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ABSTRACT
The reliability polynomial of a graph gives the probability that a graph is connected as a function of the
probability that each edge is connected. The coefficients of the reliability polynomial count the number
of connected subgraphs of various sizes. Algorithms based on sequential importance sampling (SIS) have
been proposed to estimate a graph’s reliability polynomial. We develop a new bottom-up SIS algorithm
for estimating the reliability polynomial by choosing a spanning tree and adding edges. This algorithm
improves on existing bottom-up algorithms in that it has lower complexity ≈O(E2) as opposed to O(EV 3),
and it uses importance sampling to reduce variance.

1 INTRODUCTION
Let G be a connected graph with vertex set V and edge set E. We define r(x), the reliability polynomial
of G, to be the probability that the graph remains connected when edges are removed independently with
probability x. This function is a polynomial which can be written as

r(x) =
|E|−|V |+1

∑
i=0

Nixi(1− x)|E|−i

where Ni is the number of connected subgraphs of G with |E|− i edges.
It will be more convenient for us to work with this factored form. We define the reliability generator

p(x) = ∑
i

Nixi

In particular, we use the term, “low” order coefficient to refer to Ni for small i, that is, the number of ways
of removing just a few edges from G and still have the resulting graph connected. And we use “high”
order coefficient to refer to Ni for large i, that is the number of connected graphs that can be formed by
adding a few edges to a spanning tree of G. The reliability generator can be used to evaluate the reliability
polynomial itself,

r(x) = (1− x)|E|p
( x

1− x

)
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Computing the reliability of a graph is computationally hard (Ball 1986). A variety of algorithms have
been proposed to approximate the reliability of a graph. Some of these algorithms seek to compute r(x0)
or 1− r(x0) for some fixed probability x0, such as Fishman (1986) or Karger (1996). Other algorithms
determine some or all of the coefficients of the generator, such as Colbourn, Debroni, and Myrvold (1988).
These problems are related, but are not equivalent especially in terms of measuring error. For example, a
fully-polynomial randomized approximation scheme (fpras) for evaluating r(x0) where x0 is held constant
does not yield a fpras for the coefficients of p. The algorithm of Beichl, Cloteaux, and Sullivan (2010),
which we denote TOP-DOWN, is a sequential importance sampling (SIS) algorithm. See Liu (2001) for
an explanation of SIS.

TOP-DOWN ALGORITHM

Set m← 1.
For k = 0, . . . ,K do

Set N̂k← m/k!
Determine D, the set of available non-bridges of G.
Choose an edge e ∈ D uniformly.
Set m← m|D|.
Set G← G− e

Endfor

This pseudocode is for one estimate. Multiple samples can be averaged to yield an estimate N̄k where
we use the bar to indicate a mean. We draw as many samples as necessary until a reasonable accuracy is
achieved. We may describe this as a top-down algorithm, as it starts with the original graph and removes
edges until reaching a tree. This algorithm as presented has running time O(|E|2). However, as described in
Harris, Sullivan, and Beichl (2011), the running time can be reduced to approximately O(E log(V )α(V )),
where α() is the inverse Ackermann function. To simplify the notation in this paper, we will abuse notation
so that E and V can mean |E| and |V |. We also let τ(G) represent the number of spanning trees of a graph
G.

While this top-down algorithm is very effective at estimating the low-order coefficients of the reliability
generator, its relative variance tends to increase on the high-order coefficients. In many physical situations,
only the low-order coefficients of the reliability generator are important. For example, we would likely be
interested in knowing when the network has a non-negligible chance of staying connected after a series
of disruptions. Later coefficients, corresponding to a large number of broken links and an exponentially
small probability of connectivity, would probably not be physically relevant. However, in cases where the
high-order coefficients are desired, Colbourn, Debroni, and Myrvold (1988) proposed an alternative SIS
algorithm. This algorithm, which we denote BOTTOM-UP-UNIFORM, can be viewed as a “bottom-up”
algorithm: it starts with a spanning tree of the graph and inserts edges. We sketch a simplified version of
the algorithm described in Colbourn, Debroni, and Myrvold (1988). Their algorithm has some additional
optimizations which will not be relevant in this paper.)

BOTTOM-UP-UNIFORM ALGORITHM

Choose a spanning tree H of G uniformly at random.
For k = K, . . . ,0 do

Set N̂k← τ(G) (K
k)

τ(H)
Choose an edge, e, of G−H uniformly at random.
Set H← H ∪ e

Endfor

This algorithm tends to have low relative variance on high order coefficients. Choosing the spanning
tree uniformly at random can be done with Wilson’s algorithm (Wilson 1996).
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Some reliability algorithms return a single estimate p̂(x) of the reliability generator. In this paper we
are estimating the entire polynomial, not simply evaluating the polynomial at particular value of x, and so
our estimate actually consists of all K coefficients.

