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Abstract The stability of several clock protocols based on 2 to 20 entangled atoms is evaluated numeri-
cally by a simulation that includes the effect of decoherence due to classical oscillator noise. In this con-
text the squeezed states proposed by André, Sørensen and Lukin [PRL 92, 239801 (2004)] offer reduced 
instability compared to clocks based on Ramsey’s protocol with unentangled atoms. When more than 15 
atoms are simulated, the protocol of Bužek, Derka and Massar [PRL 82, 2207 (1999)] has lower instabil-
ity. A large-scale numerical search for optimal clock protocols with two to eight qubits yields improved 
clock stability compared to Ramsey spectroscopy, and for two qubits performance exceeds the analyti-
cally derived protocols. In the simulations, a laser local oscillator decoheres due to flicker-frequency (1/f) 
noise. The oscillator frequency is repeatedly corrected, based on projective measurements of the qubits, 
which are assumed not to decohere with one another. 
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1 Introduction 

Atomic clocks are intrinsically quantum measurement devices, and it is an open question to 
what degree quantum many-body states can improve clock operation. Squeezed states were 
first discussed in the context of optical interferometers with improved resolution [1]. Subse-
quently, spin-squeezed input states [2] were considered for improved frequency resolution in 
atomic clocks [3, 4]. Further studies simultaneously optimized the initial quantum state with 
the clock’s measurement basis [5] to achieve frequency resolution that scales as the Heisenberg 
limit. 

In atomic clocks, the highest accuracies are currently reached with pairs of trappedions [6] 
where the atom-number is difficult to increase without loss of accuracy. Experiments of similar 
construction have demonstrated arbitrary unitary transformations of ion-qubit pairs [7]. There-
fore, „quantum gain”, where improved performance is extracted from a small number of entan-
gled atoms in clocks, may have practical significance. 



This study focuses on the projection-noise-limited frequency stability of passive atomic 
clocks1, where the classical oscillator is the only source of decoherence, and the atomic qubits 
are assumed not to decohere with one another. This situation has been been addressed for the 
case of squeezed states with large qubit numbers [9], and for general quantum states and meas-
urement bases, also in the limit of large qubit numbers [5]. Experimental trapped-atom optical 
clocks that are based on resonances of metastable excitations share this decoherence mecha-
nism when inter-atom decoherence from interactions, spontaneous emission, and background-
field fluctuations can be neglected. In optical atomic clocks the oscillator frequency is derived 
from laser-stabilization cavities that have an intrinsic thermal noise floor [10] whose power-
spectrum of frequency-fluctuations scales as 1/f. This fundamental thermal-noise floor serves 
as the model for oscillator decoherence. Note that models of decoherence and oscillator noise 
are essential ingredients for studies of optical-clock stability, where the uncertainty of the 
atom-oscillator phase difference is typically of order one radian. In contrast, the atom-oscillator 
phase difference in many microwave atomic clocks is of order one milliradian, and oscillator 
noise plays a different role. 

2 Clock model 

The simulated clocks are generalizations of Ramsey’s clock protocol [11]. Each clock contains 

N qubits whose states are the ground state |0 =  and the excited state |1 = . Ramsey’s 

protocol, as considered here, consists of repeated application of the following steps
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2. Free evolution for a period T where a phase difference of  accumulates between the oscil-
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3. Measure final state by rotating the qubits by /2 about the Bloch-sphere y-axis, and count-
ing the number of excited-state qubits. This corresponds to measuring 2 in the basis 
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4. Adjust the oscillator frequency by an amount that depends on the measurement outcome in 
step 3. 

5. Add a random variable to the oscillator frequency to model its 1/f noise floor3. 
 
In this description the Bloch-sphere rotation directions are defined by the oscillator phase. 
Thus, when the oscillator accumulates a phase error during the free evolution period, this is 
modeled as the phase  that is applied differentially to the two states of each qubit in step 2. 
                                                 
1 In passive atomic clocks a classical oscillator is frequency-stabilized to an atomic resonance. In active 
atomic clocks such as masers, the clock signal is produced directly by the atoms. Active optical clocks 
may have a different type of noise floor [8]. 
2 /2 rotations are assumed to be infinitesimally short. 
3 In this study, the oscillator frequency has a probe cycle to probe cycle variance of 2 Hz2, independent of 
T, corresponding to a flat Allan deviation of 1 Hz. This noise level is chosen for convenience, and is of 
similar magnitude to the experimental oscillator noise in optical clocks. 



