from the corresponding point on the cone by about                   
(-2, -0.3, 4.7) µm in (x, y, z) respectively. That is, the hemisphere appeared to be shifted 
in space from the cone by the amounts indicated.  
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Fig. 10 Residuals from a least squares best fit cone and from a least squares best fit 
sphere. 
 
We then performed a simultaneous fit of a cone and hemisphere to the data. The residuals 
from such a fit are shown in Fig. 11. Notice that the residuals are much larger than those 
in Fig. 10. We suspected the reason for this discrepancy to be from the shift in the centers 
of the cone and the hemisphere, and a simulation, in fact, confirmed this. The simulation 
comprised a data set closely mimicking the measured data set and incorporating the shift 
in the centers between the cone and the hemisphere, and also the form error seen in the 
hemisphere. The simulation results are shown in Fig. 11. The simultaneous cone-
hemisphere least-squares fit and the simulation provide strong evidence that the 
hemisphere and the cone are in fact shifted in space, thus providing valuable 
measurement feedback to the manufacturing process. 
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Fig. 11 Simultaneous fitting of a cone and a sphere to the data set. Residuals for both 
measured and simulated data. 
 
4 Summary 
 
In this paper, we describe some issues pertaining to three dimensional measurements of 
micro-features using flexible fiber probes that may have a non-spherical tip. Unlike 
macroscopic probes measuring macro-scale artifacts, the flexible fiber probes are free to 
oscillate and can therefore contact the part away from the intended position. Because the 
part sizes are comparable to probe sizes, the direction of the surface normal at the point 
of contact may be significantly different from the approach direction. In addition, the 
probe ball itself may be non-spherical. The probes we use for the NIST fiber probe can be 
better approximated as an ellipsoid than as a sphere. These factors make probe radius 
compensation a challenging problem. In this paper, we have described a process to 
calibrate and validate the probe shape and size using least-squares ellipsoid fits to 
measurements made on master spheres. We also demonstrate how we may perform probe 
size/shape compensation of the measured data to obtain surface coordinates on micro-
scale three dimensional artifacts. 
 
In our experiments with integrally manufactured fiber probe tips, we have noticed that 



our probe ball is more closely modeled as an ellipsoid than as a sphere. The equatorial 
radii of the probe used in the experiments described in this paper were 32.73 µm and 
32.58 µm, while the polar radius was 36.18 µm. The form deviations (residuals from an 
ellipsoid fit) were within ±0.2 µm of the nominal geometry, the ellipsoid. We estimated 
the diameter of the check sphere, using ellipsoidal fits, to within 10 nm of the calibrated 
value, thus providing a validation of our methods. Our measurements on microscale 
features suggest that our approach of least-squares fitting can be used to perform probe 
size/shape compensation when the probe ball is nominally ellipsoidal. Even when the 
shape is not ellipsoidal, the method of least-squares may be employed in finding the best-
fit geometry of the probe; this information can then be employed during probe size/shape 
compensation.  
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