In this paper, we will analyze and improve the BOTTOM-UP-UNIFORM. We call the new method
BOTTOM-UP-NEW. We make two key improvements. First, the BOTTOM-UP-UNIFORM algorithm
requires computing the number of spanning trees of certain subgraphs of the graph G. Computing this
directly is very expensive, costing O(EV 3) runtime. We will describe a more efficient method, which
speeds up BOTTOM-UP-UNIFORM leading to a runtime of O(E2polylog(E,ε)). It should be noted that
Colbourn, Myrvold, and Neufeld (1996) uses a different but similar linear algebra technique for unranking
arboresences.

The second improvement is in the choice of edge e. Algorithm BOTTOM-UP-UNIFORM selects
among the possible edges uniformly (all edges are equally likely). We will describe an importance
sampling technique for selecting the edges, which greatly improves the accuracy.

In a later paper we will analyze the variance of BOTTOM-UP-NEW, from a theoretical point of view
(including worst-case variance). Here we concentrate on practical problems. In a later paper we will also
describe how to combine the TOP-DOWN with BOTTOM-UP-NEW, in effect achieving the best of both
worlds — low variance on both high-order and low-order coefficients.

2 ESTIMATING HIGH-ORDER COEFFICIENTS
As shown in Beichl, Cloteaux, and Sullivan (2010), Algorithm TOP-DOWN has very good accuracy on the
low-order coefficients of the reliability generator. However the algorithm has increasing relative variance
for the high-order coefficients. This is a consequence of its top-down design. This is unfortunate because
the highest-order coefficient of the reliability generator, which corresponds to the number of subtrees of
G, can be computed exactly in polynomial time using the well-known Kirchoff formula. See, for example
Harris, Hirst, and Mossinghoff (2008). Let AG be the adjacency matrix of G, and let D be a diagonal
matrix whose ith entry is the degree of vertex vi. Recall that τ(G) is the number of spanning trees of G.
We have the identity

τ(G) = detL,

where L = (D−AG)11 denotes the minor of D−AG obtained by removing the first row and column. This
can be evaluated in O(V 3) work.

Next, consider how one might seek to estimate the penultimate coefficient of the reliability generator.
This coefficient counts the number of graphs with V (= (V −1)+1) edges. To obtain such a graph, one
might take a spanning tree T and add any of the edges of other K edges of G. However, this would count
graphs multiple times; each such graph T ∪e would be counted with multiplicity τ(T ∪e). Accounting for
this factor, one has that

penultimate coefficient of pG = τ(G)(E−V +1)E[1/τ(T ∪ e)]

where the expectation, E, is taken over all spanning trees T and all edges e ∈ G−T .
To estimate this quantity unbiasedly, one might sample spanning trees T and edges e ∈G−T , compute

the resulting τ(T ∪ e), and extract a sample mean of 1/τ(T ∪ e).
In general, coefficient K− k of the reliability generator is given by the formula

τ(G)E[ ∑
e1,...,ek

1/τ(T ∪ e1 · · ·∪ ek)]

where T is chosen uniformly among spanning trees of G, e1, . . . ,ek are distinct edges of G−T .
This formula suggests that there are two search spaces to cover: the space of spanning trees T and the

space of edges e1, . . . ,ek. Our algorithm will handle the first using simple Monte Carlo sampling, and will
handle the second using Sequential Importance Sampling. This will be a bottom-up algorithm: we start
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from a spanning tree and add edges to it until recovering the original graph. We will denote this Algorithm
BOTTOM-UP-UNIFORM:

Algorithm BOTTOM-UP-UNIFORM

Precompute τ(G)
Choose a spanning tree H of G uniformly at random (e.g. with Wilson’s
algorithm)
For k = K, . . . ,0 do

Set N̂k←
τ(G)(K

k)
τ(H)

Choose an edge of G−H uniformly at random.
Set H← H ∪ e

Endfor

Algorithm BOTTOM-UP-UNIFORM is equivalent to the algorithm described in Colbourn, Debroni,
and Myrvold (1988). In this algorithm as presented, as in many SIS algorithms, variance is introduced
when different choices for e at each step lead to estimates of divergent size. (Variance is also introduced
with choice of spanning tree, but we will not use the importance to deal with this.) In general, in SIS
algorithms, it is best to choose an importance function which equalizes, as far as possible, the contributions
from each choice. In our case, this is not really possible, for two reasons. First, we cannot compute the
exact contribution — that is precisely the quantity we are trying to estimate in the first place. Second, we
are seeking to estimate the entire reliability generator, and so our selection contributes to multiple estimated
coefficients, which we cannot equalize simultaneously.