The above sequence can be understood as a measurement of the atom-oscillator frequency 
difference in steps 1 to 3, followed by a correction of the oscillator frequency. Atomic projec-
tion noise in step 3 limits the measurement stability to [12] 
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where f() is the standard deviation of the clock frequency after it has been averaged over the 
period , with respect to the true frequency of the atoms. In order to minimize f , one should 
maximize the free evolution period T . However, when T is too large, it is possible for fre-
quency errors of ± 2/T to accumulate undetected, because the atomic signal is periodic. Such 
occurrences, called „fringe hops”, limit the duration of T . Note that clock protocols with vari-
able T may avoid fringe hops and allow for improved stability. 

Ramsey’s protocol can be generalized in two ways. The first is the use of arbitrary mul-
tiqubit states for 1. When these states reduce the phase measurement uncertainty in the limit 
of small T , the states are considered spin-squeezed [2, 3]. André et al. [9] suggest the states 
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squeezing, () provides normalization, and the states |N, m are the fullysymmetrized states 

of N qubits containing m excitations.4 These initial states improve the stability of simulated 
clocks (see Section 4). The second generalization consists of the use of other measurement 
bases. Only initial states and measurement bases in the symmetric subspace spanned by the 
states |N,mi are considered [5]. Such protocols consist of repeated application of these steps: 

1. Prepare initial state 1. 

2. Free evolution for a time-period T . |N, m  e−im |N,mi 

3. Measure final state by projecting into a measurement basis {|aj}. 

4. Adjust the oscillator frequency by an amount that depends on which |aj was measured 
in step 3. 

Oscillator noise is simulated as before. This protocol could be further generalized to include 
the possibility of partial measurements, ancilla qubits, and frequency corrections that depend 
also on the measurement outcomes from prior cycles. However, such extensions are not con-
sidered here. Furthermore, the free-evolution period T is fixed for each protocol instance. 

Bužek et al. have optimized analytically the initial state 1 and basis {|aj} for phase 
measurements in the limit of large N. The authors find5 
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where (j) = 2j/(N + 1). Simulated clocks based on this protocol achieve Heisenberg-
limited scaling (see Section 4). The phase-shifted basis states where (j) = 2(j + 1/2)/(N + 1) 
are also considered, because they offer reduced clock instability when N is odd. 

 
4 For example, |4, 3 = (|0111 + |1011 + |1101 + |1110)/2. 
5 This result holds when phase errors can be considered modulo 2. When the free-evolution period T is 
optimized in optical clocks, phase errors beyond 2 must also be taken into account. 



The above optimization is for a uniform distribution of oscillator phase errors on the interval 
[ , ), while in experimental clocks the phase error has a distribution that is peaked at  = 0 
and drops near zero as  approaches ± . In this work the frequency corrections associated with 
each basis state are numerically optimized, to account for the non-uniform distribution at the 
correction stage. Other studies explicitly optimize phase estimation protocols as a function of 
the prior distribution of phases [13, 16], and this approach is likely to result in more stable few-
qubit clock protocols. 

3 Numerical search 

The generalized protocol described above can be parameterized by an array of real numbers. 
For each protocol, the expected instability can then be calculated in a Monte Carlo simulation. 
In the present study, a numerical optimizer adjusts the protocol parameters to find the best 
performance. This is a difficult numerical problem, because the dimensionality grows quickly 
with qubit number N, and numerical optimizers are not well suited to optimize the results of 
Monte Carlo simulations, which contain noise from the randomization process6. Nevertheless, 
this numerical search yields protocols whose performance exceeds that of Ramsey’s protocol 
for two to eight qubits. 

Minimization of the search-space dimensionality is critical. As noted above, only initial 
states and measurement bases in the symmetric subspace (spanned by the |N, m states) are 
considered. For the numerical search, 2 N + 1 real numbers (reals) parameterize the initial state 
and N2 + N reals parameterize the measurement basis. Because both unitary operations and 
measurement bases can be written as orthonormal matrices, their parameterization is nearly 
identical. Efficient parameterization of unitary operations is described by Tilma and Sudarshan 
[15]. For the present calculation, extraneous phase degrees of freedom have been removed 
from the basis states. In addition, N + 1 reals parameterize the frequency corrections, and one 
real parameterizes the free-evolution period T . In total, N2 + 4 N + 3 reals parameterize an N-
qubit clock. It is believed that a minimal parameterization requires N2 + 4 N + 2 reals. 

Clock performance is measured as the long-term instability. That is, if the clock runs for 
many interrogation cycles, how close is the average oscillator-frequency to that of the atomic 
qubits? The Monte Carlo simulator propagates the clock through 105 cycles, and calculates the 
variance of 100-cycle frequency-averages. Additional steps are taken to ensure that this vari-
ance reflects the long-term clock instability. The oscillator noise is pre-computed to have a 1/f 
power spectrum of frequency noise [10, 16] with an Allan deviation [17] of 1 Hz. 