In our case, we will use a simple importance function so that the contribution from each edge e with
respect to the next estimate N̂k is equalized. Letting P(e) denote the probability of inserting edge e, the
choice of P(e) that achieves this is

P(e) ∝
1

τ(H ∪ e)

which yields the following algorithm:
Algorithm BOTTOM-UP-NEW

Precompute τ(G).
Set m← 1, the running total of all importance functions seen so far.
Choose a spanning tree H of G uniformly at random (e.g. with Wilson’s
algorithm).
For k = K, . . . ,0 do

Set N̂k← mτ(G)
(K

k

)
Set

S = ∑
d∈G−H

τ(H)/τ(H ∪d)

Update
m← mS/k

Choose an edge e ∈G−H with probability P(e) proportional to 1/τ(H∪e).
Set H← H ∪ e

Endfor

In practice, Algorithm BOTTOM-UP-NEW has much better variance than Algorithm BOTTOM-UP-
UNIFORM on the high-order coefficients.
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The results of Algorithm BOTTOM-UP-NEW are almost the opposite of Algorithm TOP-DOWN:
high-order coefficients are computed very accurately (in fact, the highest-order coefficient is computed
exactly), while the relative variance increases for the low-order coefficients.

3 COMPUTING τ EFFICIENTLY
Algorithms BOTTOM-UP-UNIFORM and BOTTOM-UP-NEW appear to be very expensive because they
requires extensive computation of the τ function. Directly computing τ using the determinant formula
costs O(V 3) work and O(V 2) memory (for Gaussian elimination). It would appear that at each iteration,
we must compute τ(G∪ e) for each edge; and altogether there are K iterations. In all, this would appear
to cost O(E2V 3) work and O(V 2) memory for Algorithm BOTTOM-UP-NEW.

Instead of recomputing τ(G∪ e) at each stage, we will instead keep track of the value

λ (e) = τ(H ∪ e)/τ(H)

at each stage of the algorithm, for each edge e ∈ G−H.
Initially, when H is a spanning tree, we set

λ 〈i, j〉 ← tree-distance (i, j)+1

for each edge 〈i, j〉.
Next, when we update H by inserting an edge e, we must update λ . Let d be another edge in H. We

need to compute the updated λ ′(d) = τ(H ∪ e∪d)/τ(H ∪ e).
We will find the following notation convenient. If e = 〈i, j〉 is any edge in G, we define the column

vector δe to be the vector which is +1 in coordinate i, is −1 in coordinate j, and is zero elsewhere. Observe
that when edge e is added to H, the matrix L changes by δeδ T

e :

LH∪e = LH −δeδ
T
e

Now let us examine how to recompute λ ′:

λ
′(d) = τ(H ∪ e∪d)/τ(H ∪ e)

= det(LH −δdδ
T
d −δeδ

T
e )/det(LH −δeδ

T
e )

= det
(

I− (LH −δeδ
T
e )−1

δdδ
T
d

)
= 1−δ

T
d (LH −δeδ

T
e )−1

δd

= 1−δ
T
d (L−1

H +
L−1

H δeδ T
e L−1

H

1−δ T
e L−1

H δe
)δd

= 1−δ
T
d

(
L−1

H +
uuT

1−δ T
e u

)
δd where u = L−1

H δe

= 1−δ
T
d L−1

H δd +
(δ T

d u)2

1−δ T
e u

= λ (d)+
(δ T

d u)2

λ (e)

This leads to the following technique for updating λ . Whenever we add edge e to H, we use the conjugate
gradient method, a sparse matrix technique, to compute u = L−1

H δe. We then update each λ (d)

λ (d)← λ (d)+(δ T
d u)2/λ (e)
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In total, this technique allows us to reduce the memory requirement to O(E) and the complexity to
O(EV ). Furthermore, in practice the conjugate gradient method needs far less than O(EV ) iterations to
compute an adequate approximation, so the work requirement per iteration is more like O(Epolylog(E,ε))
where ε is the desired accuracy after averaging multiple samples together.

To make this completely transparent, we present Algorithm BOTTOM-UP-NEW explicitly describing
how to use and update λ :

Algorithm BOTTOM-UP-NEW (with linear algebra)

Precompute τ(G).
Set m← 1, the running total of all importance functions seen so far.
Choose a spanning tree H of G uniformly at random (e.g. with Wilson’s
algorithm).
For each edge 〈i, j〉 ∈ G−H, set

λ 〈i, j〉 ← tree-distance (i, j)+1

For k = K, . . . ,0 do
Set p̂k← mτ(G)

(K
k

)
Set S = ∑d∈G−H 1/λ (d) and update m← mS/k
Choose an edge e ∈ G−H with probability P(e) = (1/λ (e))/S.
Using conjugate gradient method, compute u≈ L−1

H δe
For each edge d ∈ G−H update

λ (d)← λ (d)+(δ T
d u)2/λ (e)

Endfor
Set H← H ∪ e

Endfor

This is mathematically equivalent to the previous Algorithm BOTTOM-UP-NEW. In total, these tech-
niques reduce the work requirement of both Algorithm BOTTOM-UP-NEW and Algorithm BOTTOM-
UP-UNIFORM to a maximum of O(E2V ) and memory requirement to O(E); and in practice much less
than this if we accept a numerical approximation (more like O(E2polylog(E,ε))).

Also, for large values of k, the matrix L is extremely sparse. In particular, it has many density-two
rows (corresponding to degree-one vertices in H). For inverting a matrix of this form, a simple application
of conjugate gradient is not best. A better strategy is to use a partial Gaussian elimination, eliminating all
degree-two rows, and performing a preconditioned conjugate gradient on the resulting smaller matrix. We
have found that the inverse diagonal preconditioner works well.

Another trick to speed up this step is to note that the Kirchoff formula works for any minor of the
matrix D−A. To reduce the density of the resulting matrix L, we chose to omit the row and column i
corresponding to the highest-degree vertex (after pruning away degree-one vertices).

In practice, these tricks can speed up Algorithm BOTTOM-UP-NEW by a factor of four or more for
large k. For small k, the matrix L is not so sparse and these techniques gain little.

4 RESULTS
Let us turn to some sample graphs to assess the performance of these algorithms. Our first test case
is an Erdős-Renyi graph with 100 vertices and 150 edges. Figure 1 depicts the relative variance of the
three Algorithms: Algorithm TOP-DOWN, Algorithm BOTTOM-UP-NEW and Algorithm BOTTOM-UP-
UNIFORM.

As we have discussed earlier, the relative variance of Algorithm TOP-DOWN increases for large k
and the relative variance of Algorithm BOTTOM-UP-NEW increases for small k. Algorithm BOTTOM-
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Figure 1: Relative variance of various algorithms on Erdős Renyi graph, 100 vertices 250 edges Key:
Solid = TOP-DOWN algorithm, Dashed = BOTTOM-UP-UNIFORM (uniform distribution), Dotted =
BOTTOM-UP-NEW (new importance sampling)

UP-UNIFORM, as we have discussed, has better relative variance than Algorithm BOTTOM-UP-NEW on
low-order coefficients and worse variance on high-order coefficients. Since Algorithm TOP-DOWN also
has low relative variance on these low-order coefficients, Algorithm BOTTOM-UP-UNIFORM seems to
be always dominated by either Algorithm TOP-DOWN or Algorithm BOTTOM-UP-NEW.

Test Case 2 comes from a Delaunay triangulation on 100 points, yielding a graph with 100 vertices and
286 edges. Figure 2 depicts the relative variance of Algorithms TOP-DOWN, BOTTOM-UP-UNIFORM,
and BOTTOM-UP-NEW.

For any coefficient k, either TOP-DOWN or BOTTOM-UP-NEW has lower variance than BOTTOM-
UP-UNIFORM. Furthermore, either TOP-DOWN or BOTTOM-UP-NEW is at least as fast as BOTTOM-
UP-UNIFORM.

5 CONCLUSION
We have described a new bottom-up algorithm for estimating the reliability polynomial of a connected
graph. This new algorithm achieves substantially better speed and accuracy compared to the algorithm
of Colbourn, Debroni, and Myrvold (1988). This improved accuracy is especially beneficial because
the top-down algorithm of Beichl, Cloteaux, and Sullivan (2010) has poor accuracy in the high-order
coefficients.
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Figure 2: Relative Variance of various algorithms on Delanuay data. Key: Solid = TOP-DOWN algorithm,
Dashed = BOTTOM-UP-UNIFORM (uniform distribution), Dotted = BOTTOM-UP-NEW (new distribution)
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