It should be noted that for a fixed free-evolution period T , the frequency of all clocks with 
finite N diverges as a random walk, because undetectable 2 phase jumps (fringe hops) cannot 
be avoided entirely. Nevertheless the probability of fringe hops can be made small for large but 
finite numbers of clock cycles. This regime of a large, but finite number of clock cycles de-
scribes both real clocks, which do not run forever, and the Monte Carlo simulations in this 
work. 

The search was performed via Nelder-Mead optimization [16] of randomized protocols 
that meet a performance threshold. All N2 + 4 N + 3 parameters were randomly varied for the 
general search, so that all possible initial states and measurement bases were within the search 
space. When initial tests yielded good stability, the protocol was run through the optimizer for 
further refinement. For known protocols, only the frequency corrections and free-evolution 
period T were varied, as well as the squeezing parameter , where applicable. For all protocols, 
optimal frequency corrections were estimated by assuming a prior Gaussian distribution of 

                                                 
6 Performance estimates based on Markov chains would avoid the problem of randomization noise. But 
because the 1/f noise process is non-stationary, a very large state space may be needed for accurate esti-
mates of long-term stability. 



frequency errors, and computing the mean frequency associated with each possible measure-
ment outcome |aj. To these estimates random offsets were added before testing the protocol. In 
the case of known protocols, certain symmetries are evident, and these symmetries were also 
enforced for the frequency corrections.  

4 Results 

Numerical simulations of the clock protocols considered here are summarized in Figure 1(a). 
Ramsey’s protocol defines the standard quantum limit (SQL), and it is evident that entangled 
states of two or more qubits can reduce clock instability. The spin-squeezed states suggested by 
André et al. yield the best performance for 3 to 15 qubits, and improve upon the SQL variance 
by a factor of N−1/3. For more qubits, the protocol of Bužek et al. further reduces clock vari-
ance, because this protocol scales as N−1. The numerical search was run in many parellel 
threads to find protocols that surpass these analytical protocols, but for two qubits7, the clock-
variance is only reduced by 1 , within the margin of error for this calculation. Although the 
analytical protocols are within the search space, their performance is not reached by the general 
search program for N > 3, due to the size of the problem. The optimized free-evolution period 
T for different protocols is shown in Fig. 1(b). 

The behavior of the different types of clocks is illustrated in Fig. 2, where it can be seen 
that the protocol of Bužek et al. gains frequency resolution as 1/N, because each basis state 
coprreponds to a range of phases that shrinks as 1/N. The squeezed-state protocols are similar 
to Ramsey’s protocol, but gain frequency resolution near  = 0at the expense of decreased 
resolution near = ±/2. For N = 2 the “Search” protocol is very similar to that of André et al. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: (color online) Left: long-term statistical variance of entangled clocks that contain different 
numbers of qubits, compared to the standard quantum limit (SQL). The most stable clocks found by 
the large-scale search are shown as black points. Each point is based on several hours of runtime on 
NIST’s computing cluster, where typically 2000 processor cores were utilized in parallel. Also 
shown is the simulated performance of analytically optimized clock protocols. Approximately 15 
qubits are required to improve upon the SQL by a factor of two. Right: numerically optimized free-
evolution period T for clock protocols considered here, when the oscillator noise has an Allan devia-
tion of 1 Hz. 

                                                 
7 The probability amplitudes for the different possible states are 

ˆ

1e iH TU  

 
 
  
 

. Numerically optimized 
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Fig. 2: (color online) Probability (P) of measuring each basis state as a function of the atom-
oscillator phase difference (). Shown are the various protocols for two and five atoms. Each differ-
ently colored curve corresponds to a basis state that 1 is projected onto after free evolution. Vertical 
text near the curves’ peaks indicates the optimized phase estimate (Est). In the simulations, the fre-
quency corrections are Est/(2T). Shaded in the background is the Gaussian distribution whose vari-
ance 2 represents the atom-oscillator phase differences that occur in the simulation. Also listed is 
the optimized probe period T, squeezing parameter  where applicable, and long-term frequency 
variance of the clock extrapolated to 1 second. For long-term averages of n seconds, the variance is 
f2/n. 



5 Conclusion 

For accurate ion clocks, further experimental improvements are required to achieve full quan-
tum control of two clock qubits, where the available „quantum gain” appears to be 15 % to 
20 %. It is likely that gains of similar magnitude can be derived from easier to implement clas-
sical improvements, where the free-evolution period is varied to prevent fringe hops. Such 
classical protocols will define a new standard quantum limit with which to compare variable 
probe time, entanglement-based, protocols. It remains an open question how much quantum 
gain is possible in variable probe-time clocks. Recent theoretical work on efficient quantum-
phase estimation [13, 14] may improve upon the protocols considered here [5, 9], especially for 
three or more qubits. 
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